Apparatus for loading fibers in a fiber suspension with calcium carbonate

Abstract
An apparatus for loading fibers in a fiber suspension with calcium carbonate has a housing with an inlet and an accept outlet. A rotatable distribution member is positioned within the housing. A rotor and stator assembly is positioned within the housing radially outside of the distribution member. A toothed ring is interposed between the distribution rotor and the rotor and stator assembly. The toothed ring and the rotor and stator assembly define a gas ring therebetween. A reactant gas supply is fluidly coupled with the gas ring. A method for loading fibers in a fiber suspension with calcium carbonate can be practiced with the apparatus, The method controls various factors and provides low shear treatment of the suspension to promote selective crystal formation.
Description


BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention


[0003] The present invention relates to an apparatus for loading fibers in a fiber suspension with a chemical compound, and, more particularly, to an apparatus for loading fibers in a fiber suspension with calcium carbonate.


[0004] 2. Description of the Related Art


[0005] A paper-making machine receives a fiber suspension including a plurality of fibers, such as wood fibers, which are suspended within an aqueous solution. The water is drained and the fiber suspension, of more than 2,200 cu. ft. up to 132,000 cu. ft. per day for today's paper making process, which is dried in the paper-making machine to increase the fiber content and thereby produce a fiber web as an end product.


[0006] The fiber web produced by the paper-making machine typically includes organic wood fibers and inorganic fillers. A known inorganic filler is calcium carbonate, which may be added directly to the fiber suspension (direct loaded calcium carbonate). It is also known to chemically load the fibers within a fiber suspension with calcium carbonate in the lumen and walls of the individual fibers (fiber loaded calcium carbonate). The fiber loaded calcium carbonate increases the strength of the paper compared with a direct loaded calcium carbonate (adding calcium carbonate directly to the fiber suspension) at the same loading (filler) level. This yields an economic advantage in that the filler level of the paper is increased by replacing the more expensive fiber source (wood fibers) with calcium carbonate. The finished paper web has higher strength properties due to the increased filler levels of the calcium carbonate. In contrast, the strength properties of a finished web using direct loaded calcium carbonate is less.


[0007] For example, U.S. Pat. No. 5,223,090 (Klungness, et al.) discloses a method for chemically loading a fiber suspension with calcium carbonate. In one described method, calcium oxide or calcium hydroxide is placed within a refiner unit and carbon dioxide is injected into the refiner unit at a specified pressure. The fiber suspension is maintained within the refiner for a predetermined period of time to ensure that a proper chemical reaction and thus proper chemical loading of the fiber suspension occurs. In another described method, a fiber suspension with calcium oxide or calcium hydroxide is introduced into a 20 quart food mixer and carbon dioxide gas is injected into the mixer at a specified pressure. Using either the refiner or the food mixer, both methods utilize a batch processing method for processing only a small amount of the fiber suspension at a time. Because of the large amount of fiber suspension which is required at the wet end of a paper-making machine, a batch process requires that the chemically loaded fiber suspension be transferred to another holding tank for ultimate use in a paper-making machine.


[0008] What is needed in the art is an apparatus for chemically loading a fiber suspension for use in a paper-making machine with an adequate output of a chemically loaded fiber suspension which allows commercialization of such a chemical loading process.



SUMMARY OF THE INVENTION

[0009] The present invention provides an apparatus and method for continuously loading fibers in a fiber suspension with calcium carbonate using a distribution cross, a toothed ring, a gas ring, and a rotor and stator assembly. The toothed ring controls the flow of the pulp and lime mixture and/or pulp lime mixture through the gas ring, where a chemical reaction forming calcium carbonate occurs. The rotor and stator assembly distributes the calcium carbonate within the fiber suspension.


