The present specification relates to apparatuses for holding glassware during processing.
Historically, glass has been used as a preferred material for many applications, including food and beverage packaging, pharmaceutical packaging, kitchen and laboratory glassware, and windows or other architectural features, because of its hermeticity, optical clarity, and excellent chemical durability relative to other materials.
However, use of glass for many applications is limited by the mechanical performance of the glass. In particular, glass breakage is a concern, particularly in the packaging of food, beverages, and pharmaceuticals. Breakage may be costly in the food, beverage, and pharmaceutical packaging industries because, for example, breakage within a filling line may require that neighboring unbroken containers be discarded as the containers may contain fragments from the broken container. Breakage may also require that the filling line be slowed or stopped, lowering production yields. Further, non-catastrophic breakage (i.e., when the glass cracks but does not break) may cause the contents of the glass package or container to lose their sterility which, in turn, may result in costly product recalls.
One root cause of glass breakage is the introduction of flaws in the surface of the glass as the glass is processed and/or during subsequent filling. These flaws may be introduced in the surface of the glass from a variety of sources including contact between adjacent pieces of glassware and contact between the glass and equipment, such as handling and/or filling equipment. Regardless of the source, the presence of these flaws may ultimately lead to glass breakage.
Accordingly, a need exists for alternative apparatuses for holding glassware during processing to mitigate glass damage.
According to a first aspect A1, an apparatus for holding glassware during processing may comprise: a plurality of ware keepers, each ware keeper configured to receive a piece of glassware during the processing, wherein: each ware keeper comprises a glass contact surface comprising a silicate material having a Knoop hardness less than or equal to 400 HK200 and a specific gravity greater than or equal to 1.5 and less than or equal to 6.
A second aspect A2 includes the apparatus according to the first aspect A1, wherein the silicate material comprises a phyllosilicate mineral.
A third aspect A3 includes the apparatus according to the second aspect A2, wherein the phyllosilicate mineral comprises talc, mica, or a combination thereof.
A fourth aspect A4 includes the apparatus according to the first aspect A1, wherein the silicate material comprises a tectosilicate mineral.
A fifth aspect A5 includes the apparatus according to the fourth aspect A4, wherein the tectosilicate mineral comprises quartz, feldspar, feldspathoid, or a combination thereof.
A sixth aspect A6 includes the apparatus according to the fifth aspect A5, wherein the feldspar comprises microcline, albite, sanidine, othroclase, labradorite, anorthite, or a combination thereof.
A seventh aspect A7 includes the apparatus according to the fifth aspect A5, wherein the feldspathoid comprises nepheline, leucite, or a combination thereof.
An eight aspect A8 includes the apparatus according to the first aspect A1, wherein the silicate material has a specific gravity greater than or equal to 1.5 and less than or equal to 4.
A ninth aspect A9 includes the apparatus according to the first aspect A1, wherein glass contact surface has a scratch parameter less than or equal to 75 μm with respect to the glassware contacting the glass contact surface as measured at an applied force less than or equal to 45 N.
A tenth aspect A10 includes the apparatus according to the first aspect A1, wherein the glass contact surface has a coefficient of friction less than or equal to 0.5 with respect to the glassware contacting the glass contact surface as measured at an applied force less than or equal to 45 N.
An eleventh aspect A11 includes the apparatus according the first aspect A1, wherein the silicate material does not adhere to the glassware contacting the glass contact surface at an exposure temperature less than or equal to 750° C. for 24 hours.
A twelfth aspect A12 includes the apparatus according to the first aspect A1, wherein the processing is ion exchange.
A thirteenth aspect A13 includes the apparatus according to the twelfth aspect A12, wherein the silicate material comprises feldspar.
A fourteenth aspect A14 includes the apparatus according to the first aspect A1, wherein the processing is annealing.
A fifteenth aspect A15 includes the apparatus according to the fourteenth aspect A14, wherein the silicate material comprise talc, mica, or a combination thereof.
A sixteenth aspect A16 includes the apparatus according to the first aspect A1, wherein the apparatus further comprises a base frame, wherein each ware keeper extends from the base frame and defines and circumscribes a glassware receiving volume in which the glassware is received and retained and the glass contact surface is positioned within the glassware receiving volume.
