This invention relates to methods and apparatus for inflating and sealing pillows in packaging.
This invention relates particularly to the construction and operation of a machine which is small enough to be installed for operation on site where articles packaged for transport are placed in shipping containers with protective inflated pillow-type strip packaging.
This invention relates particularly to a machine which is compact in overall size, which can be conveniently operated to produce varied lengths of strips of inflated pillow-type packaging as needed, which can begin production of inflated pillow-type strip packaging immediately after being held out of a production cycle for some period of time and which applies a heated sealing element directly to and in sliding contact with a web of film to securely seal the inlet port of an inflated pillow while the pillow is under pressure and as the web of film is continuously and uninterruptedly advanced through the machine.
This invention relates particularly to a machine which forms the seal complete and secure during a short path of travel and during a short interval of time. The seal is made without the need for additional pressing together of the film after the sealing and without the need for additional cooling of the seal after the sealed inlet port moves out of contact with the sealing structure.
Webs of plastic film which are constructed to permit the production of strips of air filled envelopes, cushions and pillows have (in the past ten years or so) been used extensively for cushioning objects to be transported in containers.
The thin webs of plastic film are inexpensive, tough, resilient and recyclable. Strips of inflated pillow packaging which are created from these webs of plastic film are used for void-fill packaging to replace products such as crumpled paper or polystyrene peanuts and for protective packaging to replace molded or extruded foams.
U.S. Pat. No. 5,454,642; U.S. Pat. No. 5,651,237; U.S. Pat. No. 5,755,328; U.S. Pat. No. 4,017,351; and U.S. Pat. No. 5,824,392 disclose methods, apparatus, and webs of plastic film used for making strips of inflated pillow packaging of this general kind. Each of these U.S. patents is incorporated by reference in this application.
U.S. Pat. Nos. 6,116,600 and 6,209,286 also disclose methods, apparatus and webs of plastic film of this general kind and are incorporated herein by reference.
Sealing an inflated pillow made a web of plastic film while the air inflates the pillow under pressure and while the web of plastic film is being transported through the machine presents problems.
The seal must be secure and must not leak in order for the inflated pillow packaging to be used effectively for cushioning objects transported within a container.
The seal needs to be formed efficiently, quickly and without extensive, related pressing and/or cooling structure in order to make the machine as compact as possible in size and as efficient as possible in production rate.
To simplify machine construction and to provide a high efficiency of production, it is desirable to be able to make the seal as the web of plastic film is moved continuously and without any interruption and/or intermittent stopping of the film transport during the sealing operation.
It is a primary object of the present invention to construct and to operate a machine which is compact in size, which is efficient in production, which is continuous and uninterrupted in operation and which produces seals which are secure and which do not leak.
In a specific embodiment of the present invention, a machine inflates and seals pillows in packaging while continuously and uninterruptedly advancing a web of film through an inflating station and a sealing station. The inflating station sequentially inflates pillows at preformed patterns in the web of film by introducing pressurized air through a narrow width inlet port of a preformed pattern. The sealing station seals each inlet port by applying a heated sealing element directly to and in sliding contact with the web of film while the air in an inflated pillow is under pressure as the inlet port moves across the heated sealing element.
The web of film has an uninflated pillow pattern and an uninflated inflation channel preformed in the film. The uninflated pillow patterns comprise multiple, spaced apart, pillow patterns aligned along one side of an inflation channel. The inflation channel extends longitudinally and continuously along the entire length of the film. Each uninflated pillow pattern has a narrow width inlet port extending generally transversely to the longitudinally extending inflation channel and connecting the uninflated pillow pattern to the uninflated inflation channel so that, when pressurized air is introduced into the inflation channel, the pressurized air can be transmitted through the inlet port to inflate the pillow pattern. In some cases the preformed pattern is also formed with outlet ports connected to the inflation channel in such a way that air entering the inflation channel can move into a pillow through an inlet port and can also exit out of the inflation channel through the outlet port. The outlet port is generally shaped smaller than the inlet port.
By allowing the air above a desired pressure to escape through an outlet port or ports, the pressure in the inflation channel is maintained at a desired level for inflating the pillows creating over-pressurization.
The air escaping through the outlet port is also sensed to detect where the pillows are in the machine. These detected outlet port positions are then used as signals for an associated electronic unit to count the number of pillows inflated in a particular run through the machine. This also facilitates being able to stop the movement of the film through the machine after one production run of a selected number of inflated pillows at a position which is the right position to start a subsequent production run of a selected number of inflated pillows.
