The field of the disclosure relates generally to soil treatments, and more particularly to methods and apparatus for applying soil treatments (e.g., pesticides) below the ground surface using a handheld application tool in a manner which does not disturb the soil surface before the soil treatment is injected.
The insertion of soil treatments into the soil near buildings has been used to prevent or reduce the infestation of insects or other pests. Without treatment, these pests can be become a significant nuisance or hazard to a building owner or its occupants. Such pests are known to attack the structure of buildings and may infiltrate the building causing other problems for its occupants.
At least one known method of soil treatment includes an application of pesticides, fertilizers, or other soil treatments by direct placement into the soil under and around structures, around or near ornamental plantings, poles, fences, decks, or other wooden elements. This direct placement method includes digging, trenching and/or rodding (i.e., forcing an application device into the soil), and then directly placing the soil treatment into the dug out area of the trench. This known method can cause damage to vegetation, disrupt landscaping, and greatly impact or diminish the aesthetic beauty and value of the treated area until either the plants recover or new plantings are installed.
For example, in some common termite treatments direct placement of a termiticide into the soil around structures involves the digging of a trench approximately 4 to 6 inches wide by 6 inches deep into which a termiticide composition is applied at a rate of 4 gallons per 10 linear feet of trench per foot of depth. In addition to the application of the soil treatment to the trench, soil treatment may also be dispensed into the ground through the use of a rod injection tool, which is plunged down into the ground or to the top of a footer (i.e., a part of the building's foundation). For a typical structure having a perimeter of 200 linear feet, the time to prepare, dig, inject, and finish the application of soil treatment requires at least 4 to 6 hours depending on the type of soil and whether the application is conducted by a pair of or a single technician(s).
Another known method of soil treatment includes the direct insertion of a tool down into the ground and delivering the pesticides, fertilizers, or other soil treatments into the ground Applying the soil treatments below the surface of the soil has been used as a way of limiting the wash off of the treatments. Typical devices for implementing such soil treatments have utilized needles or other mechanical devices to create a passageway into the soil to allow the soil treatment to be inserted into the ground. These devices have the obvious limitation that they create holes in the soil, which may be unsightly, or create other adverse concerns, such as unwanted soil compaction adjacent the insertion sights, as well as require the creation of the hole using mechanical forces. Moreover, devices that are pushed into the ground can become contaminated with soil borne pathogens or other contaminates that can potentially be transferred to the next injection site.
The use of high pressure flows as a method of effectively injecting materials below the soil surface has been described before, such as in U.S. Pat. No. 5,370,069 to Monroe, titled Apparatus and Method for Aerating and/or Introducing Particulate Matter into a Ground Surface. These methods use high pressure jets of a fluid, such as air or water that entrain the soil treatment agent, whether the soil treatment agent is in solution with the fluid, or a granular material carried with the fluid. The high pressure jet can form a small hole in the surface into which the material is being placed, or cause the material to be absorbed by the surface in a rapid fashion, such that soil disturbance is minimal. One benefit of the use of a pressure jet is that no mechanical effort is required to create a passageway as a predicate for the soil treatment material to be placed below the surface of the soil. Nor is any other disturbance of the soil required, such as placing a tool directly down below the ground surface.
While devices such as that disclosed in Monroe are effective at placing soil treatment materials below the surface, they are designed to distribute such materials both a short distance below the soil surface and over a large open space area, where the size of the equipment is not a limitation. These known devices are not suitable for strategically injecting soil treatments to greater depths within the soil under and around structures, ornamental plantings, poles, fences, decks and other wood elements where treatments relating particularly to treatments against insects infestation are common.
Accordingly, a handheld high pressure application tool for applying soil treatments (e.g., termiticide or other pesticide) beneath the surface of the ground adjacent a structure is needed. Such a handheld tool would permit an operator to strategically position the tool around a structure such as a house, a deck, any landscaping that may be near the house and/or deck, around utility poles, and around plants. The tool could include multiple nozzles for applying a predetermined amount of soil treatment at a controlled pressure for injecting the soil treatment down to a desired predetermined depth. This would allow for precision applications where the area of application is carefully controlled.
In one aspect, apparatus for injecting soil treatment into soil includes a handle and a manifold head carried by the handle for delivering soil treatment into the soil. The manifold head has a first set of high pressure nozzles each configured to deliver a first volume of soil treatment into the soil at an operating pressure over an injection period and a second set of high pressure nozzles each configured to deliver a second volume of soil treatment into the soil at the operating pressure over the injection period. The second volume of soil treatment is greater than the first volume of soil treatment.
In another aspect, a method for injecting soil treatment into soil generally comprises positioning an injection apparatus over a first injection site. The injection apparatus including at least one first high pressure nozzle positioned on a manifold head and at least one second high pressure nozzle positioned on the manifold head. A contact plate attached to the manifold head is placed in contact with a top surface of the soil. The contact plate having a respective opening corresponding to each at least one first high pressure nozzle and each at least one second high pressure nozzle. Pressurized treatment liquid is supplied to the manifold head. The injection apparatus is operated to deliver pressurized treatment liquid through the at least one first high pressure nozzle and the at least one second high pressure nozzle for injection down into the soil at said first injection site. The at least one first high pressure nozzle delivers an amount of treatment liquid different from the amount of treatment liquid delivered by the at least one second high pressure nozzle. The operating step is performed without prior disturbance of the soil at the first injection site. The injection apparatus is moved over a second injection site at least in part different from said first injection site. The injection apparatus is operated to deliver pressurized treatment liquid through the at least one first high pressure nozzle and the at least one second high pressure nozzle for injection down into the soil at the second injection site. The at least one first high pressure nozzle delivers an amount of treatment liquid different from the amount of treatment liquid delivered by the at least one second high pressure nozzle. The operating step is performed without prior disturbance of the soil at said second injection site.