A seventeenth aspect A17 includes the apparatus according to the sixteenth aspect A16, wherein the plurality of ware keepers comprises a plurality of receiving slots, each receiving slot receiving at least a portion of the glassware, the receiving slots being arrayed in a linear array.
A eighteenth aspect A18 includes the apparatus according to the first aspect A1, wherein the apparatus further comprises a conveyor belt comprising a plurality of metal laths, wherein: the plurality of ware keepers are positioned on the conveyor belt such that pairs of glass contact surfaces form glassware receiving slots on the conveyor belt; and when the glassware is disposed on the conveyor belt within the glassware receiving slots, the glassware is exclusively contacted by the pairs of glass contact surfaces.
A nineteenth aspect A19 includes the apparatus according to the eighteenth aspect A18, wherein the glassware receiving slots are V-shaped.
A twentieth aspect A20 includes the apparatus according to the nineteenth aspect A19, wherein the pairs of glass contact surfaces forming the glassware receiving slots are configured to contact at least one of a curved bottom edge and a neck of the glassware.
Additional features and advantages of the apparatuses described herein will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments described herein, including the detailed description which follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description describe various embodiments and are intended to provide an overview or framework for understanding the nature and character of the claimed subject matter. The accompanying drawings are included to provide a further understanding of the various embodiments, and are incorporated into and constitute a part of this specification. The drawings illustrate the various embodiments described herein, and together with the description serve to explain the principles and operations of the claimed subject matter.
Reference will now be made in detail to various embodiments of apparatuses for holding glassware during processing to mitigate glass damage. According to embodiments, an apparatus for holding glassware during processing includes a plurality of ware keepers, each ware keeper configured to receive a piece of glassware during the processing. Each ware keeper comprises a glass contact surface comprising a silicate material having a Knoop hardness less than or equal to 400 HK200 and a specific gravity greater than or equal to 1.5 and less than or equal to 6. Various embodiments of apparatuses for holding glassware will be described herein with specific reference to the appended drawings.
Ranges may be expressed herein as from “about” one particular value, and/or to “about” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint.
Directional terms as used herein—for example up, down, right, left, front, back, top, bottom—are made only with reference to the figures as drawn and are not intended to imply ab solute orientation.
Unless otherwise expressly stated, it is in no way intended that any method set forth herein be construed as requiring that its steps be performed in a specific order, nor that with any apparatus specific orientations be required. Accordingly, where a method claim does not actually recite an order to be followed by its steps, or that any apparatus claim does not actually recite an order or orientation to individual components, or it is not otherwise specifically stated in the claims or description that the steps are to be limited to a specific order, or that a specific order or orientation to components of an apparatus is not recited, it is in no way intended that an order or orientation be inferred, in any respect. This holds for any possible non-express basis for interpretation, including: matters of logic with respect to arrangement of steps, operational flow, order of components, or orientation of components; plain meaning derived from grammatical organization or punctuation, and; the number or type of embodiments described in the specification.
As used herein, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a” component includes aspects having two or more such components, unless the context clearly indicates otherwise.
The term “scratch parameter,” as used herein, refers to a maximum depth in microns (μm) of a flaw in a piece of glassware caused by the glass contact surface contacting the piece of glassware at an applied force less than or equal to 45N. The scratch is created using a Nanovea M1 Scratch and Hardness Tester. The maximum depth is measured by fractography in accordance with ASTM C149-14.
Adhesion, as used herein, is measured in accordance with an adhesion test by modifying ASTM G219-18: Standard Guide for Determination of Static Coefficient of Friction of Test Couples Using an Inclined Plane Testing Device. Specifically, this guide is intended to standardize the use of an inclined plane testing device to measure the breakaway friction (i.e., static) coefficient of mating couples that are of such size and shape that they may be made into a rider (i.e., one member of the sliding couple) on a flat plane (i.e., the second member of the sliding couple) that may be inclined at an angle to produce motion of the rider. The glass contact surface comprising a silicate material in accordance with embodiments described herein is the “flat plane” described in Section 6.4.1 of ASTM G219-18. A flat sheet of a glass having a softening point above 850° C. and the dimensions 2.54 cm long×2.54 cm wide×0.4-1.5 mm thick is the “rider” described in Section 6.4.1 of ASTM G219-18. The rider is placed on top of the flat plane and placed in a furnace at an exposure temperature (e.g. 750° C.) for 24 hours. After 24 hours, the flat plane and rider are removed from the furnace and cooled to room temperature. Then, the flat plane is inclined up to 80° (i.e., “breakaway angle” as defined in Section 8.3 of ASTM G219-18). The rider is considered to “adhere” to the flat plane if the rider does not break away from the flat plane with the flat plane inclined at 80°. The rider is considered to “not adhere” if the rider beaks away from the flat plane at an incline less than 80°.