In a specific embodiment of the present invention, the web of film with the preformed patterns is stored on a storage roller of the machine and is advanced through the machine by a first set of nip rollers and a second set of nip rollers at a respective first film transport station and a second film transport station.
Pressurized air is introduced into the inflation channel of the web of film at an inflating station as the web of film is transported through the first film transport station. The pressurized air inflates at least one of the pillow patterns prior to the time the web of film is continuously transported through a sealing station.
Pressure is maintained in the inflated pillow pattern within a calibrated pressure range during the time that the web of film is continuously transported through the sealing station.
At the sealing station the inlet port of an inflated pillow is sealed by applying a heated sealing element directly to and in sliding contact with the web of film. The heated sealing element slides across the inlet port while the air in the inflated pillow is under pressure and as the web of film is continuously and uninterruptedly advanced throughout all components of the machine.
The heated sealing element has a relatively small longitudinal dimension in the direction of movement of the web of film. In a specific embodiment the length of the heated sealing element is about the same as the width of the inlet port of a pillow pattern. This small size of the heated sealing element helps minimize the amount of sealing heat applied to the web of film.
The sealing station includes a sealing roller disposed alongside the heated sealing element so as to permit the web of film to be advanced between the sealing roller and the heated sealing element. Adjustable biasing means provide for adjustment of the force with which the heated sealing element and the sealing roller are pressed toward engagement with one another.
The sealing roller is positioned with respect to the first and second pairs of nip rollers so as to cause the web of film to wrap around a part of the peripheral surface of the sealing roller both in a circumferential direction and also in a lateral direction. This helps create a dead and flat zone right at and adjacent to the line of sealing across the inlet port. This in turn facilitates making a secure seal without leaking while the pillow is inflated under pressure.
The axes of rotation of at least the second pair of nip rollers are preferably canted at a slight angle with respect to the axis of rotation of the sealing roller.
The second pair of nip rollers are preferably rotated at a speed slightly faster than the speed of rotation of the first pair of nip rollers so as to maintain tension in the web of film between the second and first pair of nip rollers.
In one specific embodiment of the present invention the heated sealing element is a fabric covered Nichrome wire disposed at the end of a bar element which is biased toward engagement with a sealing roller. The fabric covering of the Nichrome wire has a Teflon coating on its outer surface for facilitating sliding of the heated sealing element on the engaged surface of the film as the web of film is advanced through the machine.
The bar on which the heated sealing element is mounted is a composite bar. The very tip of the bar is a ceramic having good insulating qualities, and the remainder of the bar is a different material selected to provide enhanced mechanical durability.
The seal is formed complete and secure during a short path of travel through the sealing station.
The seal is complete and secure at the time the web of film moves out of contact with the wheel at the sealing station and without the need for additional pressing together of the film after the sealing station and without the need for additional cooling of the film across the sealed inlet port after the sealed inlet port moves out of contact with the sealing station.
In a second specific embodiment of the present invention the sealing wheel is pressure biased toward engagement with the heated sealing element.
In both the first and second specific embodiments the heated sealing element and the sealing wheel are spaced apart from one another when the machine is not transporting the web of film through the machine in a production run. This enables the heated sealing element to be maintained at a desired temperature level while preventing contact with and possible burning of the unmoving film at the sealing station.
In one specific embodiment of the invention the fabric covering for the Nichrome wire is held in a fixed position at the end of the bar element and is replaced as needed.
In another specific embodiment of the invention the heating station includes a cartridge unit which can be quickly and easily interchanged with another cartridge unit. The cartridge unit includes an elongated strip of the fabric covering. The strip is mounted on two rotatable reels. The fabric always covers the Nichrome wire, as in the first specific embodiment, and the fabric has a Teflon coating on the side which engages the film in sliding contact, as in the first specific embodiment. The elongated strip of fabric covering is wound between the two reels so as to be moved across the length of the Nichrome wire at a speed which is much slower than the speed of movement of the film through the machine but which is fast enough to ensure that the covering strip of fabric is always effective to function properly without any burn through of the fabric or damage to the film from the heated Nichrome wire. The cartridge unit permits the Nichrome wire of the heated sealing element to be easily disconnected from its power supply. The cartridge units are constructed to be readily interchanged as units, rather than having to replace individual components of the cartridge unit.
Methods and apparatus which incorporate the features noted above and which are effective to function as described above comprise further, specific objects of this invention.
