Apparatus for insertion between anatomical structures and a procedure utilizing same

Information

  • Patent Grant
  • 8048119
  • Patent Number
    8,048,119
  • Date Filed
    Thursday, July 20, 2006
    17 years ago
  • Date Issued
    Tuesday, November 1, 2011
    12 years ago
Abstract
A surgical procedure and apparatus according to which force is applied to a member to compress the member, and the member is retained in its compressed state while it is inserted between two anatomical structures. The member is then allowed to move from its compressed state towards its original state and into engagement with the structures.
Description
BACKGROUND

The present invention relates to an apparatus for insertion between anatomical structures and a procedure utilizing same and, more particularly, to such an apparatus that includes a member that is compressed before it is inserted and expands after it is inserted.


It is often desirable to insert a device between anatomical structures for several reasons. For example, it can be inserted in a manner so that it engages the structures and serves as an implant for stabilizing the structures and absorbing shock. Alternately, a device can be temporarily inserted between the structures and function to distract the structures to permit another device, such as a prosthesis, to be implanted between the structures. According to another example, a device can be inserted between the structures to distract the structures to permit another surgical procedure to be performed in the space formed by the distraction, after which the device is released and removed.


Although devices have been designed for one or more of the above uses they are not without problems. For example, it is often difficult to insert the device without requiring excessive invasion of the anatomy, damage to the adjacent anatomical structures, or over-distraction. Embodiments of the present invention improve upon these techniques and various embodiments of the invention may possess one or more of the above features and advantages, or provide one or more solutions to the above problems existing in the prior art.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a side elevational view of an adult human vertebral column.



FIG. 2 is a posterior elevational view of the column of FIG. 1.



FIG. 3 is an elevational view of one of the vertebrae of the column of FIGS. 1 and 2.



FIG. 4A-4C are elevational views depicting apparatus for inserting in the column of FIGS. 1-3.



FIG. 5A-5C are enlarged, partial, isometric views of a portion of the column of FIGS. 1 and 2, including the lower three vertebrae of the column, and depicting a procedure for inserting the apparatus of FIGS. 4A-4C between two adjacent vertebrae.



FIG. 6A-6D are elevational views depicting apparatus according to an alternate embodiment for inserting in the column of FIGS. 1-3.



FIG. 7A-7C are enlarged, partial, isometric views of a portion of the column of FIGS. 1 and 2, including the lower three vertebrae of the column, and depicting a procedure for inserting the apparatus of FIGS. 6A-6D between two adjacent vertebrae.





DETAILED DESCRIPTION

With reference to FIGS. 1 and 2, the reference numeral 10 refers, in general, to the lower portion of a human vertebral column 10. The column 10 includes a lumbar region 12, a sacrum 14, and a coccyx 16. The flexible, soft portion of the vertebral column 10, which includes the thoracic region and the cervical region, is not shown.


The lumbar region 12 includes five vertebrae V1, V2, V3, V4 and V5 separated by intervertebral discs D1, D2, D3, and D4, with the disc D1 extending between the vertebrae V1 and V2, the disc D2 extending between the vertebrae V2 and V3, the disc D3 extending between the vertebrae V3 and V4, and the disc D4 extending between the vertebrae V4 and V5.


The sacrum 14 includes five fused vertebrae, one of which is a superior vertebrae V6 separated from the vertebrae V5 by a disc D5. The other four fused vertebrae of the sacrum 14 are referred to collectively as V7. A disc D6 separates the sacrum 14 from the coccyx 16, which includes four fused vertebrae (not referenced).


With reference to FIG. 3, the vertebrae V5 includes two laminae 20a and 20b extending to either side (as viewed in FIG. 2) of a spinous process 22 that extends posteriorly from the juncture of the two laminae. Two transverse processes 24a and 24b extend laterally from the laminae 20a and 20b, respectively; two articular processes 26a and 26b extend superiorly from the laminae 20a and 20b respectively; and two articular processes 28a and 28b extend inferiorly from the laminae 20a and 20b, respectively. The inferior articular processes 28a and 28b rest in the superior articular process of the vertebra V2 to form a facet joint. Since the vertebrae V1-V4 are similar to the vertebrae V5, and since the vertebrae V6 and V7 are not involved in the present invention, they will not be described in detail.


It will be assumed that, for one or more of the reasons set forth above, the vertebrae V3 and V4 are not being adequately supported by the disc D4, and that it is therefore necessary to provide supplemental support and stabilization of these vertebrae. To this end, and referring to FIGS. 4A-4C, a device 30 according to an embodiment of the invention is implanted between the respective spinous processes 22 of the vertebrae V3 and V4.