The term “coefficient of friction,” as used herein, is measured according to ASTM E384-10.
Knoop Hardness, as described herein, is measured according to ASTM E384-10. HK200, as described herein, are the units used to for Knoop Hardness measured with a 200 gram indenter.
Specific gravity, as described herein, is measured according to IEC 60371-2 for mica and according to ASTM D854-92 for other material described herein.
Scanning Electron Microscope (SEM) scan lines, as described herein, are obtained using a JEOL Model 6610. The conditions are 20 kV at magnification 30× to 1,000× and approximately 10 mm working distance.
Energy Dispersive X-Ray Analyzed (EDX) scan lines, as described herein, are obtained using an Oxford 50 mm2 XMAX EDX Detector. The conditions are 20 kV at 10 mm working distance.
Glassware is used in a variety of applications, including packaging of food, beverages, and pharmaceuticals. Referring now to
The breakage of glassware during processing and/or filling due to damage is a source of product loss and may lead to process inefficiencies and increased costs. Strengthening of glassware may assist in mitigating breakage. Glassware may be strengthened using a variety of techniques, including chemical and thermal tempering.
In embodiments, chemical tempering (i.e., ion exchange) may be used to strengthen glassware through the introduction of a layer of compressive stress in the surface of the glassware. The compressive stress is introduced by submerging the glassware in a molten salt bath. As ions from the glass are replaced by relatively larger ions from the molten salt, a compressive stress is induced in the surface of the glass. During chemical tempering, glassware, such as glass containers, may be mechanically manipulated to both fill and empty the glassware of molten salt.
In embodiments, thermal tempering (i.e., annealing) may be used to strengthen glassware through slowly cooling the hot glassware to relieve internal stress once it has been formed. During the manufacturing process, the glassware is heated until the temperature reaches the annealing point, which is the stress relief point glass reaches during the cool down phase. At this point, the glassware is too firm to distort, but remains soft enough for any built up stresses to relax. Holding the piece of glassware at this temperature helps to even out the temperature throughout the piece of glassware. The holding time may depend on the composition of the piece of glassware. Once the hold time has lapsed, the annealed piece of glassware is slowly cooled through the strain point.
Various conventional apparatuses for holding glassware during processing such as chemical and thermal tempering are known, such as standard mesh belt, a PENNEKAMP stainless steel annealing lehr, or a HOFFMAN lehr belt. These conventional apparatuses are primarily formed from steel, in particular stainless steel.
Despite careful handling during loading and unloading of the glassware on and off these conventional apparatuses, damage still occurs during processing (e.g., chemical and thermal tempering) due to the contact between the glassware and stainless steel. For example, as shown in
Disclosed herein are glass contact surfaces which mitigate the aforementioned problems. Specifically, the glass contact surfaces disclosed herein comprise silicate materials having a relatively low Knoop hardness and specific gravity, which mitigate glassware damage. In particular, contacting the glassware with silicate materials described herein during processing may result in light cosmetic scratching as opposed to the frictive checking observed with stainless steel to glassware contact. Moreover, silicate materials described herein may be chemically inert in the salt bath environment of chemical tempering and may not leach byproducts into the salt bath. Even replacing only a portion of the stainless steel components of conventional apparatuses with the silicate materials described herein will help to reduce the amount of chromium leached into the salt bath, which increases product quality and reduces environmental impact. Furthermore, silicate materials described herein may be functionally unaffected by the elevated temperatures of thermal tempering such that the glassware does not stick to the silicate materials after thermal tempering.
