The present disclosure relates generally to an apparatus for insertion in a tank and a method for inserting an apparatus into an interior space of a tank. In particular, the present disclosure relates to an apparatus including a tube with a curved portion connecting straight portions, insertable through an opening in the tank. The tube can be used to convey high pressure fluids for cleaning the interior of the tank.
It is known to insert various devices through an opening in a tank into an interior space of tank to clean an interior of the tank. One principle of operation associated with these devices is inserting a device through the opening in the interior of the tank and then rotating the device to dispense cleaning fluid. Another principle of operation associated with these respective portions is connecting first and second straight sections with a pivoting joint and inserting the sections into the tank so that the first section is located in the tank interior and the joint located in the opening or the tank interior. Cleaning fluid is then dispensed from the first section. The cleaning power of these devices is lessened by the limited access available in the tank interior for these devices, for example, these devices can remain relatively distant from the ends of the tank.
It is known for the various devices to include respective portions that are minimized for passage through the opening and maximized once inside the tank. Once maximized, the portions are used to dispense cleaning fluid. One principle of operation associated with these respective portions is use of a plurality of straight sections of pipe connected by swivel joints. The sections are folded together for insertion in the tank and then unfolded once inside the tank. Another principle of operation associated with these respective portions is use of a scissors or accordion arrangement that is folded together for insertion in a tank and then unfolded once inside the tank. The number of pipes or scissors sections, for example, usable with these devices, and hence the extent to which these devices can expand to reach all areas of the tank interior, is limited by the fact that the folded pipes and scissors sections must first fit through the limited space of the tank opening. That is, the size of the opening limits the number of folded pipes or scissors sections that can be inserted into the tank. Further, to enable a hose to be folded or scissored, the hose must necessarily be relatively flexible, which reduces the durability and pressure rating of the hose.
It is known to insert a device through an opening in a tank into an interior space of tank to inspect the interior of the tank. A principle of operation described for this device is use of a plurality of straight sections connected end to end with pivoting joints to form a chain. The chain is then fed into the interior of the tank. Once inside the tank, the chained sections are locked into a linear configuration. However, the chain structure is not sturdy enough to use for cleaning operations.
According to aspects illustrated herein, there is provided an apparatus for insertion in an enclosed space, including: a tube with: first and second substantially straight portions including first and second ends of the tube, respectively; and a curved portion connecting the first and second portions. The apparatus includes: a plurality of nested segments at least partially disposed within the first substantially straight portion of the tube and connected to the first substantially straight portion; and a first actuator engageable with the tube to displace the first and second substantially straight portions of the tube into and out of the enclosed space through an opening into the enclosed space. The tube is arranged to accept a hose passing through the tube, and a distal segment from the plurality of nested segments is connectable to the hose.
According to aspects illustrated herein, there is provided a method for positioning an apparatus within an enclosed space, including: positioning at least a portion of a plurality of nested segments within a first substantially straight portion of a tube, the first portion including a first end of the tube; placing a hose in the tube; connecting the hose to a distal segment from the plurality of nested segments; engaging the first portion of the tube, a second substantially straight portion of the tube, and a curved portion of the tube, between the first and second portions of the tube, with a first actuator; and displacing, using the first actuator, the tube through an opening into the enclosed space such that the first substantially straight portion, at least a part of the second substantially straight portion, and the curved portion are positioned within the enclosed space.
According to aspects illustrated herein, there is provided an apparatus for insertion in a vessel, including: a tube including: first and second substantially straight portions including first and second ends of the tube, respectively; a curved portion connecting the first and second portions; and an exterior surface with a plurality of indentations or openings. The apparatus includes: a plurality of telescoping segments at least partially disposed within the first portion at the first end of the tube; and an actuator including a rotatable gear with a plurality of teeth engageable with the plurality of indentations or openings so that rotation of the gear displaces the first portion, the curved portion, and part of the second portion of the tube into and out of the vessel. The first substantially straight portion has a length greater than a width of an opening for the vessel. The tube is arranged to accept a hose passing through the tube. The hose is connectable to a distal segment from the plurality of telescoping segments. Displacement of the hose in a first direction causes respective portions of the telescoping segments to displace away from the first end of the tube. Displacement of the hose in a second direction, opposite the first direction, causes the respective portions of the telescoping segments to displace toward the first end of the tube.