In yet another aspect, a method for injecting soil treatment into soil generally comprises positioning an injection apparatus over a first injection site. The injection apparatus includes a manifold head including a contact plate attached thereto and a plurality of high pressure nozzles positioned on the manifold head for directing soil treatment through the contact plate. The contact plate contacts the top surface of the soil. Pressurized treatment liquid is supplied to the manifold head. The injection apparatus is operated to deliver pressurized treatment liquid through at least one of the plurality of high pressure nozzles such that a first volume of treatment liquid is injected down into the soil to a first depth and through at least one other one of the plurality of high pressure nozzles such that a second volume of treatment liquid is injected down into the soil to a second depth different from the first depth. The operating step is performed without prior disturbance of the soil at said first injection site. The injection apparatus is moved over a second injection site at least in part different from said first injection site. The injection apparatus is operated to deliver pressurized treatment liquid through at least one of the plurality of high pressure nozzles such that a first volume of treatment liquid is injected down into the soil to a first depth and through at least one other one of the plurality of high pressure nozzles such that a second volume of treatment liquid is injected down into the soil to a second depth different from the first depth. The operating step is performed without prior disturbance of the soil at said second injection site.
A high pressure injection system for applying a soil treatment (e.g., pesticide, insecticide or termiticide) beneath the surface of the ground is described below in detail. It is understood that the system disclosed herein can be used to apply any suitable soil treatment including pesticide, insecticide, or termiticide and can be used to inhibit or control various types of pests. For example, it may be desirable to inhibit and/or control termites, ants, cockroaches, beetles, earwigs, silverfish, crickets, spiders, centipedes, millipedes, scorpions, pillbugs, sowbugs, flies, mosquitoes, gnats, moths, wasps, hornets, bees, and the like. As used herein, the term “pesticide” refers to any substance or mixture for preventing, destroying, repelling, or mitigating any pest including insects, animals (e.g., mice, rats), plants (e.g., weeds), fungi, microorganisms (e.g., bacteria and viruses), pseudocoelomates (e.g., nematodes) and prions. The term “insecticide”, which is a type of pesticide, is used herein to mean any substance or mixture for preventing, destroying, repelling, or mitigating insects. The term “termiticide”, which is a type of insecticide, is used herein to mean any substance or mixture for preventing, destroying, repelling, or mitigating termites. As used herein, the term “set” means a group of one or more.
Although the methods and systems described herein relate to the application of termiticides beneath the surface of the ground, the methods and systems could also be used to apply pesticides, insecticides, or other soil treatments. The use of termiticides as described herein is not intended to be limiting in any way. Rather, it is for exemplary purposes. The methods and systems described herein may be used, therefore, to apply any type of soil treatment beneath the ground (e.g., pesticides, fertilizers, other soil conditioning materials and insect treatments including insecticides placed around the perimeter of a structure), and is in no way limited to only termiticides.
The methods and systems described herein include a termiticide fluid supply cart (a base unit), and a portable handheld application tool that facilitates the application or injection of termiticides into the soil under and around structures, ornamental plantings, poles, fences, decks and other wood elements. The example embodiment eliminates the need to apply termiticides using certain known techniques such as digging, trenching, and/or rodding, which all require mechanically disturbing at least the surface of the ground or soil. These known techniques can cause damage to vegetation, disrupt landscaping, and impact or diminish the aesthetic beauty and value of the treated area until the plants recover or new plantings are installed.
The application system described herein includes an application tool that has a tee-handle at the top of the tool and a manifold assembly at the bottom of the tool. The tee-handle includes a hand grip portion on each side of a vertical shaft that extends between the handle and the manifold assembly. The hand grip portions may include rubber grips to aid in holding the tool during application and to reduce hand strain. The vertical shaft of the tool consists of several parts that allow the shaft to compress, when the handle is pushed down, much like a pogo stick. The compression of the shaft activates an electronic triggering switch (broadly, “an actuator”) that temporarily opens a discharge valve, for example a poppet. When the operator has the manifold assembly (i.e., device plate) in position on the ground, the operator uses the handle to apply a downward pressure (approximately 15-20 pounds) onto the shaft to actuate the trigger switch, which in turn causes a single injection of termiticide into the ground. The operator must release the pressure applied to the shaft to disengage the switch, which results in the system being reset.
In the example embodiment, the switch actuates the discharge valve a single time for each compression of the shaft. Thus, for each compression of the shaft, the discharge valve is opened a single time and a predetermined quantity of termiticide is discharged from the tool. The switch of tool is reset when the shaft is released. The next application can then be made by again compressing the shaft.
The application tool also includes a mounting bracket that mounts the manifold assembly to the shaft. This bracket allows the application head or manifold assembly to pivot about at least one axis. This allows the operator to adjust the tool such that the manifold assembly is properly positioned before activating the application switch.
