The present invention relates to document insertion machines, and more particularly, this invention relates to an apparatus and method for inserting documents into envelopes.
Modern mailing systems include different machines and operations for printing, organizing, collating, and folding mail materials, sheets, or other documents. These operations are followed by processes for inserting the finalized documents into envelopes. The documents are usually prepared for insertion by processing material in folding machines that use a tool or other mechanical pressure to create a sharply defined crease into a sheet of flexible substrate material, such as the paper or paper sets forming the document, using either a knife folding or buckle folding operation.
For example, commonly assigned U.S. patent application Ser. No. 13/972,972 filed on Aug. 22, 2013, the disclosure which is hereby incorporated by reference in its entirety, discloses a folding machine as combined knife and buckle folders to allow high speed folding of more than one sheet of flexible substrate material into a page set. After folding and forming the sheets of material as a document to be inserted within an envelope, the documents are further processed through a document insertion machine that inserts the documents into envelopes. Some document insertion machines perform some collating and similar processes. Different types of document insertion machines may be used, including the early “Phillipsburg-type” machine that includes picking stations having a respective stack of sheets or other mail inserts and a picker arm that grips a sheet to be inserted into an envelope.
In one exemplary document insertion machine, a stream of open envelopes are conveyed by a conveyor past an inserter arm while individual inserts as documents are retrieved from insert hoppers and added to form a final document. The same or another inserter arm inserts or “stuffs” each packet of mail materials forming the document into an open envelope by pushing the document with pusher members or “fingers.” Once the document is inserted, an envelope is conveyed to an envelope sealing station where the flap covering the envelope opening is sealed shut. Some document insertion machines hold an envelope open using suction cups or other vacuum draw, while other machines blow air into the envelope to open the envelope. Some document insertion machines use suction cups in combination with a vacuum draw to hold an envelope open and create a pocket for insertion of the document. Applying vacuum or suction cups is a slow technique and sometimes dust or other contaminants may enter the machine and interfere with the vacuum or suction. Often these types of document insertion machines and related processing equipment will jam under high speed operation.
Another technical drawback is typically the envelope is fed with the flap over the envelope opening and oriented downward in a standard letter or envelope configuration. The envelope is then moved horizontally or vertically, making document insertion difficult. Also, many of these systems are limited in speed and efficiency.
This summary is provided to introduce a selection of concepts that are further described below in the detailed description. This summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used as an aid in limiting the scope of the claimed subject matter.
An apparatus inserts documents into envelopes and includes a document insert station and a document conveyor that conveys documents to be inserted within envelopes to the document insert station. Each envelope has an envelope opening and a flap to close the opening and defining a hinge line. An envelope feeder feeds envelopes upside down on the hinge line with the flap up into the document insert station and angled from the document conveyor. An insert plate is positioned at the document insert station and receives a document conveyed from the document conveyor. The insert plate includes orifices though which air is blown into the envelope opening that is exposed since the flap has been moved down in order to open the envelope and receive the document conveyed from the document conveyor.
In one example, the envelope feeder includes a vacuum feed table that is angled to orient each envelope away from the document conveyor as described above. In another example, the insert plate is configured to engage the flap of the envelope and retain the flap open such that documents can be inserted within the envelope opening as the envelope is fed along the vacuum feed table.
In another example, the insert plate includes an air manifold connecting to the air orifices through which air is blown. The document conveyor, in an example, is positioned above the insert plate allowing documents conveyed along the document conveyor to drop onto the insert plate and towards the envelope opening of the envelope fed into the document insert station. The document conveyor includes pusher pins that engage the document and push the document into the envelope opening. Pusher fingers may be mounted at the insert plate and receive the document and insert the document fully into the envelope. In an example, the document conveyor is formed as a belt conveyor having an end positioned adjacent the insert plate, which includes slots that receive the pusher pins as the pusher pins traverse around the end of the belt conveyor adjacent the insert plate.
