Claims
- 1. Apparatus for generating hot high-pressure combustion gases and for directing them onto material being processed while moving in a continuous path, comprising an expanding-fluid drive means with a high-pressure inlet port, at least one compressor means driven thereby and having a high-pressure discharge port, combustion means designed for temperatures above 1500.degree. F. and interconnected by ducting to the high-pressure discharge port of said compressor means and the high-pressure inlet port of said expanding-fluid drive means, cooling-fluid injection means operatively associated with the ducting between said combustion means and said expanding-fluid drive means, an independent discharge duct from said combustion means for delivering high-pressure gases containing most of the available energy as kinetic and flow energy and at temperatures substantially in excess of the high temperature limit of said expanding-fluid drive means, and means connected with said independent discharge duct for conducting said high-pressure gases onto said material.
- 2. Apparatus according to claim 1 wherein a jet pump is connected to said independent discharge duct.
- 3. Apparatus for generating hot high-pressure combustion gases, and for directing them onto material being processed while moving in a continuous path, comprising an expanding-fluid drive means with a high-pressure inlet port, at least one compressor means driven thereby and having a high-pressure discharge port, an engine-cycle combustion means designed for combustion temperatures in excess of 900.degree. F. and interconnected by ducting to the high-pressure discharge port of said compressor means and the high-pressure inlet port of said expanding-fluid drive means, a second combustion means, designed for temperatures substantially in excess of 1500.degree. F., which is separately fueled, a diverting duct leading from said discharge port and connected to said second combustion means, said diverting duct having control means and being adapted to divert a portion of the gases delivered by said compressor means to said second combustion means, said diverting duct being constructed to accommodate said portion as containing most of the available energy as kinetic and flow energy developed in said engine-cycle combustion means, and means connected to at least one discharge port of said second combustion means for conducting said high-pressure gases onto said material.
- 4. Apparatus according to claim 3 wherein at least one jet pump is connected to a discharge port of said second combustion means.
- 5. Apparatus according to claim 4 wherein there is a cooling-fluid injection means in the ducting between said engine-cycle combustion means and said expanding-fluid drive means.
- 6. Apparatus according to claim 4 wherein there is a cooling-fluid injection means between said discharge port from said second combustion means and said jet pump.
- 7. Apparatus, according to claim 1, adapted for drying paper and including means establishing a travel path for a web of paper to be dried, means for moving said web of paper through said travel path, means establishing a path of flow for hot, high-pressure gases, said path of flow including a plurality of stages wherein said gases are brought into heat exchange relationship with paper moving in the travel path of the paper, each said stage comprising a gas supply plenum, an array of nozzles extending across a side of said plenum adjacent the travel path to provide for escape of gases from the plenum, said nozzles being oriented with their discharge ends toward the travel path, and collecting means positioned to collect and convey away from said travel path the gases passing through said nozzles.
- 8. Apparatus, according to claim 3, adapted for drying paper and including means establishing a travel path for a web of paper to be dried, means for moving said web of paper through said travel path, means establishing a path of flow for hot, high-pressure gases, said path of flow including a plurality of stages wherein said gases are brought into heat exchange relationship with paper moving in the travel path of the paper, each said stage comprising a gas supply plenum, an array of nozzles extending across a side of said plenum adjacent the travel path to provide for escape of gases from the plenum, said nozzles being oriented with their discharge ends toward the travel path, and collecting means positioned to collect and convey away from said travel path the gases passing through said nozzles.
- 9. Apparatus according to claim 1, adapted for drying paper, and including means establishing a travel path for a web of paper to be dried, foraminous means for moving said web of paper through said travel path, and supporting it at least on one side, means establishing a path of flow for hot, high-pressure gases, said path of flow including at least one station wherein said gases are brought into heat transfer relationship with said paper, each said station comprising a gas supply and mating gas collecting plenums located opposite each other for constraining the path of said hot gas flow through said foraminous means and said paper, sealing means between said plenums and said foraminous means for confining said high-pressure gases, means cooperating with said sealing means and said plenums to withstand the pressure separating forces between plenums and the pressure drop of said hot gases through said foraminous means and said paper, and gas conducting means from said collecting plenums positioned to convey away water vapor and water droplets entrained with said gases from said drying of said paper.