The manifold assembly includes an inlet port, a discharge valve, a plurality of high pressure nozzles, a manifold head, and a contact plate for protecting the plurality of high pressure nozzles. The system also includes at least one high pressure liquid line and electrical connections that extend between the supply cart and the handheld application tool. The system also includes a pressure manifold and an electronic controller (broadly, “a valve closer”) that sets the length of time the discharge valve remains open during each activation of the electronic switch.
In operation, a measured dose of a liquid termiticide concentrate from a container housed on the supply cart is mixed with measured supply of water and fed to the application tool by an inline injection system. In another embodiment, the termiticide solution is supplied to the application tool from a tank or container without the need of an inline injection pump or device. In yet another embodiment, the termiticide concentrate can be carried by the operator and housed in a transportable container formed into and/or held within a backpack, a shoulder holster, a sling, a belt holster, a leg holster, or other suitable device capable of holding the pesticide container.
The methods and systems described herein utilize high pressure to inject the termiticide into soil beneath the surface of the ground. The high pressure injection system described herein differs from at least some known liquid injection systems that apply termiticides for soil application in that the current industry standard liquid termiticide injection systems inject liquids into the ground using pressures of 25 to 35 psi and through a single injection port or tip. The example system described herein injects the termiticide solution into the ground at pressures ranging from about 50 psi to about 10,000 psi, and in another embodiment, from about 1,000 psi to about 7,000 psi, and in yet another embodiment, at about 4,000 psi.
In operation, the application tool is set at a desired pressure for applying the termiticide. The operator then places the manifold assembly, and more specifically, the contact plate, which protects the injection nozzles, in a desired application area. The desired area may be, for example, adjacent to a wall or foundation of a structure. The operator then presses down on the application handles to compress the shaft of the tool. This downward pressure causes the upper and lower portions of the device shaft to come together thereby activating an electronic switch. The switch temporarily opens the discharge valve and allows a predetermined amount of termiticide solution to pass through the high pressure injection nozzles and into the ground. The switch only allows a single charge (i.e., a predefined amount of termiticide solution) to pass through the nozzles. The switch is reset by releasing the pressure on the handle and allowing the two parts of the electronic switch to separate. The operator applicator then lifts or slides the handheld application tool along the wall to the next application point and presses down on the handle again, thus repeating the injection of the termiticide solution into the soil. The operator continues to move the handheld application tool and inject termiticide until the desired application area is injected. In one example, the desired application area is the perimeter of the structure so that a barrier of termiticide completely surrounds the structure and thereby inhibits termites from passing through the barrier to the structure.
In an alternative embodiment, the electronic switch could be positioned on or near the tee-handle portion of the tool where it could be activated by the operator pressing down on a button or switch with a finger or thumb. In another embodiment, the tool could include a position marker, such as a foam, dust, powder, paint, or a dye material that would be applied when the termiticide is applied. The position marker would apply a marking material to the ground to mark the position of the contact plate during each application. This would allow the operator to visually determine where an application has been made and where the device plate should be re-positioned to ensure that a continuous application of the termiticide is made around the perimeter of the structure. The marker would also aid in preventing over or under application of the termiticide solution in the application area.
The high-pressure application tool and methods of using the same as described herein have many advantages over the known systems. For example, the tool described herein may include an inline injection assembly which eliminates the need to mix large volumes of the termiticide solution, and reduces the hazards associated with transporting or handling large volumes of termiticide solutions on public roadways or on private property. The use of the high-pressure injection tool also eliminates the need for digging (i.e., trenching) before applying the termiticide solution into the ground. This reduces the destruction of the landscaping and/or natural vegetation around the perimeter of a structure being treated. The high-pressure injection tool also reduces or eliminates the need for rodding into the soil with an application device in order to apply the termiticide solution. The high-pressure tool can also be programmed to deliver a specific volume of termiticide solution per nozzle, and control the depth to which the solution penetrates into the soil by controlling the application pressure. By controlling the volume and the pressure, the application volume of the termiticide can be reduced by 25% to 80% of a normal liquid termiticide application, thus saving cost and reducing demands on water. This is especially important in drier climates or during times of drought. The high-pressure tool also greatly reduces the time required to complete a termiticide treatment around a structure. This reduction in time can range between 40% and 80%. As a result, less time is spent at the site and thereby labor costs associated with the site preparation and application are reduced. Also, the application tool, which is designed to place the injection nozzles in close proximity to the ground when injecting the termiticide into the ground, reduces the risk of exposure to the operator or anyone in the immediate area of the application.
Referring to the drawings,
The manifold head 16 includes at least one internal passage to distribute the termiticide to a plurality of high pressure nozzles 38 in fluid communication with the internal passage. As seen in
With reference again to
The size and shape of the manifold head 16 may be selected based on the particular application for which the tool 12 is intended to be used. In one embodiment, the manifold head 16 has a shape with a high length to width ratio such as the high pressure nozzles 38 being arranged linearly in a row as shown in
The weight of the manifold head 16 may be selected so that the mass of the manifold head 16 assists in retaining tool 12 in position during a discharge from the plurality of high pressure nozzles 38, without being unduly burdensome for manual positioning and moving the tool by an operator. In general, the lighter the mass of the manifold head 16, the greater the force that the operator must apply to the handle 17 to retain the tool 12 in position during a discharge of termiticide from the high pressure nozzles 38.