Other and further objects of the present invention will be apparent from the following description and claims and are illustrated in the accompanying drawings, which by way of illustration, show preferred embodiments of the present invention and the principles thereof and what are now considered to be the best modes contemplated for applying these principles. Other embodiments of the invention embodying the same or equivalent principles may be used and structural changes may be made as desired by those skilled in the art without departing from the present invention and the purview of the appended claims.
The machine is indicated by the general reference numeral 11 in each of
The machine 11, as most easily viewed in
A support tube 15 is mounted at the upper (as viewed in
Guide tubes 21 and 23 are mounted on the plate 13 below the tube 15. The tubes 21 and 23 serve to guide the web of film 19 from the roll 17 to the operating mechanism 25 of the machine 11. The operating mechanism 25 is described in more detail below.
The mechanism 25 is illustrated in detail in
The first film transport station 27 includes a first pair of nip rollers 37 and 39 for gripping the web of film 19 (see
The drive belt 45 is driven by a drive gear 47 which is in turn driven by a motor 49 (see
The second film transport station 29 comprises a second pair of nip rollers 49 and 51 which grip the web of film 19 to continuously advance the web of film 19 from the first transport station 27 to and through the inflating station 25 and to and through the sealing station 33 and then to and through the second film transport station 29.
The nip rollers 49 and 51 are driven by drive gears 53 and 55 and in the rotational directions indicated by the directional arrows on the drive gears 53 and 55 in
Drive shafts 40 and 44 transmit the drive from the drive gears 41 and 43 to the nip rollers 37 and 39.
Drive shafts 50 and 52 transmit the drive from the drive gears 53 and 55 to the nip rollers 49 and 51.
With continued reference to
The inflating station 31 includes an inflation tube 59 and a generally spherically shaped and partially Teflon coated ball 61 located at the upper end (as viewed in
As illustrated in
The uninflated pillow patterns 65 are longitudinally spaced apart from one another and are aligned (in the embodiment of the web of film 19 illustrated in the drawings) along one side of the inflation channel 67.
The inflation channel 67 extends longitudinally and continuously along the entire length of the web of film 19.
The inflation channel 67 is dimensioned to provide a close, sliding fit over the Teflon coated ball 61.
Each pillow 65 is connected to the inflation channel 67 by an inlet port 69. The inlet port 69 extends generally transversely to the longitudinally extending inflation channel 67 and has a narrow interior width which is positioned at the sealing station 33 (in a manner to be described more fully below) to facilitate quick and secure sealing of pressurized air within an inflated pillow 65 in a small path of travel and in a short time of continuous, uninterrupted travel through the sealing station 33.
The outlet ports 71 are shaped to be somewhat smaller than the inlet ports 69. These outlet ports 51 are located on the side of the channel 67 opposite the inlet ports 69 and are generally aligned with the inlet ports 69.
As will be described in greater detail below, the outlet ports 71 allow air to escape in a way to maintain pressure in the channel 67 and in the inflated pillows at a calibrated, desired level without creating over-pressurization in the pillows.
In addition, the air that exists from an outlet port 71 can be sensed by a pressure transducer 73 (see
The air escaping through the outlet ports is sensed to detect where the pillows are in the machine. These detected outlet port positions are then used as signals for an associated electronic unit to count the number of pillows inflated in a particular run through the machine. This also facilitates being able to stop the movement of the film through the machine, after one production run of a selected number of inflated pillows, at a position which is the right position to start a subsequent production run of a selected number of inflated pillows.
The upper end of the inflation tube 59 is formed with a small curvature so as to better follow the path of the film 19 as the film is advanced through the first transport station 27 and the sealing station 33.
Details of the construction and mode of operation of the sealing station 33 are illustrated and will be described with reference to
The sealing station 33 comprises a sealing roller 75 mounted on a shaft 77 which is in turn mounted for rotation in a bearing assembly attached to the main plate 13.
The sealing station 33 also comprises a heated sealing element located at the outer end (the right hand end as viewed in
The bar 81 is mounted for sliding motion within a support 83.
A spring 85 and an adjustment screw 87 provide a selectable bias force for biasing the bar 81 toward the opposed periphery of the roller 75 so that the film 19 (in the longitudinally extending strip which crosses the inlet ports 69) is pressed in rolling contact with the outer periphery roller 75 and in sliding contact with the end surface of the bar 81 as the first and second film transport stations continuously advance the web of film 19 through the sealing station 33.