The device 30 is generally rectangular in shape with two notches, or saddles, 30a and 30b formed at each end. The device 30 is fabricated from a soft flexible material that has a predetermined shape and elastic properties that will permit it to return towards its original state after it has been compressed. Examples of this type of material are polyurethane, rubber, RTV silicone, two-part silicone, silicone, two-part urethane PA, hydrogels, collagen matrix, bone matrix, ceramic granules suspended in an aqueous fluid, morsalized fascia, silk elastin, polymer proteins, proteins, protein hydrogel, and thermopolymer. Also, the device can be fabricated from a fabric and dipped in silicone thereby providing a memory, or preset shape, of the device to guide it during expansion.


Before the device 30 is implanted it undergoes a series of steps. Initially a compressive force, or load, is applied to the side walls of the device in a direction perpendicular to the axis of the device as shown by the arrows in FIG. 4B. This load can be applied by any mechanical device such as a vice, or the like, having two plates 34a and 34b that engage the respective side walls of the device 30. Equal and opposite forces are applied to the plates 34a and 34b in one plane in the directions of the arrows in any known manner, and the amount of the forces are regulated so that the device is compressed to a shape generally shown in FIG. 4C.


The plates 34a and 34b are released and a retaining ring 36 is immediately placed over the compressed device at a location approximately between its ends. The ring 36 thus prevents the device 30 from returning back to its original shape shown in FIG. 4A.


The apparatus consisting of the device 30, in its compressed shape, and the retaining ring 36 extending around the device, is inserted between the respective spinous processes 22 of the vertebrae V3 and V4 in the direction shown in FIG. 5A. Then the ring 36 is removed from the compressed device 30 and the memory characteristic of the material of the device, as discussed above, causes the device to start expanding in a manner towards its original shape. FIG. 5B depicts an intermediate stage of the expansion of the device 30 as it expands from the fully compressed position of FIG. 5A to its fully expanded position as shown in FIG. 5C. In the last position, the device 30 engages the spinous processes 22 of the vertebrae V3 and V4, respectively, with enough force to firmly secure the device between the processes and stabilize the vertebrae. It is understood that, in moving from the position of FIGS. 5B to 5C, the device 30 can engage and move at least one of the processes 22 slightly if it is desired to establish a predetermined spatial relationship between the processes.


In addition to stabilizing the vertebrae V3 and V4, the relatively flexible, soft material of the device 30 readily conforms to the processes and provides excellent shock absorption and deformability, resulting in an improved fit.


Referring to FIGS. 6A-6C, the reference numeral 40 refers to, in general, an implantable device according to another embodiment of the present invention. As in the previous embodiment, the device can be implanted between two spinous processes, such as the processes 22 associated with the vertebrae V3 and V4 as depicted in FIGS. 5A-5C.


The device 40 comprises a hollow body member 42, generally rectangular in shape, and having two notches, or saddles, 42a and 42b, formed at each end. The body member 42 is fabricated from a soft flexible material that will deform, or compress, under load conditions to be described.


One end of a tube 44 registers with an opening in the body member 42, and the other end of the tube is adapted to be connected to a source of fluid (not shown) so that the fluid can be introduced into the interior of the body member. Examples of the type of fluid that can be used are air, water, and a curable polymer. The quantity of fluid introduced into the interior of the body member 42 is controlled so that the body member will expand in a manner to be described.


A sack, or sheath, 46 extends over the body member 42 and is sized so as to fit relatively tight in the axial direction, that is, the width of the sheath is only slightly greater that the length of the body member. The sheath 46 has two open ends so that the body member 42 can be inserted into and removed from, the sheath through either end. Preferably the sheath 46 is fabricated from a type of material that is heat shrinkable, that is, it will shrink when subjected to sufficient heat. Since this type of material is conventional it will not be described in detail.


After the body member 42 is inserted in the sheath 46, heat is applied to the sheath in any conventional manner. As a result, the sheath 46 shrinks to the position shown in FIG. 6B and compresses the body member 42 in a manner that considerably reduces its axial length. The device 40 is then inserted between the respective spinous processes 22 of the vertebrae V3 and V4 in the direction shown in FIG. 7A, while the sheath retains the body member 42 in its compressed state.


The sheath 46 is then removed from the body member 42 by pulling on one end of the sheath, as shown in FIGS. 6C and 7B. Fluid is then introduced into body member 42, via the tube 44, and the body member starts expanding until it reaches its fully expanded position as shown in FIGS. 6D and 7C. The fluid flow is terminated when the body member 42 engages the respective spinous processes 22 of the vertebrae V3 and V4 with enough force to stabilize the vertebrae. It is understood that, in moving from the position of FIG. 7B to FIG. 7C, the body member 42 can engage and move at least one of the processes 22 slightly if it is desired to establish a predetermined spatial relationship between the processes.