As illustrated in
In one suitable embodiment, the discharge valve 56 is a solenoid operated poppet valve capable of sufficiently rapid operation to allow opening and closing of the discharge valve 56 within the desired time parameters to allow correct depth penetration of the soil based on the pressure in use and correct volume of termiticide solution for the specific application. While it is possible to use a hydraulically actuated valve, the size and weight constraints of such a valve may otherwise limit the utility of the handheld application tool 12.
In another suitable embodiment, the manifold head 16 may have a discharge valve 56 associated with each of the high pressure nozzles 38, such that even distribution of termiticide fluid across the plurality of high pressure nozzles 38 may be ensured. While discharge balancing can be obtained within reasonable parameters simply through proper sizing of the internal passages 40, 42, 44, should it be required, and should it justify the expense, multiple discharge valves 56 may be used, such that pressurized termiticide solution contained in a feed hose supplying each of the discharge valves 56 may provide that an adequate amount of termiticide solution is available for each of the high pressure nozzle 38. Such a configuration, however, adds complexity to the system 10 in that the controller must be able to actuate the multiple discharge valves 56 in response to a single actuation, i.e., increasing the amount of wiring and power required to control the valves, although the power requirement may be offset by the use of smaller discharge valves 56.
As illustrated in
In another embodiment (not shown), the trigger switch 60 can be located on the hand grip section 22 of the upper portion 18 of the handle 17 where it can be actuated by the operator using a finger or thumb. The trigger switch may be a mechanical device, which interrupts the flow of termiticide from the discharge valve 56 to the high pressure nozzles 38, or may be an electrical switch which interrupts the electrical signal to the discharge valve 56, thus preventing actuation of the discharge valve 56.
To inject the termiticide into the ground, the operator positions handheld portable application tool 12 such that the contact plate 50 is in contact with the surface of the ground. A downward force between about 15 to 20 pounds is applied by the operator to the upper portion 18 of the handle 17 to move the upper portion 18 from its first position to its second position and thereby cause the trigger switch actuator 62, which is mounted to the upper portion, to engage the trigger switch 60, which is mounted to the lower portion 19. Engagement of the trigger switch actuator 62 and the trigger switch 60 actuates the trigger switch 60. As a result, an electronic signal is sent from the trigger switch 60 to the discharge valve 56 causing the discharge valve to move from its closed position to its opened position for a predetermined amount of time thereby permitting termiticide to flow to and out the high pressure nozzles 38 for injecting the termiticide into the ground. The operator then releases the pressure from the handle 17, which resets the trigger switch. More specifically, the spring 26 causes the upper portion 18 of the handle 17 to move back to its first, extended position. The illustrated trigger switch 60 is configured to work only once during each compression of handle 17 to prevent repeated opening of the discharge valve 56 until the handle 17 has been reset.
The depth of penetration of the termiticide solution into the ground is a function of the pressure at which the termiticide solution is discharged from the tool 12 and the type of soil into which the termiticide is discharged. For example, hard packed or compacted soil, such as clay, is harder to penetrate and may require higher pressures than a soft sandy soil. Thus, at a given pressure the penetration of termiticide into a sandy soil may be about 12 to 14 inches, while the penetration of termiticide into a sandy loam at the same pressure may be about 6 to 9 inches, and the penetration of termiticide into a clay soil at the same pressure may be about 2 to 5 inches. It is understood, however, that the penetration of termiticide can be greater at higher pressures. For example, the penetration of termiticide into a clay soil may be about 10 to 12 inches at a sufficiently high pressure.
Referring to
Referring also to
Referring now to
The supply of termiticide solution may be provided by the supply cart 14. In one embodiment, the cart 14 includes a water reservoir 80, a high pressure pump 82 for pressurizing the termiticide solution, a termiticide concentrate reservoir 84, and a mixing device 86 that supplies the appropriate amount of termiticide concentrate to be mixed with the appropriate amount of water to form the termiticide solution. A water inlet 81 for receiving water from an external water source (e.g., a standard residential water spigot) is also provided. It is contemplated that either the water reservoir 80 or the water inlet 81 can be omitted. The supply cart 14 also includes a gasoline engine 88 with a generator 90 for generating power for operating the pressure pump 82 and generating electrical current for operating a controller 92 associated with the tool 12. In another embodiment, electrical power can be supplied by connecting into an electrical outlet located at the application site.
It is contemplated that the supply cart 14 may be vehicle mounted (e.g., a truck, a van, a ATV), trailer mounted, self propelled, or even a combination thereof, such that the cart 14 can be towed to a job site, then moved around a location under its own power. It is also contemplated that some the various components of the system 10 described herein as being mounted on the supply cart 14 may be mounted on the application tool 12. For example, it is contemplated that the termiticide concentration reservoir 84 and the mixing device 86 can be mounted on the application tool 12 instead of the supply cart 14. It is further contemplated that the supply cart 14 can be omitted. In such an embodiment, at least the termiticide concentration reservoir 84, the mixing device 86, and the water inlet 81 are carried on-board the application tool 12.
The controller 92, which is mounted on the cart 14, permits the operator of the system 10 to selectively set a pulse duration and pressure level for termiticide injections. The controller 92 may be programmable to permit the operator to enter parameters associated with a particular manifold head 16 in use, such as by defining the number of orifices and their sizes, parameters with a termiticide solution in use, such that dosing through the mixing device 86 can be properly controlled, or the number of injections can be tracked, and the like. It is understood that the pulse duration and/or pressure level for termiticide injections can be manually adjustable (e.g., via a manually adjustable valve) in addition to or instead of being set using the controller 92.