- 10. Apparatus according to claim 3, adapted for drying paper, and including means establishing a travel path for a web of paper to be dried, foraminous means for moving said web of paper through said travel path, and supporting it at least on one side, means establishing a path of flow for hot, high-pressure gases, said path of flow including at least one station wherein said gases are brought into heat transfer relationship with said paper, each said station comprising a gas supply and mating gas collecting plenums located opposite each other for constraining the path of said hot gas flow through said foraminous means and said paper, sealing means between said plenums and said foraminous means for confining said high-pressure gases, means cooperating with said sealing means and said plenums to withstand the pressure separating forces between plenums and the pressure drop of said hot gases through said foraminous means and said paper, and gas conducting means from said collecting plenums positioned to convey away water vapor and water droplets entrained with said gases from said drying of said paper.
- 11. Apparatus according to claim 7, wherein at least one of said stages comprises a sealed pressure plenum, for indirect heat transfer to said paper, connected to receive at least a portion of said gases with at least one outlet for delivering said portion, after said indirect heat transfer, to another of said stages.
- 12. Apparatus according to claim 7, adapted for drying paper, including means establishing a travel path for a web of paper to be dried, foraminous means for moving said web of paper, and supporting it on one side, through said travel path, means establishing a path of flow of hot, high velocity gases onto the exposed side of said web of paper, stationary vacuum means sealed to the underside of said foraminous means for drawing at least a portion of said hot gases through said web of paper and said foraminous means, and collecting means for removing the remaining portion of said gases not drawn through the web of paper.
- 13. Apparatus for drying, comprising a hollow drying cylinder adapted to carry material to be dried on the outer surface thereof, means mounting said drying cylinder for rotation, a gas plenum mounted inside said drying cylinder, said plenum being adapted to remain in fixed angular position during rotation of said drying cylinder, an array of nozzles mounted on said plenum, said array being constructed so that the discharge ends of said nozzles establish a substantially cylindrical surface substantially coaxial with the inside surface of said drying cylinder and closely adjacent thereto, the input-ends of said nozzles communicating with the interior of said plenum, gas input means extending from a point exterior of said cylinder to the plenum, said input means being adapted to deliver hot gases to said plenum while the cylinder is rotating, gas exhaust means extending from a point exterior of said cylinder to the interior of said cylinder but exterior of the plenum, said exhaust means being adapted to deliver hot gases out of said cylinder, while it is rotating, to a fixed conduit connected to at least one externally mounted gas plenum which is equipped with discharge nozzles the extremities of which form an array that is fixed in space and equidistant from, but in close proximity to, the external circumferential surface of said drying cylinder, said externally mounted plenum being thereby adapted, with the nozzles, to deliver said gases to flow onto said material and a compression-combustion-expansion means for generating hot high pressure gases and delivering said gases to said gas input means.
- 14. Apparatus for generating high pressure combustion gases to be directed onto material being processed and ordered to move in a continuous path, comprising expanding-fluid-drive means, at least one compressor means actuated thereby, at least one combustion means firing in excess of 900.degree. F. connected to the discharge side of said compressor means, at least one said combustion means coupled to and sequentially powering ejector pumping means, said ejector pumping means incorporating at least one secondary inlet port and designed to receive combustion products containing most of the available energy developed by said expanding-fluid-drive means into its primary port as kinetic and flow energy for powering said ejector pumping means.
- 15. Apparatus according to claim 14, wherein said expanding-fluid-drive means, one said compressor means, and one said combustion means, comprise a compression-combustion-expansion engine.
- 16. Apparatus according to claim 15 wherein the combustion means coupled to said ejector pumping means and designed to transmit said available energy comprises a second combustion chamber connected to at least one said compressor means.
- 17. Apparatus according to claim 14, provided with an independently powered fluid injection means for augmenting the flow and lowering the temperature of the combustion products containing said available energy, said injector at the most powered to sustain the prior pressure of said combustion products flow at the point just in advance of the fluid injection means.
- 18. Apparatus according to claim 16, provided with an independently powered fluid injection means for augmenting the flow and lowering the temperature of the combustion products containing said available energy, said injector at the most powered to sustain the prior pressure of said combustion products flow at the point just in advance of the fluid injection means.