In another example, an envelope sealer is positioned after the document insert station and seals the flap over the envelope opening. An envelope lay down mechanism is positioned after the envelope sealer and configured to lay down the envelope into a horizontal position. In different examples, the documents can be formed as one or more sheets of paper. In yet another example, the upper edge of each envelope is oriented at an angle of 35 to 45 degrees from the horizontal and away from the document conveyor. In yet another example, this angle is 41 degrees.
A method aspect is also set forth and includes conveying documents to be inserted within envelopes along a document conveyor into a document insert station. Each envelope has an envelope opening and a flap to close the opening and defining a hinge line. The method includes feeding envelopes upside down on the hinge line with the flap up and angled from the document conveyor. The method includes forcing the flap down from the envelope opening, blowing air into the envelope opening to open the envelope and inserting a document conveyed from the document conveyor into the envelope.
Other objects, features and advantages of the present invention will become apparent from the detailed description of the invention which follows, when considered in light of the accompanying drawings in which:
Different embodiments will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments are shown. Many different forms can be set forth and described embodiments should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope to those skilled in the art.
The document conveyor 26 is supported by a support frame 30 formed from thin steel, aluminum or other rigid, strong material and forms a support structure as illustrated such that the document conveyor 26 is elevated a few feet above the floor of the shop or other work area. Although not illustrated in detail, the frame 30 construction may include castered wheels 32 located at the bottom of the support frame 30 to allow ready movement with little difficulty by even a single operator when the document conveyor 26 is unattached to the document insert station 24, including the insert plate 34 that receives the documents from the document conveyor 26.
The document conveyor 26 in one example is formed as a belt conveyor having an end 36 positioned adjacent and above the insert plate 34, allowing documents conveyed along the document conveyor 26 to drop onto the insert plate 34 towards the envelope opening 22a as better shown in
Pusher fingers 90 receive the document from the pusher pins 40 and finish inserting the document into the envelope. As shown in
Documents that are conveyed on the document conveyor 26 can be fed onto the document conveyor from one or more feed hoppers or storage bins or from a folding machine in which the documents are prepared and folded from sheets of paper or other flexible material. An example folding machine that could be used to supply the documents (D) into the document insertion machine 20 is described in the commonly assigned and incorporated by reference '972 patent application. An appropriate servomotor 44 operates as a drive mechanism and is connected to the document conveyor formed in this example as a belt conveyor to drive the conveyor forward and move documents into the document insertion station. The servomotor 44 may be connected to one or both of the support sprockets.
As best shown in
In the example as illustrated, the envelope feeder 28 feeds envelopes 22 on the hinge line and upside down into the document insert station 24. Each envelope has its flap 22b pointed up and each envelope oriented at an angle of about 35 to 45 degrees away from the document conveyor 26 and in the example shown in
The insert plate 34 is positioned at the document insert station 24 and the flap 22b. The flap 22b is forced down such that the flap rides underneath the insert plate at its beveled edge 35 as shown in
The envelope feeder 28 includes a vacuum feed table 60 that in one example includes a belt 62 driven by a servomotor 64 (
In one example, the table 60 is configured such that each envelope is oriented at an angle of 35 to 45 degrees away from the document conveyor, and in one example, is 41 degrees as shown in
The document insertion machine 20 includes different sensors that can be formed as photocells in certain examples. The general location of an envelope home edge sensor 80 is illustrated in
The process begins with the Machine On function (Block 100) that starts the document conveyor formed as a belt conveyor in this example cycling at 20,000 documents as inserts per hour and allowing for the standard operations and document insertions to be performed. In one example, 20,000 two-page sets formed as the documents or inserts may be processed per hour. The Envelope Station function (Block 102) is on or operable when the Machine On mode is functioning and initiates the servomotor 64 for the envelope feeder (Block 104). When the Envelope Home Edge Sensor 80 is satisfied (Block 106), such as when the edge of the envelope has been sensed by that sensor, the envelope feeder and the document conveyor as the belt conveyor in this example will cycle until the envelope is made ready for document insertion at the document insert station.
When that Envelope Home Edge Sensor 80 is satisfied, the envelope is also made ready for inserting as the flap is opened and pulled down so that the flap is under the insert plate and air is blown from the manifold through the orifices and into the envelope opening to open the envelope (Block 108). When an envelope staged (or support) sensor such as positioned on the vacuum feed table is satisfied (Block 110), the envelope feeder servomotor is initiated and the envelope feeder will feed envelopes until both the envelope staged (or support) sensor and the envelope insert station function are satisfied.