As illustrated in
As seen in
Referring now to
As seen in
It is contemplated that the ports 104 of the multiport nozzle 102 can be configured such that the discharge streams of termiticide emitted therefrom are generally vertical and that some or all of the plurality of high pressure nozzles 38 can be configured such that the discharge streams of termiticide emitted therefrom are other than vertical. In one suitable embodiment, the termiticide is emitted from the nozzles 38 in a generally conical discharge stream. It is further contemplated that the ports 104 of the multiport nozzle 102 and the plurality of high pressure nozzles 38 can be configured to emit discharge streams of termiticide that are other than vertical. In either of these arrangements, some or all of the plurality of high pressure nozzles 38 can be configured to emit discharge streams that are angled toward the periphery of the control plate (i.e., away from the multiport nozzle 102) to thereby increase the coverage area of the termiticide and that some or all of the plurality of high pressure nozzles 38 can be configured to emit discharge streams that are angled inward and toward the multiport nozzle 102 for intersecting the discharge streams emitted from the ports 104 of the multiport nozzle.
In operation, the manifold head 16 is positioned on the ground and the operator activates the trigger switch 60 causing the discharge valve 56 to open thereby permitting the predetermined quantity of termiticide to flow to and out each of the high pressure nozzles 38 and each of the ports 104 of the multiport high pressure nozzle 102 to thereby inject termiticide into the ground. The discharge streams 106 of termiticide from each of the high pressure nozzles 38 is injected substantially vertically into the ground. The discharge streams 108 of termiticide from the ports 104 are injected into the ground at an angle off vertical 110 which causes the discharge streams 108 from each of the ports 104 to intersect respective discharge streams 106 from the high pressure nozzles 38 below the surface of the ground.
The angled discharge streams 108 of ports 104 provide for supplying the termiticide to a greater volume of the injection area than just using the high pressure nozzles 38. The angled discharge streams 108 of the ports 104 inject termiticide into the soil within a central injection zone of the injection area, which is located within an outer injection zone defined by the termiticide injected by the high pressure nozzles 38. Injection of termiticide at high pressures causes the soil to fracture as the discharge streams 106, 108 of termiticide pass through the soil. In another embodiment, each of the ports 104 are slightly offset so that their discharge streams 108 of termiticide do not precisely intersect respective discharge streams 106 from the high pressure nozzles 38.
Referring again to
The handle 217 of the tool 212 includes an upper portion 218 and a lower portion 219. In the illustrated embodiment, both the upper and lower portions 218, 219 of the tool comprise generally U-shaped brackets. The upper portion 218 of the handle 217 can move relative to the lower portion 219 from a first, extended position (
As illustrated in
Referring now to
A lower end 328 of lower portion 319 of the handle 317 is attached to an inverted U-shaped attachment bracket 330. The manifold head 316 is pivotally attached at each of its ends 332, 334 to the attachment bracket 330 via a pair of pivot pins 336. It is contemplated that one or more stops (not shown) can be provided to limit the pivoting movement of the handle 317 relative to the manifold 316. Attached to the U-shaped attachment bracket 330 is a foot bracket 331. During use of the tool 312, the user can place one of his/her feet on the foot bracket 331 to inhibit movement of the tool during an injection.
The manifold head 316 includes at least one internal passage to distribute the termiticide to a plurality of high pressure nozzles 338 in fluid communication with the internal passage. As seen in
With reference again to
In this embodiment, a kick guard 398 extends outward from three sides on the contact plate 350 to further shield or otherwise block soil, rocks, and/or other debris that may be “kicked-up” during the injection of the termiticide. In the illustrated embodiment, one side of the contact plate 350 is free from the kick guard 398 to facilitate placement of the contact plate and manifold head 316 in close proximity to objects and structures. It is understood, however, that the kick guard 398 can extend around the entire periphery (i.e., all four sides) of the contact plate 350. In one suitable embodiment, the kick guard 398 is made from three pieces of suitable rubber material, which each piece of rubber material extending outward from a respective side of the contact plate 350. It is understood, however, that the kick guard 398 can have other suitable configurations (e.g., bristles, strips, flaps) and be made from any suitable material.
As illustrated in
In one suitable embodiment, the discharge valve 356 is a solenoid operated poppet valve capable of sufficiently rapid operation to allow opening and closing of the discharge valve 356 within the desired time parameters to allow correct depth penetration of the soil based on the pressure in use and correct volume of termiticide solution for the specific application. While it is possible to use a hydraulically actuated valve, the size and weight constraints of such a valve may otherwise limit the utility of the handheld application tool 312.
As illustrated in
In one suitable embodiment, a kill switch (not shown) can be located on the hand grip section 322 of the upper portion 318 of the handle 317 where it can be actuated by the operator to quickly and easily shut the system 310 off. It is contemplated that the kill switch can be located on other portions of the tool 312 besides the hand grip section 322 of the handle 317. It is also contemplated that a kill switch can be provided on the cart 314 in addition to or instead of the kill switch located on the tool 312. It is further contemplated that the kill switch can be programmed into the system (i.e., a controller) whereby if the discharge valve 356 does not open within a specified time interval it will cause a clutch to disengage from the pressure manifold and/or kill the engine.