The device 40 is thus firmly secured in its implanted position shown in FIG. 7C. In addition to stabilizing the vertebrae V3 and V4, the relatively flexible, soft material of the body member 42 readily conforms to the respective processes 22 of the vertebrae and provides excellent shock absorption and deformability, resulting in an improved fit.


According to an alternate version of the embodiment of FIGS. 6A-6C, the sheath 46 can be scored or perforated so that it does not have to be manually removed from the body member 42 after insertion between the spinous processes 22. Rather, the sheath 46 can be left on the body member 42 after the insertion of the device between the process 22. The scores or perforations will cause the sheath 46 to break apart during the introduction of the fluid into the interior of the body member 42 and allow the body member to expand into engagement with the processes 22 as described above.


In each of the foregoing embodiments, it is understood that the term “expand”, as used above is meant to cover the situation in which the body member 42 is allowed to move back towards its normal state when the sheath is removed after it was initially contracted when put in the sheath 46; or the situation in which the body member is actually inflated in response to the introduction of the fluid; or both.


It is also understood that, in each of the above embodiments the devices 30 and 40 do not necessarily have to function as implants between two processes as described in the examples above, but rather can be used in other different procedures and in other different areas of the anatomy. For example, the devices 30 and 40 can be inserted between the two anatomical structures, such as the processes used in the above examples, and expanded to an extent that it engages and distracts, or moves, the structures in a direction away from each other, to permit another device, such as a prosthesis, to be implanted between the structures or in an area near the structures. According to another example, each device can be inserted between the structures and expanded to an extent that it engages and distracts the structures to permit another surgical procedure to be performed in the space formed by the distraction. In each of these examples, the device would be released and removed after the procedure is completed.


Variations

It is understood that variations may be made in the foregoing without departing from the invention and examples of some variations are as follows:


(1) The device 30 and the body member 42 can take shapes that are different from the examples disclosed above.


(2) The devices 30 and 40 can be inserted in other areas of the anatomy such as, for example, in an intervertebral disc space represented by the references D1-D5 in FIG. 1 or between the transverse processes 24a and 24b.


(3) The devices 30 and 40 can be inserted between two vertebrae following a corpectomy in which at least one vertebrae is removed.


(4) The members used to retain the device 30 and the body member 42 in their compressed condition can vary.


(5) The types of fluid introduced into the body member 42 can be vary.


(6) The expansion of the device 30 and the body member 42 can be such that they engage only one of the anatomical structures.


(7) In the embodiment of FIGS. 6A-6C, the body member 42 can be compressed in the sheath 46 by techniques other than heat shrinking the sheath, such as, for example, stretching the sheath so that it changes from the shape shown in FIG. 6A to the shape shown in FIG. 6B.


(8) Any spatial references made above, such as “under”, “over”, “between”, “upper”, “lower”, “top”, “bottom”, etc. are for the purpose of illustration only and do not limit the specific orientation or location of the structure described above.


The preceding specific embodiments are illustrative of the practice of the invention. It is to be understood, therefore, that other expedients known to those skilled in the art or disclosed herein, may be employed without departing from the invention or the scope of the appended claims, as detailed above. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Thus, although a nail and a screw may not be structural equivalents in that a nail employs a cylindrical surface to secure wooden parts together, whereas a screw employs a helical surface, in the environment of fastening wooden parts, a nail and a screw are equivalent structures.