An actuator 89 is included in the sealing station 33 for retracting the bar 81 against the bias of spring 85 and away from engagement with the roller 75 when the film 19 is not being advanced through the machine 11. This facilitates keeping the heating element energized at the proper heating level and out of contact with the film 19 during time intervals when the machine 11 is not being used to produce inflated pillow packaging.
Details of the structure, components and sequence of assembly of components of the heated sealing element are shown in the exploded views of
The heating element disposed at the end of the bar 81, in a specific embodiment of the present invention, comprises at least one Nichrome wire 70 which runs vertically (as viewed in
The Nichrome wire 70 at this location has a length about the same as the throat width of an outlet port 69 in the film 19, and the Nichrome wire 70 is covered by a fabric 72 having a Teflon coating on the surface which contacts the film 19. The fabric covering 72 helps to form the wire 70 to a preferred shape for engagement with the film 19, and the Teflon coating facilitates sliding movement of the film 19 with respect to the heated sealing element.
The heated sealing element comprises at least one Nichrome wire 70, but (as illustrated in
As best illustrated in
The slitting station 35 (see
It is an important feature and benefit of the present invention that the components of the mechanism 25 and the coaction between those components enable a seal to be formed complete and secure in a short path of travel of the film through the sealing station 33 and in a short period of time and without the need for additional pressing together of the web of film after the sealing station and without the need for additional cooling of the seal across the inlet port after the sealed inlet port moves out of contact with the sealing station. The sealing of the inlet port at the sealing station is performed by applying the heated sealing element directly to and in sliding contact with the web of film and across the inlet port while the air and the inflated pillow is under pressure and as the web of film is continuously and uninterruptedly advanced through the mechanism 25 shown in
A number of features of the present invention contribute to obtaining this efficient and beneficial sealing result.
As described above, the outermost tip of the bar 81 is a ceramic material which functions as an insulator to help confine the heat of the heating element to substantially just the linear area of contact of the fabric covered Nichrome wire with the film 19.
The roller 75 is laterally offset outwardly (as viewed in
Driving the second pair of nip rollers 49-51 at a slightly higher speed than the first pair of nip rollers 37-39 helps to insure that the film 19 is maintained flat and in substantially pressure sealing engagement with the periphery of the sealing roller 75.
As best shown in
In a specific embodiment of the present invention the axes of rotation of the first set of nip rollers 37-39 are also canted at this same slightly upwardly inclined angle.
The inclusion and positioning of the outlet ports 71 (see
The present invention permits sealing the inlet port at a sealing station by applying a heated sealing element directly to and in sliding contact with the web of film and across the inlet port while the air and the inflated pillow is under pressure and as the web of film is continuously and uninterruptedly advanced through each of the first transport station, inflating station, sealing station, second transport station and slitting station.
In
Score lines (not illustrated in the drawings, but similar to score lines shown in webs of plastic film described in numerous ones of the prior U.S. patents incorporated by reference in this application) permit ready detachment of single ones or groups of inflated pillows from the film 19 after the pillows are inflated and sealed.
A number of different film compositions (also as noted in U.S. patents incorporated by reference in this application) can be used as the composition material for the web of film 19.
The machines that are used to preform the patterns on the web of film 19 include conventional presses which impress multiple pillow patterns (and the related ports and inflation channel) on a strip of film 19 on each pressing operation. The pattern is formed while there is no inflation pressure anywhere in the web 19.
The preformed pattern can also be formed by a roller arrangement in which at least one roller is heated and configured to form the desired patterns.
Pattern forming machines of these kinds are also disclosed in several of the U.S. patents incorporated by reference in this application.
Such machines for forming preformed patterns in the film 19 can be associated with the machine 11 shown in
A second embodiment of a machine constructed in accordance with the present invention is illustrated in
The components and parts of the machine 101 which correspond to the machine 11 shown in
The machine 101 includes a cartridge unit 103 (see
In the machine 101 shown in
The structure, components and mode of operation of the first film transport station 27, the second film transport station 29, the inflation station 31, and the slitting station 35 are the same as the corresponding mechanism, components and mode of operation described above with reference to the machine 11, and will not be reviewed in more specific detail at this point.
The specific structure of the sealing station 33 of the machine 101 is different from the machine 11 and will be described in more detail below. However, the method of making seals across the inlet ports 69 in the machine 101 is the same as the method of machine 11, as will be understood from the description to follow.
One difference between the sealing station structure of the machine 11 and the sealing station structure of the machine 101 is in the way that the heated sealing element and the sealing wheel are moved apart from one another during those times when the machine is stopped between production runs of inflated pillows.