- 19. The apparatus of claim 1, having also a rotating cylindrical filter, and including means whereby said combustion gases are constrained to flow axially into and radially through the rotating cylindrical filter before being directed onto said material; said filter comprising a rigid shell substantially open to radial flow and covered with a permeable substance, and provided with a plenum and on the receiving end with a rotary joint which seals off the adjacent plenum and which envelops said filter to receive the filtered gases, and further provided with means for directing said gases onto said material; said filter being provided internally with a non-rotating long and relatively narrow receptacle, said receptacle being constructed with a long narrow opening, the edges of which are sealed in sliding relationship to said rotating cylindrical filter; said receptacle being provided at its far extremity with an exhaust duct that is concentric with and sealed in rotary relationship with the far end of said cylinder; said exhaust duct continuing through the wall of said plenum to a zone of lower pressure in order to induce a reverse purge through said permeable substance whereby to cause any filtered particles to be discharged into and through said receptacle to the outside of said plenum.
- 20. The apparatus of claim 3, having also a rotating cylindrical filter, and including means whereby said combustion gases are constrained to flow axially into and radially through the rotating cylindrical filter before being directed onto said material; said filter comprising a rigid shell substantially open to radial flow and covered with a permeable substance, and provided with a plenum and on the receiving end with a rotating joint which seals off the adjacent plenum and which envelops said filter to receive the filtered gases, and further provided with means for directing said gases onto said material, said filter being provided internally with a non-rotating, long and relatively narrow receptacle, said receptacle being constructed with a long narrow opening, the edges of which are sealed in sliding relationship to said rotating cylindrical filter; said receptacle being provided at its far extremity with an exhaust duct that is concentric with and sealed in rotary relationship with the far end of said cylinder; said exhaust duct continuing through the wall of said plenum to a zone of lower pressure in order to induce a reverse purge through said permeable substance whereby to cause any filtered particles to be discharged into and through said receptacle to the outside of said plenum.
- 21. The apparatus of claim 19, provided further with a non-rotating longitudinally-extending fluid-conducting means mounted adjacent to said filter and aligned radially and longitudinally with said long and relatively narrow receptacle; said conducting means being adapted to discharge fluid against and through said filter to boost said reverse purging through said permeable substance.
- 22. The apparatus of claim 20, provided further with a non-rotating longitudinally-extending fluid-conducting means mounted adjacent to said filter and aligned radially and longitudinally with said long and relatively narrow receptacle; said conducting means being adapted to discharge fluid against and through said filter to boost said reverse purging through said permeable substance.
- 23. Apparatus for generating high-pressure combustion gases and for directing them for heat transfer to a material being processed while moving in a continuous path, comprising a high-pressure combustion means designed to fire at temperatures in a range between 900.degree. F. and 1500.degree. F. or higher, having a combustion products outlet, and expanding-fluid drive means designed for inlet temperatures less than said firing temperature, an oxydant compressor mechanically attached to and powered by said drive means and connected to a delivery means for directing at least a portion of the oxydant to said combustion means, said delivery means adapted to deliver most of the available kinetic and flow energy developed by said expanding - fluid drive means, a fluid supply means connected to and adapted to supply power fluid to said drive means at said inlet temperatures, and conducting means connected to said outlet of said combustion means and adapted for controlling and directing the combustion products for such heat transfer to said material within the specified range.
- 24. Apparatus according to claim 13 wherein said hollow drying cylinder is constructed to operate at internal pressures above atmospheric.
- 25. Apparatus according to claim 13 wherein said hollow drying cylinder is constructed to operate at internal pressures substantially below that of a steam heated cylinder producing the same heat flow per square foot.
Parent Case Info
This application is a continuation of my prior, copending application Ser. No. 286,927, filed Sept. 7, 1972 now abandoned, which was a division of my application Ser. No. 129,165, filed Mar. 29, 1971 now abandoned, which was a continuation of my application Ser. No. 705,778, filed Feb. 15, 1968 now abandoned, entitled "Method and Apparatus for Hot Gas Heat Transfer, Particularly for Paper Drying". The method subject matter of the invention was carried through said application Ser. No. 129,165 (along with the apparatus subject matter) and became the subject of my copending application Ser. No. 358,498, filed May 9, 1973.
US Referenced Citations (12)
Foreign Referenced Citations (1)
Number |
Date |
Country |
256701 |
Aug 1926 |
GBX |
Divisions (1)
|
Number |
Date |
Country |
Parent |
129165 |
Mar 1971 |
|
Continuations (2)
|
Number |
Date |
Country |
Parent |
286927 |
Sep 1972 |
|
Parent |
705778 |
Feb 1968 |
|