Claims
  • 1. A surgical apparatus comprising: an expandable member having a pair of upper arms extending upwardly from a central body and forming an upper saddle and a pair of lower of arms extending downwardly from the central body and forming a lower saddle;the upper saddle having a minimum point therealong disposed closest to a center of the member and the lower saddle having a maximum point therealong disposed closest to the center of the member;a sheath adapted to contain the member and adapted to be heated to compress the member such that the minimum and maximum points of the upper and lower saddles respectively move toward each other and each of the upper and lower arms extend in a generally lateral direction from the central body so that the member can be inserted between two adjacent spinous processes;wherein when the member is compressed one of the upper arms and one of the lower arms extend in a first direction and the other of the upper arms and the other of the lower arms extend in a second direction, generally opposite from the first direction;a conduit for introducing fluid into the member to expand the member into engagement with at least one of the spinous processes.
  • 2. A surgical procedure comprising: inserting a member into a sheath, the member having a pair of upper arms extending upwardly from a central body and forming an upper saddle and a pair of lower arms extending downwardly from the central body and forming a lower saddle; the upper saddle having a minimum point therealong disposed closest to a center of the member and the lower saddle having a maximum point therealong disposed closest to the center of the member;heating the sheath to cause shrinkage of the sheath and compression of the member such that: the minimum and maximum points of the upper and lower saddles respectively move toward each other;one of the upper arms and one of the lower arms extend in a first direction;the other of the upper arms and the other of the lower arms extend in a second direction, generally opposite from the first direction;inserting the sheath containing the compressed member between two adjacent spinous processes;introducing fluid into the member to expand the member;terminating the step of introducing when the member is in engagement with at least one of the spinous processes.
  • 3. The procedure of claim 2 wherein the sheath is manually removed from the member prior to the step of introducing.
  • 4. The procedure of claim 2 wherein the fluid is selected from a group consisting of air, water, and a curable polymer.
  • 5. The procedure of claim 2 wherein the expansion of the member causes distraction between the spinous processes.
US Referenced Citations (391)
Number Name Date Kind
624969 Peterson May 1899 A
1153797 Kegreisz Sep 1915 A
1516347 Pataky Nov 1924 A
1870942 Beatty Aug 1932 A
2077804 Morrison Apr 1937 A
2299308 Creighton Oct 1942 A
2485531 Dzus et al. Oct 1949 A
2607370 Anderson Aug 1952 A
2677369 Knowles May 1954 A
2685877 Dobelle Aug 1954 A
3065659 Eriksson et al. Nov 1962 A
3108595 Overment Oct 1963 A
3397699 Kohl Aug 1968 A
3426364 Lumb Feb 1969 A
3648691 Lumb et al. Mar 1972 A
3779239 Fischer et al. Dec 1973 A
3867728 Stubstad et al. Feb 1975 A
4011602 Rybicki et al. Mar 1977 A
4237875 Termanini Dec 1980 A
4257409 Bacal et al. Mar 1981 A
4274324 Giannuzzi Jun 1981 A
4289123 Dunn Sep 1981 A
4327736 Inoue May 1982 A
4401112 Rezaian Aug 1983 A
4499636 Tanaka Feb 1985 A
