The present invention relates generally to an apparatus for handling mailpieces and, more particularly, to a new and useful stacking, loading and transport apparatus adapted for use in combination with high-volume mailpiece inserters.
A mail insertion system or a “mailpiece inserter” is commonly employed for producing mailpieces intended for mass mail communications. Such mailpiece inserters are typically used by organizations such as banks, insurance companies and utility companies for producing a large volume of specific mail communications where the contents of each mailpiece are directed to a particular addressee. Also, other organizations, such as direct mailers, use mailpiece inserters for producing mass mailings where the contents of each mailpiece are substantially identical with respect to each addressee.
In many respects, a typical inserter resembles a manufacturing assembly line. Sheets and other raw materials (i.e., a web of paper stock, enclosures, and envelopes) enter the inserter system as inputs. Various modules or workstations in the inserter system work cooperatively to process the sheets until a finished mail piece is produced. The precise configuration of each inserter system depends upon the needs of each customer or installation.
Typically, inserter systems prepare mall pieces by arranging preprinted sheets of material into a collation, i.e., the content material of the mail piece, on a transport deck. The collation of preprinted sheets may continue to a chassis module where additional sheets or inserts may be added based upon predefined criteria, e.g., an insert being sent to addressees in a particular geographic region. From the chassis module the fully developed collation may continue to a stitched module where the sheet material may be stitched, stapled or otherwise bound. Subsequently, the bound collation is typically folded and placed into envelopes. Once filled, the envelopes are closed, sealed, weighed, and sorted. A postage meter may then be used to apply postage indicia based upon the weight and/or size of the mail piece. The mailpieces will then be moved to a stacker where mailpieces are collected and stacked, either on edge or laid flat.
In a final step, the mailpieces are manually removed by an operator and placed into mail trays or other storage containers. Such manual collection and removal is pragmatic, reliable and fiscally advantageous when the time of mailpiece removal can be shared and/or absorbed within the overall labor requirements associated with managing/operating the mailpiece inserter system. That is, this task can be efficiently performed when sufficient idle time exists between various other operational tasks, e.g., removing out-sorted mailpieces, cleaning/removing paper dust from various optical readers/scanning devices, etc., to periodically or intermittently unload the mailpiece stacker.
Advances in the art of mailpiece inserters have vastly increased the total mailpiece volume and rate of mailpiece production. For example, the Advanced Productivity System (APS) inserter system produced by Pitney Bowes Inc., located in Stamford, Conn., USA, can produce as many as twenty-two thousand (22,000) mailpieces in one hour of operation. Accordingly, hundreds of mail trays, collectively weighing over 10,000 lbs, must be removed and transported each hour by a system operator. In fact, the volume of mailpieces produced is sufficiently large that several system operators may be required to concentrate on the single/sole task of mailpiece collection and removal. Aside from the time associated with this final unloading step, it will be appreciated that the collection, removal and transport of such large mailpiece quantities can be highly demanding in terms of the physical workload. It will also be recognized that such physical demands can lead to inconsistent or reduced mailpiece throughput if/when the workload requirements are not properly balanced with the high volume mailpiece output.
A need, therefore, exists for an apparatus for stacking mailpieces produced by high volume mailpiece inserters, which apparatus ensures consistent throughput, is fiscally advantageous and provides a viable alternative to manual mailpiece collection and removal.
An apparatus is provided for handling mailpieces produced by a mailpiece insertion system, comprising at least one mailpiece stacking assembly and a combined support/conveyor system. The mailpiece stacking assembly accepts a plurality of mailpieces, i.e., as they are created by a mailpiece insertion system, and aligns the mailpieces to define a mailpiece stack. The support/conveyor system is operative to convey mailpiece containers along a mailpiece handling path and includes transport and loading sections. The loading section is, furthermore, adapted to alternately reposition each of the mailpiece containers from an in-plane position to an out-of-plane position relative to the mailpiece handling path. When oriented in-plane, the support/conveyor system is operative to transport the mailpiece containers along the mailpiece handling path, e.g., a network/system of conveyor belts/tracks, to any desired location. When disposed in an out-of-plane position, the support/conveyor is operative to spatially reposition each of the mailpiece containers for alignment with a side edge of the mailpiece stack. That is, the loading section is capable of repositioning the mailpiece container such that its open end is proximal to and pre-positioned to receive the mailpiece stack. A loading mechanism is then employed to engage a side edge of the mailpiece stack to urge the stack into the open end of the mailpiece. That is, when the loading section has accurately repositioned the mailpiece container into alignment with the mailpiece stack, the loading mechanism may then displace and load the stack into the container.