The Insert Station function is on to allow documents to be inserted when the Machine On mode is in process (Block 112). When a thru beam sensor and center sensor that are positioned are satisfied (Block 114), this will complete a first step in a three-step process and allow the pusher fingers to move the document as an insert into the envelope after it has been initially inserted into the envelope opening. When the center sensor is satisfied (also Block 114) indicative that a medial position has been reached, this is the second step in the three-step process that will allow the pusher fingers to move the document as an insert into the envelope. When a pusher finger home sensor is satisfied (Block 116), this is the third step in the three-step process that will allow the conveyor pins as pusher fingers to move the document as an insert into the envelope. A pusher finger advance sensor is satisfied when the product is inserted into the envelope (Block 118) and the pusher fingers have been moved into the slots of the insert plate 34. This entire process repeats after this function is satisfied for both the envelope feeder and document conveyor to allow continued insertion of documents into envelopes.
The sensor(s) in the document sensor slot 97 will indicate when a document has extended initially onto the insert plate such as assisted by the pusher pins. Although the sensors may be located at different positions on the document insert machine, the different sensors, such as the through beam sensor and center sensor together with the pusher finger home sensor and pusher finger advance sensor, may be located along the side generally as described in
There are two modes that will allow documents, e.g., two-page sets as inserts to be pulled from designated document feeders that an operator initiates. These documents may have been loaded into the feeder from a folding machine such as described in the incorporated by reference '972 patent application or stored in the document feeder. Document feeders are shown schematically at 150 and 152 in
A vacuum pump on function (Block 124) occurs when an operator selects a certain document feeder to supply documents for insertion. A vacuum pump is turned on and supplies the necessary vacuum for one or more documents to be separated to ready a document as an insert. The sequence starts (Block 126) as an operator function. The operator determines when the sequence will start by using embedded software. A vacuum solenoid on function (Block 128) occurs when an operator initiates a sequence start (Block 126) and separates the document as an insert so that the servomotor controlling the document conveyor will advance the document from the feeder to the conveyor. The servo advance function (Block 130) will initiate the servomotor to advance, using a control signal from the embedded software and follow the sequence the operator has set relative to the document insert station. The server returns a home function (Block 132) and sets the document insert station to repeat the process when the embedded software sends the signal.
The system transport mode (Block 140) is a mode where the operator selects when the document conveyor and document insert station are controlled by printed information on a document. The software will transfer the information to the base machine to control what documents will be formed as inserts to be assembled with information derived from a control document. The feeder on system (Block 142) is a function that allows the operator to select which document feeders will be on for the system mode. The embedded software will prevent a document feeder from feeding if it is not required for that control document.
It should be understood that the documents as inserts that are conveyed into the envelopes can be folded and prepared using a folding machine that is combined knife and buckle folders as disclosed in U.S. patent application Ser. No. 13/972,972. In that folding machine, an accumulator will accumulate at least one sheet of flexible substrate material such as page sets and a knife folder adjacent the accumulator has a knife fold plate that receives the at least one sheet and a knife blade that reciprocates against the at least one sheet. Buckle fold drive rollers are adjacent the knife folder and receive the at least one sheet driven from the knife blade to form a knife fold. At least one buckle folder is oriented along the buckle fold drive rollers and receives the knife fold to form a buckle fold in the at least one sheet. One or two collectors may be used in that folding machine and a single set or a completed subset may be dumped into a track of the inserting machine at zero degrees or dumped onto a conveyor and the process repeated.
Many modifications and other embodiments of the invention will come to the mind of one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is understood that the invention is not to be limited to the specific embodiments disclosed, and that modifications and embodiments are intended to be included within the scope of the appended claims.
This is a continuation application based upon U.S. patent application Ser. No. 14/078,627 filed Nov. 13, 2013, the disclosure which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 14078627 | Nov 2013 | US |
Child | 15260363 | US |