The present invention provides a metallurgical lance which extends into a vessel for injecting solid particulate material into a vessel. Apparatus of this kind may be used for injecting metallurgical feed material into the molten bath of a smelting vessel for producing molten metal, for example by a direct smelting process.
A known direct smelting process, which relies on a molten metal layer as a reaction medium, and is generally referred to as the Hismelt process, is described in International application PCT/AU/96/00197 (WO 96/31627) in the name of the applicant.
The Hismelt process as described in the International application comprises:
The term “smelting” is herein understood to mean thermal processing wherein chemical reactions that reduce metal oxides take place to produce liquid metal.
The Hismelt process also comprises post-combusting reaction gases, such as CO and H2, released from the bath in the space above the bath with oxygen-containing gas and transferring the heat generated by the post-combustion to the bath to contribute to the thermal energy required to smelt the metalliferous feed materials.
The Hismelt process also comprises forming a transition zone above the nominal quiescent surface of the bath in which there is a favourable mass of ascending and thereafter descending droplets or splashes or streams of molten metal and/or slag which provide an effective medium to transfer to the bath the thermal energy generated by post-combusting reaction gases above the bath.
In the Hismelt process the metalliferous feed material and solid carbonaceous material is injected into the metal layer through a number of lances/tuyeres which are inclined to the vertical so as to extend downwardly and inwardly through the side wall of the smelting vessel and into the lower region of the vessel so as to deliver the solid material into the metal layer in the bottom of the vessel. The lances must withstand operating temperatures of the order of 1400° C. within the smelting vessel. Each lance must accordingly have an internal forced cooling system to operate successfully in this harsh environment and must be capable of withstanding substantial local temperature variations.
U.S. Pat. No. 6,398,842 discloses one form of lance which is able to operate effectively under these conditions. In that construction the solid particulate material is passed through a central core tube which is fitted closely within an outer annular cooling jacket, the forward end of the core tube extending through and beyond the forward end of the cooling jacket into the metallurgical vessel.
It has been found in operation that on plant shut down following a smelting operation the accretion of slag on the lances within the vessel and on the adjacent areas of the vessel wall can make withdrawal of the lances very difficult. In particular the slag forms a bond between the lance and the wall of the vessel and the slag accretions on the lance can be larger than the opening through it which needs to be withdrawn, making it necessary to wait for the vessel to cool sufficiently to enable slag breaking equipment to be brought into the vessel. The present invention provides a modified apparatus and a method which facilitates lance withdrawal.
The invention provides smelting apparatus comprising a smelting vessel having a shell enclosing an internal space of the vessel and a solids injection lance extending through an opening in the shell of the vessel into the interior space of the vessel, said solids injection lance including a central core tube through which to pass solid particulate material into the vessel and an annular cooling jacket surrounding the central core tube throughout a substantial part of its length and provided with internal water flow passages for flow of cooling water therethrough, wherein the solids injections lance further comprises an annular lance mounting part extending around the annular cooling jacket at a position spaced back from the forward end of the lance to form at that position a lance segment of increased cross sectional size compared to that part of the lance which extends forwardly from it, the vessel shell is provided with a lance mounting tube extending outwardly from the vessel about said opening, and the lance mounting part is received within the mounting tube and extends into or through the opening in the shell.
There may be releasable fastening means to fasten the lance to the lance mounting tube with the forward end of the lance mounting part extended through said opening in the shell.
The vessel shell may be internally lined with refractory material forming an internal surface of the vessel and the forward end of the lance mounting part may extend through the shell opening to a forward end generally flush with the refractory of said internal surface.
The internal surface of the vessel may be a surface of a water cooled refractory panel fitted to the vessel wall.
The lance mounting tube may extend outwardly and upwardly from an upright part of the vessel wall and the forward end of the mounting section may be inclined at an angle to a central longitudinal axis of the lance so as to be flush with an upright inner surface of the vessel.
The annular mounting part might have an outer diameter which is at least one and a half times the outer diameter of the annular cooling jacket of the lance. It may be of the order of twice the diameter of the cooling jacket.
The releasable fastening means may be such that when released the lance can be driven inwardly of the vessel for a distance by sliding of its mounting part within the mounting tube.
The invention further provides a method of operating a direct smelting plant which includes a metallurgical vessel and one or more solids injection lances for injecting solids material into the vessel, said method comprising locating each lance so as to extend into the vessel through an opening of a size larger than the cross section of that part of the lance within the vessel by a lance mounting of a size to fit the opening, conducting a smelting operation within the vessel such that slag adheres to the lance and the internal wall of the vessel and at the conclusion of the smelting operation removing the lance by steps which include driving the lance with its mounting inwardly of the vessel to break slag accretions in the vicinity of the opening and withdrawing the lance through the opening.