4519100 Wills et al. May 1985 A
4553273 Wu Nov 1985 A
4554914 Kapp et al. Nov 1985 A
4573454 Hoffman Mar 1986 A
4592341 Omagari et al. Jun 1986 A
4599086 Doty Jul 1986 A
4604995 Stephens et al. Aug 1986 A
4611582 Duff Sep 1986 A
4632101 Freedland Dec 1986 A
4636217 Ogilvie et al. Jan 1987 A
4646998 Pate Mar 1987 A
4657550 Daher Apr 1987 A
4662808 Camilleri May 1987 A
4686970 Dove et al. Aug 1987 A
4704057 McSherry Nov 1987 A
4721103 Freedland Jan 1988 A
4759769 Hedman et al. Jul 1988 A
4787378 Sodhi Nov 1988 A
4822226 Kennedy Apr 1989 A
4827918 Olerud May 1989 A
4834600 Lemke May 1989 A
4863476 Shepperd Sep 1989 A
4886405 Blomberg Dec 1989 A
4892545 Day et al. Jan 1990 A
4913144 Del Medico Apr 1990 A
4931055 Bumpus et al. Jun 1990 A
4932975 Main et al. Jun 1990 A
4969887 Sodhi Nov 1990 A
4969888 Scholten et al. Nov 1990 A
5000166 Karpf Mar 1991 A
5011484 Breard Apr 1991 A
5047055 Bao et al. Sep 1991 A
5059193 Kuslich Oct 1991 A
5092866 Breard et al. Mar 1992 A
5098433 Freedland Mar 1992 A
5171278 Pisharodi Dec 1992 A
5171280 Baumgartner Dec 1992 A
5201734 Cozad et al. Apr 1993 A
5267999 Olerud Dec 1993 A
5290312 Kojimoto et al. Mar 1994 A
5306275 Bryan Apr 1994 A
5306310 Siebels Apr 1994 A
5312405 Korotko et al. May 1994 A
5316422 Coffman May 1994 A
5356423 Tihon et al. Oct 1994 A
5360430 Lin Nov 1994 A
5366455 Dove Nov 1994 A
5370697 Baumgartner Dec 1994 A
5390683 Pisharodi Feb 1995 A
5395370 Muller et al. Mar 1995 A
5401269 Buttner-Janz et al. Mar 1995 A
5403316 Ashman Apr 1995 A
5415661 Holmes May 1995 A
5437672 Alleyne Aug 1995 A
5437674 Worcel et al. Aug 1995 A
5439463 Lin Aug 1995 A
5454812 Lin Oct 1995 A
5456689 Kresch et al. Oct 1995 A
5458641 Ramirez Jimenez Oct 1995 A
5480442 Bertagnoli Jan 1996 A
5496318 Howland et al. Mar 1996 A
5518498 Lindenberg et al. May 1996 A
5549679 Kuslich Aug 1996 A
5554191 Lahille et al. Sep 1996 A
5562662 Brumfield et al. Oct 1996 A
5562735 Margulies Oct 1996 A
5562736 Ray et al. Oct 1996 A
5571192 Schonhoffer Nov 1996 A
5609634 Voydeville Mar 1997 A
5609635 Michelson Mar 1997 A
5628756 Barker, Jr. et al. May 1997 A
5630816 Kambin May 1997 A
5645597 Krapiva Jul 1997 A
5645599 Samani Jul 1997 A
5653762 Pisharodi Aug 1997 A
5653763 Errico et al. Aug 1997 A
5658335 Allen Aug 1997 A
5665122 Kambin Sep 1997 A
5674295 Ray et al. Oct 1997 A
5676702 Ratron Oct 1997 A
5685826 Bonutti Nov 1997 A
5690649 Li Nov 1997 A
5693100 Pisharodi Dec 1997 A
5702395 Hopf Dec 1997 A
5702452 Argenson et al. Dec 1997 A
5702454 Baumgartner Dec 1997 A
5702455 Saggar Dec 1997 A
5707390 Bonutti Jan 1998 A
5716416 Lin Feb 1998 A
5723013 Jeanson et al. Mar 1998 A
5725341 Hofmeister Mar 1998 A
5746762 Bass May 1998 A
5755797 Baumgartner May 1998 A
5800547 Schafer et al. Sep 1998 A
5800549 Bao et al. Sep 1998 A
5810815 Morales Sep 1998 A
5836948 Zucherman et al. Nov 1998 A
5849004 Bramlet Dec 1998 A
5860977 Zucherman et al. Jan 1999 A
5888196 Bonutti Mar 1999 A
5941881 Barnes Aug 1999 A
5964730 Williams et al. Oct 1999 A
5976186 Bao et al. Nov 1999 A
5980523 Jackson Nov 1999 A
6022376 Assell et al. Feb 2000 A
6048342 Zucherman et al. Apr 2000 A
6059829 Schlapher et al. May 2000 A
6066154 Reiley et al. May 2000 A
6068630 Zucherman et al. May 2000 A
6074390 Zucherman et al. Jun 2000 A
6113638 Williams et al. Sep 2000 A
6126689 Brett Oct 2000 A
6126691 Kasra et al. Oct 2000 A
6127597 Beyar et al. Oct 2000 A
6132464 Martin Oct 2000 A
6143031 Knothe et al. Nov 2000 A
6190413 Sutcliffe Feb 2001 B1