In this embodiment, a first termiticide concentrate reservoir 384′ and a dosing device 385 are mounted on the handle 317 of the tool 312. The dosing device 385 is in fluid communication with termiticide concentrate reservoir 384′ and is adapted to deliver a predetermined amount (i.e., a dose) of concentrated termiticide to a suitable first mixing device 386′ each time the trigger switch 360 is actuated. In one suitable embodiment, the dosing device 385 is adjustable so that the predetermined amount of concentrated termiticide can be adjusted. In another suitable embodiment, the dosing device 385 is non-adjustable. That is, the amount of concentrated termiticide delivered to the mixing device 386′ each time the trigger switch 360 is actuated cannot be changed without replacement of the dosing device. One suitable dosing device 385 is available from SMC Corporation of America of Indianapolis, Ind. as part no. NCMB075-0125. In the illustrated embodiment, the mixing device 386′ is mounted on top of the manifold head 316 but it is understood that the mixing device can be otherwise mounted. For example, the mixing device 386′ can be mounted on the lower portion 319 of the handle 317.
With reference still to
In the embodiment illustrated in
The supply cart 314 also includes a gasoline engine 388 with a generator 390 for generating power for operating the pressure pump 382 and generating electrical current for operating a controller 392 associated with the system 310. In another embodiment, electrical power can be supplied by connecting into an electrical outlet located at the application site. A radiator 191 is provided to cool the pressurized water being driven by the high pressure pump 382. In the illustrated embodiment, a hose reel 193 is mounted on the cart 314 for winding the hose 313 that extends between the cart 314 and the application tool 312. A pressurized water bypass 389 is provided on the handle 317 of the tool 312 for allowing pressurized water to discharged prior to the pressure accumulator 387. The bypass 389 can be used to facilitate priming of the high pressure pump 382 and flushing termiticide solution from the hose 313.
The controller 392 permits the operator of the system 310 to selectively set a pulse duration and pressure level for termiticide injections. The controller 392 may be programmable to permit the operator to enter parameters associated with a particular manifold head 316 in use, such as by defining the number of orifices and their sizes, parameters with a termiticide solution in use, such that dosing through the mixing device 386 can be properly controlled, or the number of injections can be tracked, and the like.
To inject the termiticide into the ground, the operator positions handheld portable application tool 312 such that the contact plate 350 is in contact with the surface of the ground. A downward force between about 15 to 20 pounds is applied by the operator to the upper portion 318 of the handle 317 to move the upper portion 318 from its first position to its second position and thereby cause the trigger switch actuator 362, which is mounted to the upper portion, to engage the trigger switch 360, which is mounted to the lower portion 319. Engagement of the trigger switch actuator 362 and the trigger switch 360 actuates the discharge valve 356. More specifically, an electronic signal is sent from the trigger switch 360 to the discharge valve 356 causing the discharge valve to move from its closed position to its opened position for a predetermined amount of time.
In addition, movement of the upper portion 318 of the handle 317 relative to the lower portion 319 causes a predetermined amount of termiticide concentrate to be delivered by the dosing device 385 from the first termiticide concentrate reservoir 384′ to the mixing device 386′. Opening the discharge valve 356 causes the pressure accumulator 387 to release at least a portion of the pressurized water stored therein to the mixing device 386′. The termiticide concentration and pressurized water mix within the mixing device 386′ to form a termiticide solution. The termiticide solution is then driven to the manifold head 316 where it flows to and out the high pressure nozzles 338 for injection into the ground.
The operator then releases the pressure from the handle 317, which resets the trigger switch 360, the dosing device 385, and the pressure accumulator 387. More specifically, the spring 326 causes the upper portion 318 of the handle 317 to move back to its first, extended position. The illustrated trigger switch 360 is configured to work only once during each compression of handle 317 to prevent repeated opening of the discharge valve 356 until the handle 317 has been reset.
The depth of penetration of the termiticide solution into the ground is a function of the pressure at which the termiticide solution is discharged from the tool 312, the duration for which the discharge valve 356 remains open, and the type of soil into which the termiticide is discharged. In one suitable embodiment, the penetration of termiticide into the ground is between about 12 to 16 inches.
The second termiticide concentrate reservoir 384 and the second mixing device 386, which are mounted on the cart 314, allow the cart to be used for low pressure applications. Low pressure applications of termiticide can be carried out using the application tool 312 illustrated herein or using conventional rodding techniques. It is understood that the second termiticide concentrate reservoir 384 and the second mixing device 386 can be omitted.
Referring now to
With reference now to
The lower portion 519 of the handle 517 has two spaced-apart tubular shafts 533 configured for insertion into the tubular shafts 529 of the upper portion 518 of the handle. With the two tubular shafts 533 of the lower portion 519 inserted into the two tubular shafts 529 of the upper portion 518, the upper portion can move with respect to the lower portion from a first, extended position to a second, compressed position. It is understood that in some embodiments the upper and lower portions 518, 519 of the handle 517 can have more than two tubular shafts 529, 533. A biasing element, such as a pair of springs 526, is provided to bias the upper portion 518 of the handle 517 toward its first, extended position. In the illustrated embodiment, one spring 526 is disposed in one of the tubular shafts 529 of the upper portion 518 of the handle 517 and the other spring is disposed in the other one of the tubular shafts of the upper portion. It is understood, however, that any suitable biasing element 526 may be used. A flange (not shown) or other suitable retainer(s) may be provided to inhibit the lower portion 519 of the handle 517 from being pulled or otherwise withdrawn from the upper portion 518 to thereby ensure that the lower portion remains telescopically attached to the upper portion.