The silicate materials described herein may be generally described as having a Knoop hardness less than or equal to 400 HK200 and a specific gravity greater than or equal to 1.5 and less than or equal to 6. To mitigate or prevent damage to glassware during processing, it may be desirable to select a material having a relatively low hardness/high softness and a slippery, greasy feel to form the glass contact surface. In embodiments, the silicate materials described herein may be relatively soft, as indicated by a Knoop hardness less than or equal to 400 HK200 as compared to metals such as stainless steel, which have a Knoop hardness of approximately 425 HK200. In embodiments, the silicate materials may have a Knoop hardness less than or equal to 400 HK200, less than or equal to 375 HK200, less than or equal to 350 HK200, less than or equal to 325 HK200, less than or equal to 300 HK200, less than or equal to 250 HK200, or even less than or equal to 200 HK200. In embodiments, the silicate materials may have a slippery, greasy feel, as indicated by a specific gravity greater than or equal to 1.5 and less than or equal to 6. For the sake of comparison, stainless steel has a specific gravity of 7.9. In embodiments, the silicate materials may have a specific gravity greater than or equal to 1.5, greater than or equal to 2, greater than or equal to 2.5, or even greater than or equal to 3. In embodiments, the silicate materials may have a specific gravity less than or equal to 6, less than or equal to 5.5, less than or equal to 5, less than or equal to 4.5, or even less than or equal to 4. In embodiments, the silicate material may have a specific gravity greater than or equal to 1.5 and less than or equal to 6, greater than or equal to 1.5 and less than or equal to 5.5, greater than or equal to 1.5 and less than or equal to 5, greater than or equal to 1.5 and less than or equal to 4.5, greater than or equal to 1.5 and less than or equal to 4, greater than or equal to 2 and less than or equal to 6, greater than or equal to 2 and less than or equal to 5.5, greater than or equal to 2 and less than or equal to 5, greater than or equal to 2 and less than or equal to 4.5, greater than or equal to 2 and less than or equal to 4, greater than or equal to 2.5 and less than or equal to 6, greater than or equal to 2.5 and less than or equal to 5.5, greater than or equal to 2.5 and less than or equal to 5, greater than or equal to 2.5 and less than or equal to 4.5, greater than or equal to 2.5 and less than or equal to 4, greater than or equal to 3 and less than or equal to 6, greater than or equal to 3 and less than or equal to 5.5, greater than or equal to 3 and less than or equal to 5, greater than or equal to 3 and less than or equal to 4.5, or even greater than or equal to 3 and less than or equal to 4, or any and all sub-ranges formed from any of these endpoints.
In embodiments, the silicate material may comprise a phyllosilicate mineral.
Phyllosilicate minerals have parallel sheets of silicate tetrahedra with SiO5, represented by the chemical formula [Si2nO5n]2n−. Phyllosilicate minerals are generally soft and have relatively low specific gravity. In embodiments, the phyllosilicate mineral may comprise talc, mica, or a combination thereof. Talc has the chemical formula Mg3Si4O10(OH)2. In embodiments, the talc may have a compositional content of 63.37 wt % SiO2, 31.88 wt % MgO, and 4.75 wt % H2O. In embodiments, talc is in the form of soapstone. In embodiments, the soapstone is natural soapstone or synthetic soapstone. Mica may be represented by the following general formula:
X2Y4−6Z8O20(OH,F)4
in which X is K, Na, Ca, Ba, Rb, or Cs; Y is Al, Mg, Fe, Mn, Cr, Ti, or Li; and Z is Si, Al, Fe3+ or Ti.
In embodiments, the silicate material may comprise a tectosilicate mineral. Tectosilicate minerals have a three-dimensional framework of silicate tetrahedral with SiO2, represented by the chemical formula [AlxSiyO(2x+2y)]x−. In embodiments, the tectosilicate mineral comprises quartz, feldspar, feldspathoid, or a combination thereof. In embodiments, the feldspar comprises microcline (KAlSi3O8), albite (NaAlSi3O8), sanidine (KAlSi3O8), othroclase (KAlSi3O8), labradorite ((Ca,Na)(Si,A1)4O8), anorthite (CaAl2Si2O8), or a combination thereof.
In embodiments, the silicate materials described herein, when used to form a glass contact surface, may reduce the amount and depth of flaws in the glassware produced during processing. In embodiments, the use of the silicate materials as a glass contact surface may result in light cosmetic scratching as opposed to the frictive checking observed with stainless steel to glassware contact. Accordingly, in embodiments, the use of the silicate material as a glass contact surface may limit the scratch parameter and the coefficient of friction of the glass contact surface with respect to glassware contacting the glass contact surface.