[0010] The invention comprises, in one form thereof, an apparatus for loading fibers in a fiber suspension with calcium carbonate. The apparatus includes a housing having an inlet and an accept outlet; a rotatable distribution member positioned within the housing; and a rotor and stator assembly positioned within the housing radially outside of the distribution member. The rotor and stator define a gap there between of between approximately 3 mm and 75 mm. A toothed ring is interposed between the distribution member and the rotor and stator assembly. The toothed ring and the rotor and stator assembly define a gas ring therebetween. A reactant gas supply is fluidly coupled with the gas ring.


[0011] The invention comprises, in another form thereof a method for loading fibers in a fiber suspension with calcium carbonate. The method includes steps of providing the fiber suspension with a fiber consistency of between about 2.5% and 60%; mixing calcium hydroxide and/or calcium oxide with the fiber suspension; mixing reactant gas with the fiber suspension, the reactant gas including carbon dioxide, ozone and/or steam; providing a rotor and stator assembling including a rotor and a stator defining a gap therebetween of between about 3 mm and 75 mm.; passing the fiber suspension through the gap together with the at least one of calcium hydroxide and calcium oxide and the reactant gas; and rotating the rotor during the passing step and controlling the rotational speed of the rotor to provide a tangential velocity of between about 20 and 100 meters per second.


[0012] The invention comprises, in still another form thereof a method for loading fibers with calcium carbonate, with steps of providing a high consistency suspension of the fibers; mixing with the high consistency suspension at least one of calcium hydroxide and calcium oxide and a reactant gas including at least one of carbon dioxide, ozone and steam; passing the mixture through a gap between a rotor and stator while rotating the rotor; and controlling the gap and rotational speed of the rotor to provide low shear treatment of the fibers.


[0013] An advantage of the present invention is that the apparatus provides for fiber loading of the fiber suspension in a continuous manner, thereby providing output quantities of loaded fiber suspension sufficient for commercial use in a paper-making machine Another advantage is that the distribution member as well as the rotor are driven by a common input shaft.


[0014] Yet another advantage is that the toothed ring may be configured to control the flow rate of the pulp and lime mixture and/or pulp lime mixture into the gas ring.


[0015] A further advantage is that the rotor and stator assembly adequately distributes the calcium carbonate crystals within the fiber suspension.


[0016] A still further advantage is that variables such as flow rate, temperature and pressure which affect the fiber loading process can be accommodated and varied with the fiber loading apparatus of the present invention.


[0017] Still another advantage is providing a process with low shear treatment of fibers, to maintain fiber fluffing and optimize crystal growth in the fibers.







BRIEF DESCRIPTION OF THE DRAWINGS

[0018] The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:


[0019]
FIG. 1 is a sectional view of an embodiment of a fiber loading apparatus of the present invention;


[0020]
FIG. 2 is a sectional view of the fiber loading apparatus shown in FIG. 1, taken along line 2-2; and


[0021]
FIG. 3 is a side view of the fiber loading apparatus shown in FIGS. 1 and 2, incorporated within a fiber loading system.







[0022] Corresponding reference characters indicate corresponding parts throughout the several views. The exemplification set out herein illustrates one preferred embodiment of the invention, in one form, and such exemplification is not to be construed as limiting the scope of the invention in any manner.


DETAILED DESCRIPTION OF THE INVENTION

[0023] Referring now to the drawings, and more particularly to FIGS. 1 and 2, there is shown an embodiment of a fiber loading apparatus 10 of the present invention for loading fibers in a fiber suspension with calcium carbonate. Fiber loading apparatus 10 generally includes a housing 12, rotatable distribution member 14, rotor and stator assembly 16, toothed ring 18, reactant gas supply 20 and input shaft 22.


[0024] Housing 12 includes two annular shaped walls 24 and 26, an inlet 28 and an accept outlet 30. Inlet 28 is in the form of an inlet pipe which receives a pulp and lime mixture, as indicated by arrow 32. The lime may be in the form of calcium hydroxide and/or calcium oxide, as will be described in more detail hereinafter. Inlet pipe 28 is coupled with an opening formed in annular wall 24 to provide the pulp and lime mixture to the interior of housing 12. Accept outlet 30 is coupled with and extends from peripheral wall 34 extending between annular walls 24 and 26.