In the machine 11 (and as illustrated in
In the machine 101 the heated sealing element is held in a fixed position with respect to the frame 13. The rotational shaft 77 of the sealing wheel 75 is mounted for rotation in a movable support bracket 75 so that the sealing wheel 75 is movable toward and away from the heated sealing element.
As best illustrated in
The actuator 84 extends and retracts the rod 82 to move the sealing wheel 75 between the retracted position of the rod 82 shown in
In the retracted position illustrated in
In the extended position shown in
In the extended position shown in
The force with which the film 19 is engaged in sliding contact with the heated sealing element is determined by selecting the pressure level within the actuator 84.
As best illustrated in
The reels 109 and 111 are storage and take-up reels for a strip of covering fabric 72. The fabric 72 has a Teflon coating on the side engaged in sliding contact with the film 19.
The strip of covering fabric 72 is trained around a guide post 113 and into the guide slots 115 and 117 which are recessed within the outer and forward surfaces of the flanges 119 and 121 of the guide block 107.
The way that the strip of covering fabric 72 is conveyed from the storage roller 109, around the guide post 113, through the guide slot 115, over the Nichrome wires 70, through the guide slot 117 and onto the reel 111 is best illustrated in
In a specific embodiment of the machine 101 the lower reel 111 is driven, through reduction gearing, and by an electric motor (not shown), to pull the strip of covering fabric 72 across the Nichrome wires 70 at a relatively slow speed (a speed considerably slower than a speed at which the web of film 19 is transported through the machine 101 during a production run), but at a speed fast enough to insure that no part of the covering fabric 72 is ever in contact with the Nichrome wires 70 long enough to permit any burn through of the fabric by the Nichrome wires 70. The reel storage of the covering fabric 72 and the slow movement of the fabric with respect to the Nichrome wires 70 during operation of the machine 101 thus insure that the area of the fabric engageable with the Nichrome wires is, in effect, renewed soon enough to prevent any burn through.
As best illustrated in
The strip of covering fabric 72 is held out of contact with the Nichrome wires 70 when the machine 101 is not being operated in a production run of packaging.
While not illustrated in
The sealing roller 75 of the machine 101 is laterally offset outwardly in the same way as the sealing roller 75 of the machine 11 so as to cause a bump in the film 19 at the sealing station 33. This helps to create a dead zone adjacent the inlet port 69 to be sealed by causing the web of film 19 to wrap around a part of the peripheral surface of the sealing roller 75 both in circumferential direction and also in a lateral direction (as described above with reference to the machine 11).
The machine 101 permits sealing the inlet port at a sealing station by applying a heated sealing element directly to and in sliding contact with the web of film and across the inlet port while the air in an inflated pillow is under pressure and as the web of film is continuously and uninterruptedly advanced through each of the first transport station, inflating station, sealing station, second transport station and slitting station.
A seal forming apparatus, generally indicated by reference arrow 252 in
Located downstream of the seal forming apparatus 252 is what is referred to as the take up section 253. In the embodiment of
The inflation tube 244 is further provided with a blade 278 at a third station downstream of the seal forming apparatus 252. The blade 278 is generally angled and is operative to cut either one of the upper, lower or both layers of the preformed film material 210 in the region of the common inflation channel 218, thus allowing the common inflation channel 218 to separate from the tube 244 so that the strip of adjacent and connected (and now) inflated pillow sections are able to continue to progress forward through the machine 240. The blade 278 is positioned upstream of the contact point between the second set of drive rollers 254 and belt 258 such that any friction imparted by the blade onto the film material 210 is compensated for by the drag force imparted on the preformed film material 210 by the drive rollers 254 and belt 258.
As an option, the machine 240 may further include another take up roller 264 positioned downstream of the belt drive assembly 256 (see
While we have illustrated and described the preferred embodiments of our invention, it is to be understood that these are capable of variation and modification, and we therefore do not wish to be limited to the precise details set forth, but desire to avail ourselves of such changes and alterations as fall within the purview of the following claims.
This is a continuation of application Ser. No. 11/186,820, filed Jul. 22, 2005, now U.S. Pat. No. 7,536,837, which is a continuation of application Ser. No. 10/732,437, filed Dec. 9, 2003, now U.S. Pat. No. 7,059,097, which is a division of application Ser. No. 10/366,812, filed Feb. 13, 2003, now U.S. Pat. No. 7,090,912, which in turn is a division of application Ser. No. 10/108,823, filed Mar. 26, 2002, now U.S. Pat. No. 6,605,169, and a division of application Ser. No. 09/638,843, filed Aug. 14, 2000, now U.S. Pat. No. 6,659,150, which in turn is a continuation-in-part of application Ser. No. 09/439,552, filed Nov. 12, 1999, now U.S. Pat. No. 6,209,286, which claims priority under 35 U.S.C. §119(e) to Provisional Application No. 60/123,497, filed Mar. 9, 1999.