In embodiments, the glass contact surface may have a scratch parameter less than or equal to 75 μm with respect to the glassware contacting the glass contact surface as measured at an applied force less than or equal to 45 N. In embodiments, the glass contact surface may have a scratch parameter less than or equal to 75 μm, less than or equal to 70 μm, less than or equal to 65 μm, less than or equal to 60 μm, less than or equal to 55 μm, or even less than or equal to 50 μm with respect to the glassware contacting the glass contact surface as measured at an applied force less than or equal to 45 N.
In embodiments, the glass contact surface may have a coefficient of friction less than or equal to 0.5 with respect to the glassware as measured at an applied force less than or equal to 45 N. In embodiments, the glass contact surface may have a coefficient of friction less than 0.5, less than or equal to 0.45, less than or equal to 0.4, less than or equal to 0.35, or even less than or equal to 0.3 as measured at an applied force less than or equal to 45 N.
The silicate materials described herein, when used to form a glass contact surface, may be subjected to increased temperatures, such as during thermal tempering. Accordingly, in embodiments, it may be desirable that the silicate materials do not adhere to the glassware contacting the glass contact surface when exposed to increased temperatures and thereafter. In embodiments, the silicate materials do not adhere to the glassware contacting surface after exposure to a temperature (i.e., exposure temperature) less than or equal to 750° C. for 24 hours. In embodiments, the silicate materials do not adhere to the glassware contacting surface after exposure to a temperature less than or equal to 750° C., less than or equal to 700° C., less than or equal to 650° C., less than or equal to 600° C., less than or equal to 550° C., or even less than or equal to 500° C. for 24 hours.
Referring now to
The apparatus 150 may include a base frame 158. In embodiments, the base frame 158 may be formed from a material capable of withstanding elevated temperatures, such as the temperatures experienced in a molten salt bath during ion exchange. In embodiments, the base frame 158 may be formed from a metallic material, such as stainless steel or other like metal or metal alloy. In embodiments, the base frame 158 may be formed from the silicate materials described herein.
The base frame 158 may generally include a bottom support plate 170 and may also include side members 172, 174, 176, and 178. The bottom support plate 170 may be tray shaped (such as generally rectangular as shown in
Each ware keeper 152 may extend from the base frame 158 and defines and circumscribes a glassware receiving volume 180 in which the piece of glassware 100 is received and retained. The glass contact surface 156a, 156b may be positioned within the glassware receiving volume 160. The plurality of ware keepers 152 may be arrayed in a linear array as shown in
Each ware keeper 152 may be shaped and sized to securely retain a piece of glassware 100. For example, in embodiments, as shown in
The base connection stem 184 may be positioned proximate a bottom section 114 (
The base connection stem 184 is attached to the seat segment 186. The seat segment 186 may be contiguous with the base connection stem 184 and be positioned over and substantially parallel to the bottom support plate 170. The seat segments 186 generally form a glass contact surface 156a in the form of a glassware seat positioned above and substantially parallel to the bottom support plate 170. The glass contact surface 156a may define the bottom of the glassware receiving volume 180. The spacing between the bottom support plate 170 may be sufficient to allow for the flow of a fluid beneath a held piece of glassware 100, such that the bottom section 114 (
The seat segment 186 may be attached to a lower segment 192 of the retention body 182. The lower segment 192 may be shaped to form a protruded area in the glassware receiving volume 180. The diameter of the glassware receiving volume 180 enclosed by the lower segment 192 may be greater than the diameter of the glassware receiving volume 180 enclosed by the body segment 188. For example, the lower segment 192 may be convexed shaped relative to the glassware receiving volume 180. The lower segment 192 may be shaped such that it avoids contact with a curved bottom edge 118 (
The lower segment 192 may be attached to a body segment 188 of the retention body 182. The body segment 188 may extend away from the bottom support plate 170 and, in embodiments, may be substantially perpendicular to the bottom support plate 170. As shown in
The body segment 188 is attached to a retention segment 190 of the retention body 182. The retention segment 190 may generally be shaped to form a recessed area in the glassware receiving volume 180. The diameter of the glassware receiving volume 180 enclosed by the retention segment 190 may be less than the diameter of the glassware receiving volume 180 enclosed by the body segment 188. For example, the recessed area may be recessed relative to the piece of glassware 100 held in the glassware receiving volume 180. The retention segment 190 may be concave shaped relative to the glassware receiving volume 180. For example, the retention segment 190 may be contoured to the shape of a neck section 104 (
The retention segment 190 may be coupled to a lever segment 194. The lever segment 194 may generally extend away from the bottom support plate 170 and the lever segments 194 of opposing retention bodies 182 may extend away from one another.
