The present invention relates to an apparatus for jetting compressed air and a method of manufacturing the apparatus, and more particularly, to an apparatus for jetting compressed air, which amplifies and discharges received compressed air, and a method of manufacturing the apparatus.
Various apparatuses for jetting compressed air using the Coanda effect have been disclosed. In such apparatuses, an air intake pipe and an amplifying unit are generally combined to each other. The air content and speed of the compressed air flowed in through the air intake pipe increase as the compressed air passes through the amplifying unit, and the compressed air may be discharged in such an amplified state.
Since a cross section of the air intake pipe is circular, a surface of the air intake pipe combined to the amplifying unit is curved. However, a surface of the amplifying unit combined to the air intake pipe is flat. In other words, since the surfaces of the air intake pipe and the amplifying unit have different shapes, it is difficult to uniformly contact and connect the surfaces.
Accordingly, the contact between the surface of the air intake pipe and the surface of the amplifying unit becomes uneven. Such uneven contact causes the compressed air to be unevenly jetted and the amount and speed of the compressed air discharged through the amplifying unit to be decreased, thereby deteriorating jetting efficiency of the compressed air. Moreover, due to the difference between the shapes of surfaces, there is a limit to combining the surfaces and filling a space between the surface via welding or the like, and a gap may still exist after the combining.
The present invention provides an apparatus for jetting compressed air, where jetting efficiency of the compressed air is increased since an air intake pipe and amplifying unit are uniformly combined to each other without a gap, and a method of manufacturing the apparatus.
According to an aspect of the present invention, there is provided an apparatus for jetting compressed air, the apparatus including: an air intake pipe having a discharge hole, through which compressed air received from outside the apparatus is discharged, formed on an outer surface having a curved or multilateral shape; and an amplifying unit having a contact surface combining to the outer surface by having a curved or multilateral shape corresponding to the outer surface, and including an inlet portion wherein an inlet hole corresponding to the discharge hole is formed on the contact surface, and an outlet portion for amplifying and discharging the compressed air received through the inlet hole on the contact surface.
According to another aspect of the present invention, there is provided a method of manufacturing an apparatus for jetting compressed air, the method including: preparing an air intake pipe having a discharge hole, from which compressed air received from outside the apparatus is discharged, on a outer surface having a curved or multilateral shape; preparing an amplifying unit including an inlet portion wherein an inlet hole corresponding to the discharge hole is formed on a contact surface, and an outlet portion for amplifying and discharging the compressed air received through the inlet hole on the contact surface; molding the contact surface of the inlet portion to have a curved or multilateral shape corresponding to the outer surface of the air intake pipe so that the contact surface of the inlet portion contacts and is combined to the outer surface of the air intake pipe; and integrally forming the outer surface and the contact surface as one body by sealing and binding the outer surface and the contact surface without any gap via welding, bonding, screwing, or pressing.
According to the apparatus for jetting compressed air, and the method of manufacturing the apparatus of the present invention, the contact surface of the amplifying unit and the outer surface of the air intake pipe can be closely and uniformly bound by forming the contact surface to have a curved or multilateral shape to correspond to the outer surface of the air intake pipe. Accordingly, the compressed air flowed into the amplifying unit through the air intake pipe can uniformly flow on the contact surface and the compressed air can be prevented from being lost to outside the apparatus. Thus, the jetting efficiency of the compressed air discharged through the amplifying unit can be increased while instantly discharging a large amount of air by discharging the compressed air with the surrounding air.
Referring to
Meanwhile, the amplifying unit 120 is where the compressed air is flowed in through the discharge hole 111 of the air intake pipe 110, and the flowed in compressed air is amplified and discharged to outside the apparatus 100. The amplifying unit 120 includes an inlet portion 121 and an outlet portion 126.