6190414 Young Feb 2001 B1
6214037 Mitchell et al. Apr 2001 B1
6214050 Huene Apr 2001 B1
6224631 Kohrs May 2001 B1
6245107 Ferree Jun 2001 B1
6293949 Justis et al. Sep 2001 B1
6325827 Lin Dec 2001 B1
6336930 Stalcup et al. Jan 2002 B1
6348053 Cachia Feb 2002 B1
6352537 Strnad Mar 2002 B1
6364883 Santilli Apr 2002 B1
6371987 Weiland et al. Apr 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6383221 Scarborough et al. May 2002 B1
6402750 Atkinson et al. Jun 2002 B1
6402751 Hoeck et al. Jun 2002 B1
6419703 Fallin et al. Jul 2002 B1
6419704 Ferree Jul 2002 B1
6432130 Hanson Aug 2002 B1
6440169 Elberg et al. Aug 2002 B1
6447513 Griggs Sep 2002 B1
6451019 Zucherman et al. Sep 2002 B1
6500178 Zucherman et al. Dec 2002 B2
6511508 Shahinpoor et al. Jan 2003 B1
6514256 Zucherman et al. Feb 2003 B2
6520991 Huene Feb 2003 B2
6554833 Levy Apr 2003 B2
6582433 Yun Jun 2003 B2
6582467 Teitelbaum et al. Jun 2003 B1
6592585 Lee et al. Jul 2003 B2
6626944 Taylor Sep 2003 B1
6645207 Dixon et al. Nov 2003 B2
6669729 Chin Dec 2003 B2
6685742 Jackson Feb 2004 B1
6695842 Zucherman et al. Feb 2004 B2
6699246 Zucherman et al. Mar 2004 B2
6709435 Lin Mar 2004 B2
6723126 Berry Apr 2004 B1
6730126 Boehm, Jr. et al. May 2004 B2
6733533 Lozier May 2004 B1
6733534 Sherman May 2004 B2
6736818 Perren et al. May 2004 B2
6743257 Castro Jun 2004 B2
6758863 Estes et al. Jul 2004 B2
6761720 Senegas Jul 2004 B1
6770096 Bolger et al. Aug 2004 B2
6783530 Levy Aug 2004 B1
6835205 Atkinson et al. Dec 2004 B2
6902580 Fallin et al. Jun 2005 B2
6905512 Paes et al. Jun 2005 B2
6936070 Muhanna Aug 2005 B1
6946000 Senegas et al. Sep 2005 B2
6958077 Suddaby Oct 2005 B2
6969404 Ferree Nov 2005 B2
6981975 Michelson Jan 2006 B2
6981981 Reiley et al. Jan 2006 B2
7011685 Arnin et al. Mar 2006 B2
7041136 Goble et al. May 2006 B2
7048736 Robinson et al. May 2006 B2
7070598 Lim et al. Jul 2006 B2
7081120 Li et al. Jul 2006 B2
7087055 Lim et al. Aug 2006 B2
7087083 Pasquet et al. Aug 2006 B2
7097648 Globerman et al. Aug 2006 B1
7097654 Freedland Aug 2006 B1
7101375 Zucherman et al. Sep 2006 B2
7163558 Senegas et al. Jan 2007 B2
7201751 Zucherman et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7217293 Branch, Jr. May 2007 B2
7238204 Le Couedic et al. Jul 2007 B2
7306628 Zucherman et al. Dec 2007 B2
7335203 Winslow et al. Feb 2008 B2
7377942 Berry May 2008 B2
7431735 Liu et al. Oct 2008 B2
7442208 Mathieu et al. Oct 2008 B2
7445637 Taylor Nov 2008 B2
7458981 Fielding et al. Dec 2008 B2
7582106 Teitelbaum et al. Sep 2009 B2
7604652 Arnin et al. Oct 2009 B2
7611316 Panasik et al. Nov 2009 B2
7621950 Globerman et al. Nov 2009 B1
7658752 Labrom et al. Feb 2010 B2
7749252 Zucherman et al. Jul 2010 B2
7771456 Hartmann et al. Aug 2010 B2
7901430 Matsuura et al. Mar 2011 B2
20010016743 Zucherman et al. Aug 2001 A1
20010049531 Reiley et al. Dec 2001 A1
20020082600 Shaolian et al. Jun 2002 A1
20020143331 Zucherman et al. Oct 2002 A1
20030040746 Mitchell et al. Feb 2003 A1
20030045940 Eberlein et al. Mar 2003 A1
20030065330 Zucherman et al. Apr 2003 A1
20030144737 Sherman Jul 2003 A1
20030153915 Nekozuka et al. Aug 2003 A1
20030195628 Bao et al. Oct 2003 A1
20030220649 Bao et al. Nov 2003 A1
20040010312 Enayati Jan 2004 A1
20040010316 William et al. Jan 2004 A1
20040083002 Belef et al. Apr 2004 A1
20040087947 Lim et al. May 2004 A1
20040097931 Mitchell May 2004 A1
20040106995 Le Couedic et al. Jun 2004 A1
20040117017 Pasquet et al. Jun 2004 A1