The two tubular shafts 533 of the lower portion 519 of the handle 517 are attached to an inverted U-shaped attachment bracket 530. As seen in
In one suitable embodiment, the manifold head 516 is pivotally attached at each of its ends to the attachment bracket 530 via a pair of pivot pins 536. As a result, the handle 517 can be moved relative to manifold head 516. A pair of stops 537 is provided to limit the pivoting movement of the handle 517 relative to the manifold 516. The stops 537 inhibit the handle 517 from pivoting relative to the manifold head 516 beyond a predetermined range of motion. Suitably, the stops 537 inhibit the handle 517 from pivoting into contact with the conduit 513. Attached to the U-shaped attachment bracket 530 is a foot bracket 531. During use of the tool 512, the user can place one of his/her feet on the foot bracket 531 to inhibit movement of the tool during an injection.
The manifold head 516 includes at least one internal passage to distribute the termiticide to a plurality of high pressure nozzles 538 in fluid communication with the internal passage. It is contemplated that the manifold head 516 may include any number of high pressure nozzles 538. For example, the manifold head 516 of the illustrated exemplary embodiment has a matrix of six high pressure nozzles 538 with each nozzle generally equidistant from each other.
A contact plate 550 is attached to a bottom surface 552 of the manifold head 516 to protect the high pressure nozzles 538. In the illustrated embodiment, the contact plate 550 includes a plurality of openings 554 with each of the openings being generally aligned with a respective one of the plurality of high pressure nozzles 538. As a result, the high pressure nozzles 538 are spaced from the soil by the contact plate 550 and therefore do not directly contact the soil. Moreover, the contact plate 550 shields or otherwise blocks soil, rocks, and/or other debris that may be “kicked-up” during the injection of the termiticide. The contact plate 550 includes at least one rounded edge to facilitate sliding (e.g., dragging) of the tool 512. The contact plate 550 can be made from any suitable material, for example, metal and/or plastic.
In this embodiment, a kick guard 598 extends outward from one side (e.g. the trailing side) on the contact plate 550 to further shield or otherwise block soil, rocks, and/or other debris that may be “kicked-up” during the injection of the termiticide. More specifically, the kick guard 598 inhibits debris from being “kicked-up” by injected termiticide exiting through openings in soil created by the previous injection. Thus, the illustrated kick guard 598 is sized and shaped to generally overlie the previous injection site. In one suitable embodiment, the kick guard 598 is made from a single piece of suitable rubber material. It is understood, however, that the kick guard 598 can have other suitable configurations (e.g., bristles, strips, flaps) and be made from any suitable material.
As illustrated in
In one suitable embodiment, the discharge valve 556 is a solenoid operated poppet valve capable of sufficiently rapid operation to allow opening and closing of the discharge valve 556 within the desired time parameters to allow correct depth penetration of the soil based on the pressure in use and correct volume of termiticide solution for the specific application. While it is possible to use a hydraulically actuated valve, the size and weight constraints of such a valve may otherwise limit the utility of the handheld application tool 512.
As illustrated in
In this embodiment, a first termiticide concentrate reservoir 584′ and a dosing device 585 are mounted on the handle 517 of the tool 512. As seen in
The dosing device 585 is in fluid communication with termiticide concentrate reservoir 584′ and is adapted to deliver a predetermined amount (i.e., a dose) of concentrated termiticide to a suitable first mixing device 586′ each time the trigger switch 560 is actuated. In one suitable embodiment, the dosing device 585 is adjustable so that the predetermined amount of concentrated termiticide can be adjusted. In another suitable embodiment, the dosing device 585 is non-adjustable. That is, the amount of concentrated termiticide delivered to the mixing device 586′ each time the trigger switch 560 is actuated cannot be changed without replacement of the dosing device. One suitable dosing device 585 is available from SMC Corporation of America of Indianapolis, Ind. as part no. NCMB075-0125. In the illustrated embodiment, the mixing device 586′ is mounted on top of the manifold head 516 but it is understood that the mixing device can be otherwise mounted. For example, the mixing device 586′ can be mounted on the lower portion 519 of the handle 517.
A pressure accumulator 587 is mounted to the handle 517. More specifically, the pressure accumulator 587 is mounted between the two tubular shafts 533 of the lower portion 519 of the handle 517 such that the pressure accumulator is generally aligned along a longitudinal axis of the tool 512. As a result, the weight of the pressure accumulator is distributed generally equally between the two tubular shafts 533 of the lower portion 519. The pressure accumulator 587 is adapted to store pressurized water (or other suitable carrier liquids) from the cart 514 prior to it being delivered to the mixing device 586′. The pressure accumulator 587 minimizes the effect of the pressure drop between the cart 514 to the mixing device 586′. Thus, the pressure accumulator 587 provides pressurized water from the cart 514 to the mixing device 586′ at a higher pressure than if the pressurized water was delivered directly to the mixing device from the cart.