First, the inlet portion 121 has a contact surface 122 contacting the outer surface 112 of the air intake pipe 110. In other words, referring to
As described above, since the outer surface 112 having the convex shape and the contact surface 122 having the concave shape may closely and uniformly contact each other, a flow of the compressed air flowed into the amplifying unit 120 through the air intake pipe 110 may be constant and the compressed air may be prevented from being lost to outside the apparatus 100, and thus straightness of the compressed air with respect to a flowing direction may be improved. In other words, such uniform contact increases jetting efficiency of the compressed air discharged through the amplifying unit 120 later. Alternatively, if contact between the outer surface 112 and the contact surface 122 is not uniform, an amount and speed of the compressed air discharged through the amplifying unit 120 later are decreased, and thus the jetting efficiency of the compressed air may be deteriorated.
Meanwhile, in order to increase the jetting efficiency of the compressed air, the outer surface 112 of the air intake pipe 110 and the contact surface 122 of the inlet portion 121 may be integrally sealed and bound as one body via welding, bonding, screwing, or pressing so that there is no gap therebetween, i.e., so that there is no gap throughout the sealed and bound regions. However, the outer surface 112 and the contact surface 122 may be sealed and bound via a method other than those described above. If the outer surface 112 of the air intake pipe 110 and the contact surface 122 of the inlet portion 121 are not sealed properly, principles of the Coanda effect may not be effectively used, and thus it is clear that Coanda effects may be remarkably reduced if the sealing is perfectly performed.
Referring to
The outlet portion 126 included in the amplifying unit 120 is a portion where the compressed air flowed in through the inlet hole 123 of the contact surface 122 is amplified and discharged. Such amplifying and discharging is performed by using the Coanda effect, and will be described later in detail.
Referring to
In other words, the compressed air flowed into the two inlet portion 121 through the two air intake pipes 110 may be amplified and discharged by one outlet portion 126. When the numbers of air intake pipes 110 and inlet portions 121 are each two, more compressed air may be simultaneously flowed in than when the numbers are each one, and thus more compressed air may be amplified and discharged at once at a high speed.
Here, two air supply portions (not shown) for supplying air to the two air intake pipes 110 may be disposed according to the number of air intake pipes 110, so that the air intake pipes 110 individually receive the air from the air supply portions. Alternatively, one air supply portion may be branched and connected to the two air intake pipes 110.
Referring to
Here, the amplifying unit 120 includes the cover portion 129 for covering the top of the amplifying unit 120. Referring to
Referring to
Here, referring to
A method of manufacturing the apparatus 100 will now be simply described with reference to
Next, the contact surface 122 of the inlet portion 121 is molded to have a curved or multilateral shape corresponding to the outer surface 112 of the air intake pipe 110 so that the contact surface 122 of the inlet portion 121 contacts and is combined to the outer surface 112 of the air intake pipe 110. For example, when the air intake pipe 110 having a circular shape has a convex surface, the contact surface 122 is flat before being molded, but may be molded to a concave surface via a separate process so that the outer surface 112 and the contact surface 122 uniformly contact each other. Here, any well known method may be used to mold the contact surface 122. Then, the outer surface 112 and the contact surface 122 having the corresponding shapes are integrally tightly sealed and bound without any gap via welding, bonding, screwing, or pressing. Then, the combinable wing portion 130 and the air intake pipe 110 are combined via bolting, welding, or clamping.
Each component of the amplifying unit 120 described above may be manufactured via aluminum casting and mechanical processing. According to the mechanical processing, the compressed air may be uniformly jetted, and the circumferential direction of the cover portion 129 may be uniformly sealed later.
While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention as defined by the following claims.
According to the present invention, since the compressed air is discharged through the amplifying unit along with the surrounding air at the same time, the apparatus 100 may be used to effectively eliminate pollutants adhered to a filter.
Number | Date | Country | Kind |
---|---|---|---|
10-2009-0018521 | Mar 2009 | KR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/KR2010/001282 | 3/2/2010 | WO | 00 | 9/29/2011 |