20040133204 Davies Jul 2004 A1
20040133280 Trieu Jul 2004 A1
20040167625 Beyar et al. Aug 2004 A1
20040186576 Biscup et al. Sep 2004 A1
20040199255 Mathieu et al. Oct 2004 A1
20040215070 Letort et al. Oct 2004 A1
20040243239 Taylor Dec 2004 A1
20040260397 Lambrecht et al. Dec 2004 A1
20050010293 Zucherman et al. Jan 2005 A1
20050015140 deBeer Jan 2005 A1
20050027358 Suddaby Feb 2005 A1
20050033434 Berry Feb 2005 A1
20050049708 Atkinson et al. Mar 2005 A1
20050055031 Lim Mar 2005 A1
20050085814 Sherman et al. Apr 2005 A1
20050143827 Globerman et al. Jun 2005 A1
20050165398 Reiley Jul 2005 A1
20050203512 Hawkins et al. Sep 2005 A1
20050203519 Harms et al. Sep 2005 A1
20050203624 Serhan et al. Sep 2005 A1
20050228391 Levy et al. Oct 2005 A1
20050245937 Winslow Nov 2005 A1
20050261768 Trieu Nov 2005 A1
20050261781 Sennett et al. Nov 2005 A1
20050267579 Reiley et al. Dec 2005 A1
20050273166 Sweeney Dec 2005 A1
20050288672 Ferree Dec 2005 A1
20060004447 Mastrorio et al. Jan 2006 A1
20060004455 Leonard et al. Jan 2006 A1
20060015181 Elberg Jan 2006 A1
20060064165 Zucherman et al. Mar 2006 A1
20060084983 Kim Apr 2006 A1
20060084985 Kim Apr 2006 A1
20060084987 Kim Apr 2006 A1
20060084988 Kim Apr 2006 A1
20060085069 Kim Apr 2006 A1
20060085070 Kim Apr 2006 A1
20060085074 Raiszadeh Apr 2006 A1
20060089654 Lins et al. Apr 2006 A1
20060089719 Trieu Apr 2006 A1
20060095136 McLuen May 2006 A1
20060106381 Ferree et al. May 2006 A1
20060106397 Lins May 2006 A1
20060111728 Abdou May 2006 A1
20060116690 Pagano Jun 2006 A1
20060122620 Kim Jun 2006 A1
20060129239 Kwak Jun 2006 A1
20060136060 Taylor Jun 2006 A1
20060149242 Kraus et al. Jul 2006 A1
20060182515 Panasik et al. Aug 2006 A1
20060184247 Edidin et al. Aug 2006 A1
20060184248 Edidin et al. Aug 2006 A1
20060195102 Malandain Aug 2006 A1
20060217726 Maxy et al. Sep 2006 A1
20060224159 Anderson Oct 2006 A1
20060224241 Butler et al. Oct 2006 A1
20060235387 Peterman Oct 2006 A1
20060235532 Meunier et al. Oct 2006 A1
20060241601 Trautwein et al. Oct 2006 A1
20060241613 Bruneau et al. Oct 2006 A1
20060241643 Lim et al. Oct 2006 A1
20060241757 Anderson Oct 2006 A1
20060247623 Anderson et al. Nov 2006 A1
20060247640 Blackwell et al. Nov 2006 A1
20060264938 Zucherman et al. Nov 2006 A1
20060271044 Petrini et al. Nov 2006 A1
20060271049 Zucherman et al. Nov 2006 A1
20060271061 Beyar et al. Nov 2006 A1
20060282075 Labrom et al. Dec 2006 A1
20060282079 Labrom et al. Dec 2006 A1
20060293662 Boyer, II et al. Dec 2006 A1
20060293663 Walkenhorst et al. Dec 2006 A1
20070005064 Anderson et al. Jan 2007 A1
20070010813 Zucherman et al. Jan 2007 A1
20070032790 Aschmann et al. Feb 2007 A1
20070043362 Malandain et al. Feb 2007 A1
20070043363 Malandain et al. Feb 2007 A1
20070049935 Edidin et al. Mar 2007 A1
20070055274 Appenzeller et al. Mar 2007 A1
20070073289 Kwak et al. Mar 2007 A1
20070100340 Lange et al. May 2007 A1
20070123861 Dewey et al. May 2007 A1
20070142915 Altarac et al. Jun 2007 A1
20070151116 Malandain Jul 2007 A1
20070162000 Perkins Jul 2007 A1
20070162136 O'Neil et al. Jul 2007 A1
20070167945 Lange et al. Jul 2007 A1
20070173822 Bruneau et al. Jul 2007 A1
20070173823 Dewey et al. Jul 2007 A1
20070191833 Bruneau et al. Aug 2007 A1
20070191834 Bruneau et al. Aug 2007 A1
20070191837 Trieu Aug 2007 A1
20070191838 Bruneau et al. Aug 2007 A1
20070198091 Boyer et al. Aug 2007 A1
20070225807 Phan et al. Sep 2007 A1
20070233068 Bruneau et al. Oct 2007 A1
20070233074 Anderson et al. Oct 2007 A1