According to aspects illustrated herein, there is provided a method for positioning an apparatus within a vessel, including: fixing a location of an actuator outside of the vessel, the actuator including a rotatable gear with a plurality of teeth; passing a hose through a tube, the tube including: a first substantially straight portion having a length greater than a width of an opening for the vessel and including a first end of the tube; a second substantially straight portion including a second end of the tube; a curved portion connecting the first and second portions; and a plurality of indentations or openings along an exterior surface of the tube. The method includes fixing the hose to a distal segment from a plurality of telescoping segments at least partially disposed within the first portion of the tube; engaging at least one tooth from the plurality of teeth with an indentation or opening from the plurality of indentations or openings proximate the first end; and rotating the gear so that: successive indentations or openings along the first portion are engaged by the plurality of teeth and the first portion displaces through an opening for the vessel into the vessel; and respective portions of the plurality of indentations or openings along the curved portion and the second portion are engaged in sequence by the plurality of teeth so that: the first portion aligns with a horizontal line within the vessel or is at an acute angle with respect to the horizontal line; and a vertical position of the first portion varies while maintaining the alignment of the first portion with the horizontal line or while maintaining the first portion at the acute angle. The method displaces the hose through the tube to displace respective portions of the telescoping segments away from and toward the first end of the tube.
Various embodiments are disclosed, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, in which:
Furthermore, it is understood that this invention is not limited to the particular methodology, materials and modifications described and as such may, of course, vary. It is also understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to limit the scope of the present invention, which is limited only by the appended claims.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this invention belongs. Although any methods, devices or materials similar or equivalent to those described herein can be used in the practice or testing of the invention, the preferred methods, devices, and materials are now described.
It should be understood that the use of “or” in the present application is with respect to a “non-exclusive” arrangement, unless stated otherwise. For example, when saying that “item x is A or B,” it is understood that this can mean one of the following: 1) item x is only one or the other of A and B; and 2) item x is both A and B. Alternately stated, the word “or” is not used to define an “exclusive or” arrangement. For example, an “exclusive or” arrangement for the statement “item x is A or B” would require that x can be only one of A and B.
Apparatus 100 includes tube 102 with curved portion 104 and portions 106 and 108. Portions 106 and 108 include ends 110 and 112, respectively, of the tube. In an example embodiment, portions 106 and 108 are substantially straight. By substantially straight we mean the portions are fully straight or are only very slightly curved, for example, due to material or fabrication tolerances. The apparatus includes actuator 114 engageable with the tube to displace the tube into and out of enclosed space 116 of the tank via opening 117 for the tank, as further described below. In an example embodiment, tube 102 has a rectangular, for example, square, cross-section. In
Apparatus 100 also includes telescoping mechanism 118 at least partially disposed within portion 108 of the tube at end 112 and connected to end 112. The mechanism includes a plurality of nested, or telescoping, segments 120 including distal segment 120A. By nested or telescoping, we mean that the various segments are mostly contained within the tube or another segment in a retracted mode, and the various segments extend from the tube or the other segment in an extended mode. For example, the extended mode is shown in
The tube inherently includes passageway 124 from end 110 to end 112. The passageway is arranged to accept hose 126 passing through the passageway. Hose 126 can be any suitably sized hose known in the art, for example, hose 126 can be a suitably sized high pressure fluid hose. In an example embodiment, the hose is arranged to connect to the distal segment. In an example embodiment, distal segment 120A is a tube. Displacement of the hose in direction D1 from end 110 of the tube toward end 112 of the tube causes respective portions of the nested segments to displace away from end 112 of the tube, for example, as shown in
In an example embodiment, apparatus 100 includes actuator 128 engageable with the hose to displace the hose in directions D1 and D2. In an example embodiment, the actuator is as described in commonly owned U.S. patent application Ser. No. 12/723,410, filed Mar. 12, 2010, which application is incorporated herein in its entirety. In an example embodiment, the distal segment is arranged to connect to nozzle assembly 130. Any nozzle known in the art can be used. The hose can be used to feed high pressure fluid, for example, water or a combination of water and cleaning agents, to the nozzle. The fluid is then dispelled from the nozzle to clean inside surface S of the tank. However, it should be understood that apparatus 100 is not limited to the preceding operations, for example, apparatus 100 could be used to insert video equipment to visually inspect the tank interior, or to insert diagnostic or other equipment to evaluate the tank.
In an example embodiment, the tube includes exterior surface 136 with plurality of gripping features 138 along at least a portion of the exterior surface, and the actuator includes a plurality of gripping features 140. Features 138 and 140 are engageable with each other. In an example embodiment, features 138 are openings or indentations and features 140 are protrusions. The displacement of features 140 causes the displacement of the tube into and out of the interior space of the tank. In an example embodiment, the actuator includes rotatable gear 142 and radially outwardly disposed teeth for the gear form features 140. Rotation of gear 142 in direction R1 causes the displacement of the tube into the interior space of the tank, and rotation of gear 142 in direction R2, opposite R1, causes displacement of the tube out of the interior space of the tank.