The lance mounting may be fitted within a lance mounting tube extending outwardly from the vessel and the lance may be driven inwardly by application of a portable hydraulic power device between the mounting of the lance and the mounting tube.
In order that the invention may be more fully explained, particular embodiments will be described in some detail with reference to the accompanying drawings in which:
In use, the vessel contains a molten bath of iron and slag which includes a layer 22 of molten metal and a layer 23 of molten slag on the metal layer 22. The arrow marked by the numeral 24 indicates the position of the nominal quiescent surface of the metal layer 22 and the arrow marked by the numeral 25 indicates the position of the nominal quiescent surface of the slag layer 23. The term “quiescent surface” is understood to mean the surface when there is no injection of gas and solids into the vessel.
The vessel is fitted with a downwardly extending hot air injection lance 26 for delivering a hot air blast into an upper region of the vessel and a series of solids injection lances 27 extending downwardly and inwardly through the side walls 14 and into the slag layer 23 for injecting iron ore, solid carbonaceous material, and fluxes entrained in an oxygen deficient carrier gas into the metal layer 22. The position of the lances 27 is selected so that their outlet ends 28 are above the surface of the metal layer 22 during operation of the process. This position of the lances reduces the risk of damage through contact with molten metal and also makes it possible to cool the lances by forced internal water cooling without significant risk of water coming into contact with the molten metal in the vessel.
Lances 27 may be of two kinds, a first of which is employed to inject hot ore material and the other of which is employed to inject carbonaceous material such as coal. There may for example be eight solids injection lances 27 spaced circumferentially around the vessel and consisting of a series of four hot ore injection lances and four coal injection lances spaced between the hot ore injection lances. All of the lances may fit within outer housings of a common construction but the two kinds of lance have differing interior construction because of the vastly different temperature of the hot ore and the coal being injected.
The construction of an injection lance for carbonaceous material, identified as 27a, is illustrated in
Central core tube 31 is internally lined through to the forward end part 34 with a ceramic lining 37 formed by a series of cast ceramic tubes. The rear end of the central core tube 31 is connected through a coupling 38 to a coal delivery system through which particulate coal is delivered in a pressurised fluidising gas carrier, for example nitrogen.
Annular cooling jacket 32 comprises a long hollow annular structure 41 comprised of outer and inner tubes 42, 43 interconnected by a front end connector piece 44 and an elongate tubular structure 45 which is disposed within the hollow annular structure 41 so as to divide the interior of structure 41 into an inner elongate annular water flow passage 46 and an outer elongate annular water flow passage 47. Elongate tubular structure 45 is formed by a long carbon steel tube 48 welded to a machined carbon steel forward end piece 49 which fits within the forward end connector 44 of the hollow tubular structure 41 to form an annular end flow passage 51 which interconnects the forward ends of the inner and outer water flow passages 46, 47. The rear end of annular cooling jacket 32 is provided with a water inlet 52 through which a flow of cooling water can be directed into the inner annular water flow passage 46 and a water outlet 53 from which water is extracted from the outer annular passage 47 at the rear end of the lance. Accordingly in use of the lance cooling water flows forwardly down the lance through the inner annular water flow passage 46 then outwardly and back around the forward annular end passage 51 into the outer annular passage 47 through which it flows backwardly along the lance and out through outlet 53. This ensures that the coolest water is in heat transfer relationship with the incoming solids material and enables effective cooling of both the solids material being injected through the central core of the lance as well as effective cooling on the forward end and outer surfaces of the lance.
The outer surfaces of the tube 42 are machined with a regular pattern of rectangular projecting bosses 54 each having an undercut or dove tail cross section so that the bosses are of outwardly diverging formation and serve as keying formations for solidification of slag on the outer surfaces of the lance. Solidification of slag onto the lance assists in minimising the temperature in the metal components of the lance. It has been found in use that slag freezing on the forward or tip end of the lance serves as a base for formation of an extended pipe of solid material serving as an extension of the lance which further protects exposure of the metal components of the lance to the severe operating conditions within the vessel.
The lance is mounted in the wall of the vessel 11 via a mounting structure 61 comprising a tubular part 60 extended about the cooling jacket and having a double walled construction so as to enclose an annular space 70 between these walls. The tubular part 60 fits within a tubular lance mounting bracket 62 welded to the shell of vessel 11 so as to project upwardly and outwardly from the vessel and provided at its upper end with an end flange 63. Lance mounting structure 61 is connected to the rear end of the outer tube 42 of annular cooling jacket 32 via an annular ring 64 and it also includes an annular mounting flange 65 which can be clamped to the flange 63 at the end of mounting tube 62 via clamping bolts 66. A split spacer ring 67 is fitted between the flanges 63, 65 to hold them apart when the clamping bolts 66 are tightened. The arrangement is such that the forward part of the outer sleeve 60 of structure 61 extend through to the inside of the vessel wall. As seen in
The tubular part 60 of mounting structure 61 is water cooled, cooling water being supplied to the interior space 70 through a water inlet 68 and return through a water outlet 69 at the rear end of the mounting sleeve. The interior space 70 may be partitioned to provide an extended cooling water flow passage within it.