a is a top view of the inventive stacking loading apparatus shown in
b is a side view of the inventive stacking/loading apparatus shown in
An apparatus for handling mailpieces is described in the context of a mailpiece inserter system. While the inventive stacking/loading apparatus is useful for handling mailpieces, and especially mailpieces fabricated by a high speed mailpiece inserter, it should be appreciated that the invention is equally applicable to other adaptations for handling/stacking mailpieces and/or loading sheet material used in the fabrication of mailpieces. Consequently, the invention should not be construed as being limited to stacking and loading finished mailpieces or to mailpieces produced by, or for use in combination with, a high speed inserter system. Furthermore, while the invention is described in the context of a dual component system having parallel mailpiece handling paths, it will be appreciated that, for cost and/or other considerations, the invention may employ a single mailpiece handling path. Accordingly, the appended claims embrace single or multiple mailpiece handling (i.e., stacking, loading and transporting) paths.
In
Individual mailpieces 12 are conveyed via a serial arrangement of input rollers 16 which are mounted to and supported by a rigid structural frame (not shown to reveal the internal components and assemblies of the inventive mailpiece handling apparatus). The input rollers 16 direct the mailpieces 12 to a diverter assembly 18 which, in turn, directs the mailpieces 12 to one of two mailpiece stacking assemblies 20A, 20B.
In
Upon passing the diverter assembly 18, a vertical finger or stop 26 (see
As mailpieces 12 collect on the support platform 28, vertical rails 30a, 30b guide the mailpieces 12 to form a mailpiece stack 12MS. More specifically, the mailpieces 12 are laid flat, stacked in register, and form a three dimensional polygonal shape having aligned sides 12S. In the described embodiment, the support platform 28 is coupled to elevator belts 32 disposed on one or more sides of the platform 28 to raise or lower the platform. As more mailpieces 12 are added, the support platform 28 is adapted to translate vertically thereby controlling the collection of mailpieces 12, i.e., without requiring mailpieces 12 to fall or drop as they are stacked.
Additionally, the support platform 28 is oversized with respect to at least one edge dimension of the mailpiece stack 12MS, e.g., the leading to trailing edge dimension L of the stack 12MS. Moreover, the support platform 28 includes a central elongate slot 34 extending the full length dimension L, which slot 34 is open at one end 340 thereof. The function of the slot 34 will be discussed in greater detail below, and at this juncture in the description, it is suffice to say that the slot 34 facilitates displacement and unloading of the mailpiece stack 12MS from the support platform 28.
In
In the described embodiment, the transport section 42 includes a conveyor belt 42BS to structurally support and transport the mailpiece containers 14 while the loading section 44 includes a plurality of rollers 46R to define the support deck 44RS. It will be appreciated, therefore, that a variety of different structural elements, including, belts, chains, ropes, cables and straps etc., may be used to support and convey mailpiece containers 14 along the mailpiece handling path HP.
In the described embodiment, the loading section 44 is spatially repositioned by a high torque rotary actuator 48 for driving the support deck 44RS and mailpiece container 14 about a pivot or hinge axis 48A. Furthermore, the loading section 44 spatially repositions the container 14 such that the open end 140E of the container 14 is proximal to and aligned with a first side 12E1 of the mailpiece stack 12MS. Moreover, the loading section 44 is adapted to retain the position of the mailpiece container 14 while it traverses the arc LM necessary to position the mailpiece container 14 relative to the support platform 28 upon which the mailpiece stack 12MS rests.
More specifically, in
In
In operation, therefore, and referring to
Upon loading a mailpiece stack 12MS within the cavity IC of one mailpiece container 14, the rotary actuator 48 reverses directions, once again along line LM, to effect clockwise rotation, of the loading section 44 about the pivot axis 48A. As the loading section 44 returns to an in-plane position, the empty support platform 28 of the respective stacking assembly 20A or 20B elevates upwardly to receive another mailpiece stack 12. Upon spatial repositioning of the loading section 44, i.e., returning to its in-plane position, the filled mailpiece container 14 may be transported along the mailpiece handling path HP. More specifically, the support gate 50 reverses direction to retract the support pins 52 beneath the plane of the support deck 44RS of the loading section 44. Consequently, the mailpiece container 44 is free to move along the support conveyor system 40, i.e., to move along the mailpiece handling path HP from the loading section 44 to the to the transport section 42.