It should be understood that the ware keepers 152 described herein are not limited to those comprising retention bodies 182. In embodiments, various numbers of retention bodies 182 may be utilized.
The plurality of ware keepers 152 may comprise a plurality of receiving slots 196. Each receiving slot 196 may receiving a portion of the piece of glassware 100. The receiving slots 196 may be arrayed in a linear array as shown in
Referring now to
In embodiments, the structure of the apparatus and the silicate material used to form a glass contact surface of the apparatus may depend on the type of processing being performed. In embodiments, the processing is ion exchange processing and the silicate material used to form the glass contact surface is feldspar. In embodiments, the processing is annealing and the silicate material used to form the glass contact surface is talc, mica, or a combination thereof.
Although various embodiments are described herein with reference to the apparatus, it should be understood that embodiments of the glass contact surface including a silicate material as described herein may be used with a variety of apparatuses that are known and used by those skilled in the art. In particular, chemical tempering and thermal tempering may be accomplished using a number of different apparatuses having a number of different structures.
In order that various embodiments be more readily understood, reference is made to the following examples, which are intended to illustrate various embodiments of the glass contact surfaces described herein.
To evaluate the damage introduction mechanism resulting from a glass contact surface formed from a silicate material as described herein with respect to glassware contacting the glass contact surface, a scratch test was conducted on 5 glass vials where a feldspar cylinder having a 16.75 mm outer diameter was scratched across a glass vial having a 16.75 mm outer diameter. The force at which the feldspar cylinder was applied to the glass vial was ramped from 1 N to 45 N at a rate of 1 mm/s. Referring now to
As a comparison, a scratch test was conducted where a stainless steel cylinder having a 16.75 mm outer diameter was scratched across a glass vial having a 16.75 mm outer diameter using the same experimental conditions as described above. The force at which the stainless steel cylinder was applied to the glass vial was ramped from 1 N to 15 N at a rate of 1 mm/s. Referring now to
Referring now to
The control glass vials had a 27% failure rate total. The glass vials placed on the soapstone setters had a 0% failure rate and the glass vials placed on the mica setters had a 2% failure rate. As indicated by the results of the thermal shock test shown in Table 1, glass contact surfaces formed from silicate materials as described herein showed a significant improvement in mitigating damage over the standard stainless steel lehr.
Referring now to
Referring now to
Referring now to
Table 2 below shows the compositional content, in wt %, of microcline and albite.
1 μm thick polished blocks of microcline and albite were formed and placed in a molten KNO3 salt bath at 445° C. for 12 hours.
Referring now to
Referring now to
As indicated by Example 3, subjecting microcline and ablite to a molten salt bath did not result in ion exchange of the microcline and albite. While not wishing to be bound by theory, it is believed that silicate materials such as microcline and ablite are chemically inert in the salt bath environment of chemical tempering and may not leach byproducts in the salt bath that would effect the glassware being processed.
Referring now to
Referring now to
After heat treating and cooling the plaques 19a-19g to room temperature, the plaques 19a-19g with the glass sheets 19h thereon were subjected to an adhesion test as described hereinabove at an exposure temperature of 750° C. for 24 hours.
Referring now to
Referring now to
Referring now to
It will be apparent to those skilled in the art that various modifications and variations may be made to the embodiments described herein without departing from the spirit and scope of the claimed subject matter. Thus, it is intended that the specification cover the modifications and variations of the various embodiments described herein provided such modification and variations come within the scope of the appended claims and their equivalents.
This application claims the benefit of priority under 35 U.S.C. § 119 of U.S. Provisional Application Ser. No. 63/072,988 filed on Sep. 1, 2020, the content of which is relied upon and incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63072988 | Sep 2020 | US |