A tubular housing 71 extending rearwardly from the mounting ring 64 of mounting structure 61 houses the rear end of the intermediate tube 48 of jacket 32 and the rear end of the core tube 31 of the lance. Housing 71 carries the cooling water inlet 52 and outlet 53 for the passage of cooling water to and from the lance cooling jacket 32. A flexible annular connecting structure 81 connects the rear end of the intermediate tube 48 of the water jacket with the housing tube 71 so as to separate the inward and outward water flow passages within the housing and to also permit relative longitudinal movement between the inner and outer tubes and the intermediate tube of the water jacket due to differential thermal expansion and contraction in the components of the lance.
The rear end of tubular housing 71 provides a mounting for the rear end of the inner tube 43 of the annular cooling jacket.
Core tube 31 is held in spaced apart relationship within annular cooling jacket 32 by a series of spacer collars 83 projecting outwardly from the central core tube at longitudinally spaced locations along the core tube to engage the inner periphery of the inner tube of the annular cooling jacket so as to form an annular gas flow passage 84 between the central core tube and the annular cooling jacket. A purge gas inlet 85 is provided at the rear end of the lance for admission of a purge gas such as nitrogen to be admitted into the gas flow passage 84 to flow forwardly through the lance between the core tube and the annular cooling jacket to exit the lance at the forward end of the cooling jacket.
The central core tube is fitted with a bulbous projection 86 in the region of the forward end of the cooling jacket to provide a controlled nozzle opening between the core tube and the water jacket to control the purge gas flow rate. The spacer collars 83 are formed so as to leave circumferentially spaced gaps between the outer peripheries and the inner periphery of the cooling jacket to allow for free flow of purge gas through the annular purge gas flow passage 84. One of the end collars 83 is located closely adjacent the bulbous projection 86 so as to provide accurate location of that projection within the forward end of the outer cooling jacket so as to create the controlled annular gap for the purge gas exit nozzle. The flow of purge gas is maintained to ensure that slag can not penetrate the forward end of the nozzle between the core tube and the outer water jacket. If slag were to penetrate the lance in this region it would immediately freeze because of the water cooled outer jacket and the cold purge gas.
During operation of the lances slag will accumulate on the outer surfaces of the lance and the inner surface of the vessel. On shutdown the slag will solidify tending to bond the lance to the vessel. However with the illustrated mounting arrangement this bond can readily be broken to facilitate withdrawal of the lance. This can be achieved by loosening the clamping bolts 66 sufficiently to enable withdrawal of the split spacer ring 67. This then permits limited inward movement of the lance mounting sleeve within the mounting tube 62 so that the forward end of the mounting sleeve is moved inwardly from the wall of the vessel to break any slag accretions. This then allows the lance along with slag that has solidified on the outer tube 42 to be readily withdrawn through the enlarged opening provided for the tubular mounting 60.
The hot ore injection lances may be of generally similar construction to the coal injection lances. However, as shown in
In a further modification, the hot ore injection lance is provided with a water cooled flange 92 to stop overheating of the housing tube 71b. This flange is sandwiched between the water cooled end flange of the lance housing and the flange on the end of the ore injection system which may also be water cooled.
The inner core tube of the hot ore injection lance is held in spaced apart relationship within the cooling jacket by a series of spacer collars projecting outwardly from the central core tube in the same fashion as in the coal lance construction. As in the coal lance, the space between the inner core tube and the water jacket provides an annular passage for flow of purge gas which exits the lace at the forward end of the cooling jacket.
The outer mountings for the two kinds of injection lance are identical so that both kinds of injection lances can be inserted into a common design housing.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU2005/001103 | 7/27/2005 | WO | 00 | 4/28/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/010210 | 2/2/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4465265 | Kryczun et al. | Aug 1984 | A |
4752330 | Gitman | Jun 1988 | A |
5377960 | Leczo et al. | Jan 1995 | A |
6398842 | Dunne | Jun 2002 | B2 |
7445747 | Williams et al. | Nov 2008 | B2 |
Number | Date | Country |
---|---|---|
2 173 582 | Oct 1986 | GB |
WO 9631627 | Oct 1996 | WO |
WO 03091460 | Nov 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20080245189 A1 | Oct 2008 | US |