In an example embodiment, actuator 114 includes motor 144 and transmission element 146. Motor 144 can be any motor known in the art. In an example embodiment, motor 144 is a pneumatic motor. In an example embodiment, gear 142 is part of element 146. That is, motor 144 drives element 146 including gear 142. In an example embodiment, apparatus 100 includes stabilizing element 148 with a plurality of rollers 150 for stabilizing the tube with respect to the actuator and the tank and facilitating transition of the tube. In an example embodiment, element 148 includes three rollers 150. Roller 150A keeps features 138 and 140 engaged and rollers 150B and 150C align the tube, for example, with respect to opening 117 of the tank. Displacement of tube 102 by actuator 114 is further described below. The configuration of the rollers is optimized to hold either straight portions 106 and 108 or curved portion 104 with a minimum of backlash.
As shown in
In the discussion that follows, tank 101 is aligned such that center line CL for the tank is aligned with horizontal direction H. Vertical direction V is orthogonal to the center line. “Down” is considered from top T of the tank to bottom B of the tank in the vertical direction, and “up” is considered from B to T in the vertical direction.
In an example embodiment, the tube is displaceable into an enclosed space, for example, as formed by tank 101 such that portion 108 is horizontal. In an example embodiment, the tube is displaceable into an enclosed space, for example, as formed by tank 101 such that portion 108 is parallel to center line CL for the tank. In an example embodiment, portion 106 is displaceable by actuator 114 to vary a vertical position of portion 108, while maintaining portion 108 in a horizontal orientation, for example, parallel to center line CL. That is, portion 108 is displaceable up and down while maintaining a horizontal orientation or a parallel orientation with respect to CL.
Thus, apparatus 100 is positionable to access a wide variety of enclosed spaces and walls forming these enclosed spaces.
As shown in
In
In
Returning to
In
Returning to
It should be understood that actuator 114 can displace portion 106 both up and down to locate portion 108 in other positions, not shown, between the top and bottom of the tank. For example, length L1 of portion 106 can be great enough such that the actuator could displace portion 106 so that portion 108 is located between the center line and bottom B and still parallel to the center line.
Distance 154 between gear 142 and roller 150C, and distance 156 between rollers 150A and 150B, is such to enable curved portion 104 to translate past the gear and rollers. In an example embodiment, distances 154 and 156 are selected according to a desired sweep for portion 104.
In an example embodiment, apparatus 100 includes adjustment assembly 160 with base plate 162, frame 164 to which actuator 114 and the rollers are attached, and screw-type tilt actuator 166. Actuator 166 controls angle AF between frame 164 and the base plate. In an example embodiment, angle AF is adjustable to be between about 60 and 90 degrees. Angle AF can be selected to level the base plate for attachment to the tank while apparatus 100 being positioned, for example, suspended from an overhead hoist above the opening. Angle AF determines the angle at which portions 106 and 108 pass through opening 117 and into enclosed space 116, which in turn impacts the orientation of portion 108 within the enclosed space. As an example, to begin inserting the tube into the enclosed space as shown in
Once portions 104 or 106 are engaged by actuator 114, angle AF can be decreased, for example as shown in
In an example embodiment, assembly 160 includes ring 168, rollers 170, and actuator 172 for rotating the frame with respect to the base plate. Actuator 172 can be any actuator known in the art. By rotating the frame while the tube is engaged with the frame, the tube can be rotated within the enclosed space, for example, such that assembly 130 displaces from facing end E of the tank to an opposite end of the tank. Rotation of assembly 160 would be implemented to sweep the internal surfaces of the tank shown in
The extent of the vertical adjustment for the position of portion 108 inside the tank is related to length L1 of portion 106, the configuration of curved portion 104, and angles AF and AA. That is, actuator 114 operates on portion 106 between end point 174 of portion 106 (at the juncture with portion 104) and end 110 of the tube to adjust a horizontal position of portion 108. Tube 102 can be fabricated to have any length L1, configuration of portion 104, or angle AA. For example, length L1, configuration of portion 104, or angle AA can be determined according to the dimensions of the tank, for example, diameter O1 of the tank, and the tube can be fabricated accordingly.
In an example embodiment, tube 102 is a single monolithic piece. In an example embodiment (not shown), tube 102 is modular, for example, portions 104, 106, and 108 are separate pieces joined together to form tube 102. Thus, portions 106 and 108 having various lengths L1 and L2, respectively, and portions 104 having different configurations and angles AA can be combined to provide a wide range of configurations for tube 102.