Number | Name | Date | Kind |
---|---|---|---|
2904100 | Fener | Sep 1959 | A |
3253122 | Kochmer et al. | May 1966 | A |
3359703 | Quaadgras | Dec 1967 | A |
3389534 | Pendelton | Jun 1968 | A |
3492783 | Dohmeier | Feb 1970 | A |
3554135 | Duvall et al. | Jan 1971 | A |
3575757 | Smith | Apr 1971 | A |
3660189 | Troy | May 1972 | A |
3667593 | Pendleton | Jun 1972 | A |
3674614 | Templeton | Jul 1972 | A |
3703430 | Rich | Nov 1972 | A |
3713930 | Levrini et al. | Jan 1973 | A |
3769145 | Gresham et al. | Oct 1973 | A |
3817803 | Horskey | Jun 1974 | A |
3868285 | Troy | Feb 1975 | A |
3889743 | Presnick | Jun 1975 | A |
3938298 | Luhman et al. | Feb 1976 | A |
4017351 | Larson et al. | Apr 1977 | A |
4021283 | Weikert | May 1977 | A |
4096306 | Larson | Jun 1978 | A |
4169002 | Larson | Sep 1979 | A |
4415398 | Ottayiano | Nov 1983 | A |
4465188 | Soroka et al. | Aug 1984 | A |
4551379 | Kerr | Nov 1985 | A |
4564407 | Tsuruta | Jan 1986 | A |
4586319 | Ausnit | May 1986 | A |
4596111 | Ambrose | Jun 1986 | A |
4680073 | Brunner et al. | Jul 1987 | A |
4793123 | Pharo | Dec 1988 | A |
4847126 | Yamashiro et al. | Jul 1989 | A |
4850912 | Koyanagi | Jul 1989 | A |
4872558 | Pharo | Oct 1989 | A |
4874093 | Pharo | Oct 1989 | A |
4918904 | Pharo | Apr 1990 | A |
4941754 | Murdock | Jul 1990 | A |
4949530 | Pharo | Aug 1990 | A |
4981006 | Caenazzo et al. | Jan 1991 | A |
5009318 | Lepinoy | Apr 1991 | A |
5046258 | Cahill et al. | Sep 1991 | A |
5203761 | Reichental et al. | Apr 1993 | A |
5216868 | Cooper et al. | Jun 1993 | A |
5340632 | Chappuis | Aug 1994 | A |
5357733 | Weikert | Oct 1994 | A |
5402892 | Jaszai | Apr 1995 | A |
5406770 | Fikacek | Apr 1995 | A |
5427830 | Pharo | Jun 1995 | A |
5447235 | Pharo | Sep 1995 | A |
5454642 | De Luca | Oct 1995 | A |
5535888 | De Luca | Jul 1996 | A |
5552003 | Hoover et al. | Sep 1996 | A |
5581983 | Murakami | Dec 1996 | A |
5604016 | Allegre | Feb 1997 | A |
5651237 | De Luca | Jul 1997 | A |
5658632 | Krabill | Aug 1997 | A |
5660662 | Testone | Aug 1997 | A |
5692833 | De Luca | Dec 1997 | A |
5693163 | Hoover et al. | Dec 1997 | A |
5755082 | Takahashi et al. | May 1998 | A |
5755328 | De Luca | May 1998 | A |
5824392 | Gotoh et al. | Oct 1998 | A |
5858153 | Mack | Jan 1999 | A |
5873215 | Aquarius et al. | Feb 1999 | A |
5937614 | Watkins et al. | Aug 1999 | A |
5942076 | Salerno et al. | Aug 1999 | A |
RE36501 | Hoover et al. | Jan 2000 | E |
6015047 | Greenland | Jan 2000 | A |
6209286 | Perkins et al. | Apr 2001 | B1 |
6272815 | Todd et al. | Aug 2001 | B1 |
6375785 | Aquarius | Apr 2002 | B1 |
6410119 | De Luca et al. | Jun 2002 | B1 |
6423166 | Simhaee | Jul 2002 | B1 |
6460313 | Cooper | Oct 2002 | B1 |
6582800 | Fuss et al. | Jun 2003 | B2 |
6659150 | Perkins et al. | Dec 2003 | B1 |
6786022 | Fuss et al. | Sep 2004 | B2 |
7325377 | Fuss et al. | Feb 2008 | B2 |
20030118778 | Perkins et al. | Jun 2003 | A1 |
20040206050 | Fuss et al. | Oct 2004 | A1 |
Number | Date | Country |
---|---|---|
297 17 551 | Mar 1998 | DE |
199 13 408 | Oct 2000 | DE |
199 13 408 | Oct 2000 | DE |
0836926 | Apr 1998 | EP |
2389547 | Dec 1978 | FR |
2580597 | Oct 1986 | FR |
2218401 | Nov 1989 | GB |
716961 | Jan 1995 | JP |
7165267 | Jun 1995 | JP |
WO 9407678 | Apr 1994 | WO |
WO 9840276 | Sep 1998 | WO |
WO 0043198 | Jul 2000 | WO |
WO 0043270 | Jul 2000 | WO |