20070233076 Trieu Oct 2007 A1
20070233081 Pasquet et al. Oct 2007 A1
20070233089 DiPoto et al. Oct 2007 A1
20070250060 Anderson et al. Oct 2007 A1
20070270823 Trieu et al. Nov 2007 A1
20070270824 Lim et al. Nov 2007 A1
20070270825 Carls et al. Nov 2007 A1
20070270826 Trieu et al. Nov 2007 A1
20070270827 Lim et al. Nov 2007 A1
20070270828 Bruneau et al. Nov 2007 A1
20070270829 Carls et al. Nov 2007 A1
20070270834 Bruneau et al. Nov 2007 A1
20070270874 Anderson Nov 2007 A1
20070272259 Allard et al. Nov 2007 A1
20070276368 Trieu et al. Nov 2007 A1
20070276369 Allard et al. Nov 2007 A1
20070276493 Malandain et al. Nov 2007 A1
20070276496 Lange et al. Nov 2007 A1
20070276497 Anderson Nov 2007 A1
20070282443 Globerman et al. Dec 2007 A1
20080021457 Anderson et al. Jan 2008 A1
20080021460 Bruneau et al. Jan 2008 A1
20080058934 Malandain et al. Mar 2008 A1
20080097446 Reiley et al. Apr 2008 A1
20080114357 Allard et al. May 2008 A1
20080114358 Anderson et al. May 2008 A1
20080114456 Dewey et al. May 2008 A1
20080147190 Dewey et al. Jun 2008 A1
20080161818 Kloss et al. Jul 2008 A1
20080167685 Allard et al. Jul 2008 A1
20080183209 Robinson et al. Jul 2008 A1
20080183211 Lamborne et al. Jul 2008 A1
20080183218 Mueller et al. Jul 2008 A1
20080195152 Altarac et al. Aug 2008 A1
20080215094 Taylor Sep 2008 A1
20080221685 Altarac et al. Sep 2008 A9
20080234824 Youssef et al. Sep 2008 A1
20080262617 Froehlich et al. Oct 2008 A1
20080281360 Vittur et al. Nov 2008 A1
20080281361 Vittur et al. Nov 2008 A1
20090062915 Kohm et al. Mar 2009 A1
20090105766 Thompson et al. Apr 2009 A1
20090105773 Lange et al. Apr 2009 A1
20090234389 Chuang et al. Sep 2009 A1
20090240283 Carls et al. Sep 2009 A1
20090270918 Attia et al. Oct 2009 A1
20100121379 Edmond May 2010 A1
20100204732 Aschmann et al. Aug 2010 A1
Foreign Referenced Citations (69)
Number Date Country
2821678 Nov 1979 DE
3922044 Feb 1991 DE
4012622 Jul 1991 DE
0322334 Feb 1992 EP
0767636 Jan 1999 EP
1004276 May 2000 EP
1011464 Jun 2000 EP
1138268 Oct 2001 EP
1148850 Oct 2001 EP
1148851 Oct 2001 EP
1302169 Apr 2003 EP
1330987 Jul 2003 EP
1552797 Jul 2005 EP
1854433 Nov 2007 EP
1905392 Apr 2008 EP
1982664 Oct 2008 EP
2623085 May 1989 FR
2625097 Jun 1989 FR
2681525 Mar 1993 FR
2700941 Aug 1994 FR
2703239 Oct 1994 FR
2707864 Jan 1995 FR
2717675 Sep 1995 FR
2722087 Jan 1996 FR
2722088 Jan 1996 FR
2724554 Mar 1996 FR
2725892 Apr 1996 FR
2730156 Aug 1996 FR
2731643 Sep 1996 FR
2775183 Aug 1999 FR
2799948 Apr 2001 FR
2816197 May 2002 FR
2005002466 Jan 2005 IL
02-224660 Sep 1990 JP
09-075381 Mar 1997 JP
2003-079649 Mar 2003 JP
988281 Jan 1983 SU
1484348 Jun 1989 SU
1484348 Jul 1989 SU
WO 9426192 Nov 1994 WO
WO 9426195 Nov 1994 WO
WO 9718769 May 1997 WO
WO 9820939 May 1998 WO
WO 9926562 Jun 1999 WO
WO 9959669 Nov 1999 WO
WO 0044319 Aug 2000 WO
WO 0154598 Aug 2001 WO
2006025815 Mar 2002 WO
WO 03057055 Jul 2003 WO
2004084743 Apr 2004 WO
WO 2004047689 Jun 2004 WO
WO 2004047691 Jun 2004 WO
WO 2004084768 Oct 2004 WO
2004110300 Dec 2004 WO
WO 2005002474 Jan 2005 WO
2005009300 Feb 2005 WO
WO 2005009300 Feb 2005 WO
WO 2005011507 Feb 2005 WO
WO 2005044118 May 2005 WO
WO 2005048856 Jun 2005 WO
WO 2005110258 Nov 2005 WO
WO 2006064356 Jun 2006 WO
WO 2007034516 Mar 2007 WO
2007038349 Apr 2007 WO
WO2007052975 May 2007 WO
WO 2007052975 May 2007 WO
WO 2009083276 Jul 2009 WO
WO 2009083583 Jul 2009 WO
WO 2009098536 Aug 2009 WO
Related Publications (1)
Number Date Country
20080021460 A1 Jan 2008 US