A horizontal position attainable for end 112 and ultimately, for nozzle assembly 130, inside the tank is related to length L2 of portion 108, the configuration of curved portion 104, angles AF and AA, and extended length L3 of the telescoping mechanism. Advantageously, the shape of tube 102 and the use of actuator 114 and assembly 148 enable an optimization of length L2. As an example, a circular opening 117 for the tank has a certain diameter. Advantageously, length L2 can be considerably greater than the diameter for the opening and still pass through the opening since, as shown above, portion 108 is displaced vertically through the opening and then via the engagement of curved portion 104 with the actuator, portion 108 is positioned in a desired position within the tank. That is, portion 108 is inserted through the opening and then swung around into position, for example, to clean the tank. In general, the longest cross-sectional dimension of tube 102, for example, a diagonal, is much less than the diameter of the opening.
Without curved portion 104 and the sequence shown in
The maximum length L3 usable for a particular tank is related to distance DT between opening 117 and the bottom of the structure, across from the opening, forming the enclosed space. For example, as portion 108 is displaced down through opening 117, as shown in
Since the length of the telescoping mechanism is affected by length L2 (the mechanism must fit within portion 108), optimizing length L2 as noted above, results in optimization of the space available for housing the telescoping mechanism in the retracted mode. That is, increasing length L2 can enable an increase in length L3. The number of nested segments in the telescoping mechanism, which is at least partly determined by the space available in passageway 124 in portion 108, also affects the maximum extent for L3. For example, the cross-section of passageway 124 can be increased or decreased to increase or decrease the number of nested segments that can fit inside portion 108, thus increasing or decreasing length L3.
The configuration of apparatus 100, specifically, the relatively gradual sweep of portion 104, advantageously enables the use of a stiffer, more durable hose, having a higher pressure rating and flow capacity. For example, as noted above, a hose used with swiveling, folding, or scissors arrangements must be very flexible to enable being folded, bent, or flexed, which limits the stiffness, durability, bore size, and pressure rating of the hose and which contribute to failure of the hose. In contrast, flexing of hose 126 is substantially limited to passing through the relatively large bend radius of portion 104, greatly reducing bending and flexing of the hose, for example, as compared to the folding or scissoring configurations noted supra.
Specifically, the cross-sectional area of the tube and telescoping mechanism is typically less, and often significantly less than the area of opening 117. Therefore, there is a considerable degree of freedom with respect to where assembly 160 is placed with respect to the opening, and subsequently, the position of the tube as the tube passes through the opening into space 116. As shown in
Thus, it is seen that the objects of the invention are efficiently obtained, although changes and modifications to the invention should be readily apparent to those having ordinary skill in the art, without departing from the spirit or scope of the invention as claimed. Although the invention is described by reference to a specific preferred embodiment, it is clear that variations can be made without departing from the scope or spirit of the invention as claimed.
It will be appreciated that various of the above-disclosed and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
This application is a division of U.S. patent application Ser. No. 13/078,634, filed Apr. 1, 2011, entitled APPARATUS FOR INSERTION IN A TANK AND METHOD THEREOF, the content of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4132041 | Van den Broek | Jan 1979 | A |
4163455 | Hebert et al. | Aug 1979 | A |
4172492 | Abell et al. | Oct 1979 | A |
4201597 | Armstrong et al. | May 1980 | A |
4220170 | Hebert et al. | Sep 1980 | A |
4574825 | Haug | Mar 1986 | A |
4630741 | Stevens | Dec 1986 | A |
4691723 | Mierswa et al. | Sep 1987 | A |
4856545 | Krajicek et al. | Aug 1989 | A |
4941493 | Wieringa | Jul 1990 | A |
5107879 | Harvey | Apr 1992 | A |
5194217 | St. Louis et al. | Mar 1993 | A |
5352298 | Moulder | Oct 1994 | A |
5392798 | Hirose et al. | Feb 1995 | A |
5518553 | Moulder | May 1996 | A |
5720310 | Moulder | Feb 1998 | A |
5956077 | Qureshi et al. | Sep 1999 | A |
6021793 | Moulder | Feb 2000 | A |
6105593 | MacLaren et al. | Aug 2000 | A |
6192905 | Mincy et al. | Feb 2001 | B1 |
6213134 | Pike | Apr 2001 | B1 |
6837642 | Lin | Jan 2005 | B1 |
7044144 | Hebert | May 2006 | B2 |
7261109 | Luke et al. | Aug 2007 | B2 |
20050183745 | Glicksman | Aug 2005 | A1 |
Number | Date | Country |
---|---|---|
511564 | Aug 1939 | GB |
63-184593 | Jul 1988 | JP |
01-285596 | Nov 1989 | JP |
WO03007472 | Dec 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20150000760 A1 | Jan 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13078634 | Apr 2011 | US |
Child | 14485092 | US |