WO 0053501 | Sep 2000 | WO |
WO 00 64672 | Nov 2000 | WO |
WO 0185434 | Nov 2001 | WO |
Entry |
---|
Claims from U.S. Appl. No. 10/031,111 (PCT/NL01/00351) filed Jan. 8, 2002. |
Fuss and Yampolsky declaration, U.S. Appl. No. 09/488,622, dated Dec. 3, 2001. |
Air-Fil 1200 photographs (no date but prior to application's filing date). |
Figure exhibits identified as FPAC 016486 to FPAC 016490 (5 pages), dated Aug. 1999. |
FPI v. CPS in Summary Proceedings. Judgment of Appeal Court dated Sep. 4, 2003. |
FPI v. CPS, Case on the Merits. CPS Reply Statement in Claim Proceedings and Counterclaim Statement filed Feb. 12, 2003. |
FPI v. CPS, Case on the Merits. CPS Joinder Statement; Reply Statement and Counterclaim Statement filed May 21, 2003. |
FPI v. CPS, Case on the Merits. CPS Brief Concerning Augmentation of Counterclaim filed Oct. 8, 2003. |
FPI v. CPS, Case on the Merits. CPS Statement of Rejoinder; Statement of Reply filed Jun. 2, 2004. |
CPS v. FPI B.V. and FPI. CPS Writ of Summons filed Feb. 2005. |
Free Flow Packaging International, Inc. v. Pactiv Corporation and Pactiv International Holdings Inc., Civil Action No. 03-1157—Defendants' Opening Brief in Support of Their Motion for Summary Judgment That the '150 Patent Is Unenforceable Due to Inequitable Conduct (Mar. 4, 2005). |
Free Flow Packaging International, Inc. v. Pactiv Corporation and Pactiv International Holdings Inc., Civil Action No. 03-1157—Free-Flow's (1) Brief in Opposition to Pactiv's Motion for Leave to File an Amended Answer, (2) In Opposition to Motion for Reconsideration Re Extending Discovery and Transfer, and (3) In Support of Motion for Leave to File Motion for Partial Summary Adjudication If Leave to Amend Is Granted ( Mar. 11, 2005). |
Free Flow Packaging International, Inc. v. Pactiv Corporation and Pactiv International Holdings Inc., Civil Action No. 03-1157—FP's Certified Counter-Statement of Material Disputed Facts in Opposition to Pactiv's Motion for Summary Judgment to Invalidate the '150 Patent for Best Mode Violation (Mar. 18, 2005). |
Free Flow Packaging International, Inc. v. Pactiv Corporation and Pactiv International Holdings Inc., Civil Action No. 03-1157—FP's Certified Counter-Statement of Material Disputed Facts in Opposition to Pactiv's Opening Brief in Support of Its Motion for Summary Judgment that the '150 Patent Is Unenforceable Due to Inequitable Conduct (Mar. 18, 2005). |
Free Flow Packaging International, Inc. v. Pactiv Corporation and Pactiv International Holdings Inc., Case No. 1:05-cv-279-MHW—Documents Subject to Protective Order Entered on Jul. 28, 2004, 1. Pactiv's Motion for Leave to File a Second Amended Answer, Exhibit A: Second Amended Answer to First Amended Complaint, and Exhibit B: Copy Noting the Proposed Changes to Second Amended Answer to First Amended Complaint; and 2. Pactiv's Memorandum in Support of Its Motion for Leave to File a Second Amended Answer, dated Jun. 10, 2005. |
Free Flow Packaging International, Inc. v. Storopack, Inc. and Ideepak B.V., Civil Action No. 1:04-268—Defendant Storopack's Amended Answer to Free Flow Packaging International, Inc.'s First Amended Complaint for Patent Infringement, and Counterclaim for Declaratory Judgment with Jury Demand Endorsed Hereon, dated Feb. 11, 2004. |