In the illustrated embodiment, parallel paths are established for handling mailpieces, i.e., stacking, loading and transporting, in a plurality of mailpiece containers 14. For optimum efficiency, i.e., a level of efficiency required by high speed/high volume mailpiece inserters), a second mailpiece stack (not shown in the figures) may be initiated immediately following the completion of the first mailpiece stack 12MS. More specifically, mailpieces 12 may travel via the cross conveyor belts 24 from one stacking assembly 20A to the other stacking assembly 20B. As such, the production of a second mailpiece stack may begin even before a loaded mailpiece container 14 may have returned to an in-plane position for transport along the support/conveyor system 44. That is, in the time required for the loading mechanism 60 to load a mailpiece stack 12MS into a first mailpiece container 14 and reposition the same container 14 from its out-of-plane (vertical) position to an in-plane (or horizontal position), a second mailpiece stack 12MS may be prepared and ready for loading into a second mailpiece container 14. Consequently, a steady flow of loaded mailpiece containers 14 may be conveyed along one of two or more mailpiece handling paths.
Depending upon the production rate of mailpieces fabricated and the rate of on-load/off-load of mailpiece containers 14 from the support/conveyor system 40, yet additional stacking assemblies 20A, 20B . . . 20N, (wherein N equals the number of mail piece handling paths HP) may be arranged and sequenced to operate in parallel. From a practical perspective, however, the number of handling paths will commonly be two, i.e., N=2. To highlight the cooperation of various system elements,
In addition to controlling various elements of the stacking assemblies 20A, 20B, the controller 100 may also coordinate/synchronize the motion of the support/conveyor system 40. That is, the controller 100 can issue command signals to conveyor drive motors 150 of the transport section 42 to load/unload the mailpiece containers 14 to/from the loading section 44. Additionally, the controller may appropriately time the extension/retraction of the support gate 50 by sending/receiving command signals to each linear actuator 160 of the pin cartridges 50a, 50b. Finally, the controller 100 may synchronize the spatial orientation of the loading section 44 with the motion of the stacking assemblies 20A, 20b. That is, the rotary actuator 48 of the loading section may be commanded by the controller 100 to rotate upon completion, or near completion, of a mailpiece stack 12MS. As such, the mailpiece container 14 may be spatially positioned and/or properly oriented (vertically) at a time corresponding to the completion of the mailpiece stack 12MS.
With the mailpiece container 14 spatially positioned, the controller 100 may then command the linear actuator 170, i.e., the actuator driving the abutment arm 62 of the loading mechanism 60, to urge/load the mailpiece stack 12MS into the mailpiece container 14. Finally, the controller 100 will reverse the command signals to the various actuators 48, 160, 170, of the loading section 44, support gate 50 and loading mechanism 60, respectively, to unload the filled mailpiece container 14, and prepare the stacking assemblies 20A, 20b for subsequent filling/stacking operations. While
In summary, the loading and transport apparatus of the present invention provides a system dedicated to stacking and loading mailpieces without human intervention. That is, the apparatus employs various features and components to (i) align mailpieces in register, (ii) compile a suitable number of mailpieces in the form of a mailpiece stack, (iii) displace or otherwise move the mailpiece stack from a support platform, (iv) place the mailpiece stack into a container without disturbing the mailpiece sequence/alignment, (v) arrange the mailpiece containers on a transport deck and (vi) convey the mailpiece containers to a desired location. All of the foregoing operations are performed without human intervention, hence the apparatus eliminates the potential for human injury including back, neck and or shoulder strain due to repetitive motion. Furthermore, in an alternate embodiment of the invention, the apparatus employs dual/parallel paths to further enhance or augment stacking/loading operations. That is, the apparatus is uniquely suited for use in combination with large, high-volume producing mailpiece insertion systems, i.e., systems capable of producing in excess of twenty-thousand mailpieces in each hour of operation. While one stacking assembly is being filled, the loading mechanism of the other stacking assembly loads the mailpiece stack into a mailpiece container. As such, mailpieces may be continuously fed without the requirement to pause or stop the production of mailpieces.
It is to be understood that the present invention is not to be considered as limited to the specific embodiments described above and shown in the accompanying drawings. The illustrations merely show the best mode presently contemplated for carrying out the invention, and which is susceptible to such changes as may be obvious to one skilled in the art. The invention is intended to cover all such variations, modifications and equivalents thereof as may be deemed to be within the scope of the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
3832938 | Stapp et al. | Sep 1974 | A |
4802808 | Wolk et al. | Feb 1989 | A |
5273516 | Crowley | Dec 1993 | A |
5347790 | Romanenko et al. | Sep 1994 | A |
5803704 | Lazzarotti | Sep 1998 | A |
6501041 | Burns et al. | Dec 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20070126173 A1 | Jun 2007 | US |