In the embodiment illustrated in
The supply cart 514 also includes a gasoline engine 588 with a generator 590 for generating power for operating the pressure pump 582 and generating electrical current for operating a controller 592 associated with the system 510. In another embodiment, electrical power can be supplied by connecting into an electrical outlet located at the application site. A clutch mechanism 591 is provided to disengage the high pressure pump 582 between injections (or after a predetermined time interval) and thereby inhibit the water being driven by the high pressure pump from being heated. In the illustrated embodiment, a hose reel 593 is mounted on the cart 514 for winding the conduit 513 that extends between the cart 514 and the application tool 512. A pressurized water bypass 589 is provided on the handle 517 of the tool 512 for allowing pressurized water to be discharged prior to the pressure accumulator 587. The bypass 589 can be used to facilitate priming of the high pressure pump 582 and flushing termiticide solution from the conduit 513. In one suitable embodiment, the bypass 589 is fluidly connected to the manifold head 516 for allowing liquid (e.g., water, termiticide solution), gases (e.g., air) or the combination of the two passing through the bypass to be discharged beneath the manifold head.
As seen in
With reference again to
To inject the termiticide into the ground, the operator positions handheld portable application tool 512 such that the contact plate 550 is in contact with the surface of the ground. A downward force between about 15 to 20 pounds is applied by the operator to the upper portion 518 of the handle 517 to move the upper portion 518 from its first position to its second position and thereby cause the trigger switch 560, which is mounted to the upper portion, to engage the trigger switch actuator 562, which is mounted to the lower portion 519. Engagement of the trigger switch actuator 562 and the trigger switch 560 actuates the discharge valve 556. More specifically, an electronic signal is sent from the trigger switch 560 to the discharge valve 556 causing the discharge valve to move from its closed position to its opened position for a predetermined amount of time.
In addition, movement of the upper portion 518 of the handle 517 relative to the lower portion 519 causes a predetermined amount of termiticide concentrate to be delivered by the dosing device 585 from the first termiticide concentrate reservoir 584′ to the mixing device 586′. Opening the discharge valve 556 causes the pressure accumulator 587 to release at least a portion of the pressurized water stored therein to the mixing device 586′. The termiticide concentration and pressurized water mix within the mixing device 586′ to form a termiticide solution. The termiticide solution is then driven to the manifold head 516 where it flows to and out the high pressure nozzles 538 for injection into the ground.
The operator then releases the pressure from the handle 517, which resets the trigger switch 560, the dosing device 585, and the pressure accumulator 587. More specifically, the springs 526 cause the upper portion 518 of the handle 517 to move back to its first, extended position. The illustrated trigger switch 560 is configured to work only once during each compression of the handle 517 to prevent repeated opening of the discharge valve 556 until the handle 517 has been reset.
The depth of penetration of the termiticide solution into the ground is a function of the pressure at which the termiticide solution is discharged from the tool 512, the duration for which the discharge valve 556 remains open, and the type of soil into which the termiticide is discharged. In one suitable embodiment, the penetration of termiticide into the ground is between about 12 to 16 inches.
The second termiticide concentrate reservoir 584 and the second mixing device 586, which are mounted on the cart 514, allow the cart to be used for low pressure applications. Low pressure applications of termiticide can be carried out using the application tool 512 illustrated herein or using conventional rodding techniques. It is understood that in some embodiments the second termiticide concentrate reservoir 584 and the second mixing device 586 can be omitted.
Referring now to
In this embodiment, the different volumes of soil treatment emitted at the same pressure will also result in penetration of the soil treatment to different depths in the soil as illustrated in
As also seen in
By varying the depths of penetration of soil treatments injected from the high pressure nozzles 636, 637, 638, 639—as illustrated in
An experiment was conducted using an injection apparatus substantially similar to the injection apparatus described herein and having a manifold with three nozzles aligned in a single row in spaced relationship with each other (approximately 4.5 cm apart) across the length of the manifold. Treatment liquid was injected at 4,000 p.s.i. with all other factors held constant. The soil type was a moderate textured soil that fits within the clay loam classification. As a result, each injection event produced three independent soil penetrations. For each injection event, the orifices of the nozzles were configured to deliver either 2 gal./min, 4 gal./min, 6 gal./min. or 8 gal./min of treatment liquid at the 4,000 p.s.i operating pressure.
Following each injection event, the soil into which the treatment liquid was injected was excavated using a spade with a flat cutting edge. Soil was removed starting from an outward position and cut away at approximately 1.25 cm increments until the path of the liquid could be measured. The width of the soil pocket was measured at the widest point visible along the plane of excavation. It is possible that the pocket was widest in a plane that was not perpendicular to the plane of excavation but due to limitation in the sampling method this was not possible to determine. Statistical analysis of the resulting data indicates that there were significant differences between depth of penetration and the treatment liquid output of the different nozzles.
As shown in
By varying the depths of penetration of the soil treatment into the soil, as well as the widths of the soil pockets, the soil treatment emitted from the different sized nozzles 636, 637, 638, 639 effectively covers the entire injection area under the manifold head 616 without the soil treatment substantially leaching into a previous injection area. Each of the high pressure nozzles 636, 637, 638, 639 is orientated so that the discharge streams 606, as shown in
Due to the injection profile created by the nozzles 636, 637, 638, 639, the nozzles do not need to be angled to pool the discharge streams and effectively cover the entire injection area, as in other embodiments. Pooling is undesirable because it allows the soil treatment to move uncontrollably into other areas, and is avoided by utilizing the different penetration depths of discharge streams 606. Therefore, the positioning of the high pressure nozzles 636, 637, 638, 639 on the manifold head 616 prevents the soil treatment from moving into previous injection areas while the soil treatment still covers substantially all the area under the manifold head due to the varying penetration depths of the soil treatment emitted by the high pressure nozzles.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2015/053202 | 5/1/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61987630 | May 2014 | US |