Free Flow Packaging International, Inc. v. Storopack, Inc. and Ideepak B.V., Civil Action No. 1:04-268—Defendant Ideepak BV's Amended Answer to Free-Flow Packaging International, Inc.'s Complaint for Patent Infringement, and Counterclaim for Declaratory Judgment with Jury Demand Endorsed Hereon, dated Aug. 4, 2005. |
Free Flow Packaging International, Inc. v. Pactiv Corporation and Pactiv International Holdings Inc., Civil Action No. 03-1157—Deposition of Andrew Perkins, Dec. 2, 2004. |
Free Flow Packaging International, Inc. v. Pactiv Corporation and Pactiv International Holdings Inc., Civil Action No. 03-1157—Exhibits from Deposition of Andrew Perkins, Dec. 2, 2004. |
Free Flow Packaging International, Inc. v. Pactiv Corporation and Pactiv International Holdings Inc., Civil Action No. 03-1157—Deposition of Andrew Perkins, Jun. 14, 2005. |
Exhibit showing AutoCAD drawings and file creation date of Nov. 22, 1999. |
Free Flow Packaging International, Inc. v. Pactiv Corporation and Pactiv International Holdings Inc., Civil Action No. 03-1157—Deposition of Philippe Borchard, Jun. 15, 2005. |
Free Flow Packaging International, Inc. v. Pactiv Corporation and Pactiv International Holdings Inc., Civil Action No. 03-1157—Deposition of Oliver Reyes, Jun. 21, 2005. |
Rebuttal Expert Report of Homayoon Kazerooni, Ph.D., filed Oct. 29, 2009 in Civil Action No. 1:09-CV-467 (GBL/IDD), Pregis Corporation v. John J. Doll, United States Patent & Trademark Office, and Free-Flow Packaging International, Inc. |
Report of Eric H. Maslen, Ph.D., filed Oct. 19, 2009 in Civil Action No. 1:09-CV-467 (GBL/IDD), Pregis Corporation v. John J. Doll, United States Patent & Trademark Office, and Free-Flow Packaging International, Inc. |
Third Expert Report of Eric H. Maslen, Ph.D., filed Nov. 6, 2009 in Civil Action No. 1:09-CV-467 (GBL/IDD), Pregis Corporation v. John J. Doll, United States Patent & Trademark Office, and Free-Flow Packaging International, Inc. |
Plaintiff's Motion for Summary Judgment, filed Jul. 1, 2009 in Civil Action No. 1:09-CV-467 (GBL/IDD), Pregis Corporation v. John J. Doll, United States Patent & Trademark Office, and Free-Flow Packaging International, Inc. |
Final Judgment, filed Apr. 27, 2010 in Civil Action No. 1:09-CV-467 (GBL/IDD), Pregis Corporation v. John J. Doll, United States Patent & Trademark Office, and Free-Flow Packaging International, Inc. |
Pre-Trial Submission of Plaintiff Pregis Corporation, filed Nov. 19, 2009 in Civil Action No. 1:09-CV-467 (GBL/IDD), Pregis Corporation v.John J. Doll, United States Patent & Trademark Office, and Free-Flow Packaging International, Inc. |
Plaintiff's Notice under 35 U.S.C. 282, filed Dec. 31, 2009 in Civil Action No. 1:09-CV-467 (GBL/IDD), Pregis Corporation v. John J. Doll, United States Patent & Trademark Office, and Free-Flow Packaging International, Inc. |
Number | Date | Country | |
---|---|---|---|
20090217620 A1 | Sep 2009 | US |
Number | Date | Country | |
---|---|---|---|
60123497 | Mar 1999 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10366812 | Feb 2003 | US |
Child | 10732437 | US | |
Parent | 10108823 | Mar 2002 | US |
Child | 10366812 | US | |
Parent | 09638843 | Aug 2000 | US |
Child | 10108823 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11186820 | Jul 2005 | US |
Child | 12436286 | US | |
Parent | 10732437 | Dec 2003 | US |
Child | 11186820 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09439552 | Nov 1999 | US |
Child | 09638843 | US |