[0025] Rotatable distribution member 14 is in the form of a distribution cross in the embodiment shown, having a plurality (namely four) radially extending paddles which distribute the pulp and lime mixture and/or pulp lime mixture received from inlet pipe 28 in a radially outward direction. Distribution cross 14 is concentrically coupled with input shaft 22, which in turn is rotatably driven via an electric motor 36 (FIG. 3). Distribution cross 14 having at least 2 to 8 paddles, preferably 4, and input shaft 22 thus each have a common axis of rotation 38. Distribution cross 14 is also positioned generally concentric with inlet pipe 28 so as to evenly distribute the pulp and lime mixture in a radially outward direction within housing 12.


[0026] Rotor and stator assembly 16 includes a rotor 40 and a stator 42. Stator 42 is attached to and carried by annular wall 24. Rotor 40 is positioned in opposed relationship relative to stator 42 to define a gap 44 therebetween. The distance of gap 44 between rotor 40 and stator 42 is between approximately 0.5 and 75 mm, preferably between approximately 3 and 22 mm and more preferably between approximately 5 and 18 mm. Each of rotor 40 and stator 42 have an outside diameter of between 0.5 and 2 meters, resulting in a tangential velocity at the outside diameter of rotor 40 of between 20 and 100 meters per second, preferably between 40 and 60 meters per second, at the rotational speed of input shaft 22. Rotor 40 and stator 42 each include a plurality of teeth, in known manner. The gap distance between rotor 40 and stator 42, as well as the particular configuration of the teeth design of rotor 40 and stator 42, may vary, depending upon the particular application; however, low shear treatment is provided.


[0027] Rotor 40 and input shaft 22 are coupled together via disk 49. Rotor 40 is coupled with disk 49 such that rotor 40 is generally concentric about axis of rotation 38.


[0028] Toothed ring 18 is attached to annular wall 24 and extends towards annular wall 26 in a direction generally parallel to axis of rotation 38. Toothed ring 18 is interposed between distribution member 14 and rotor and stator assembly 16. Toothed ring 18 includes a plurality of teeth 46 (shown in cross section in FIG. 2) which are annularly spaced relative to each other. Teeth 46 may have a generally rectangular cross-sectional shape as shown or may be differently shaped, depending upon the particular application. The size of teeth 46, as well as the spacing between teeth 46, is selected to control the rate of flow of the fiber suspension in a radially outward direction from distribution member 14, depending upon operating conditions such as pressure, etc.


[0029] Toothed ring 18 and rotor and stator assembly 16 define a gas ring 48 therebetween. Gas ring 48 is annular shaped and extends between toothed ring 18 and rotor and stator assembly 16. The size of gas ring 48, defined primarily in terms of the radial expanse of gas ring 48, is pertinent to the reaction time of the chemical reaction which occurs within gas ring 48, as will be described hereinafter.


[0030] Reactant gas supply 20 is fluidly coupled with gas ring 48 at a plurality of locations. Gas supply 20 supplies a reactant gas, such as carbon dioxide, ozone and/or steam to gas ring 48. A control valve 50 is coupled with reactant gas supply 20 and controls a pressure and/or flow rate of the reactant gas which flows into gas ring 48. In the embodiment shown, reactant gas supply 20 is in the form of a carbon dioxide gas supply.


[0031] Dilution water inlet 52 is coupled with peripheral wall 34. Dilution water inlet 52 is coupled with a source of dilution water and is used to dilute the fiber suspension to a desired consistency prior to discharge from accept outlet 30.


[0032] During use, a fiber suspension in the form of a pulp and lime mixture and/or pulp lime mixture is transported through inlet pipe 28 to the interior of housing 12. The fiber suspension has a fiber consistency of between approximately 2.5% and 60% at inlet pipe 28, and preferably has a consistency of between approximately 15% and 35% at inlet pipe 28. The lime may include calcium hydroxide and/or calcium oxide, and preferably includes calcium hydroxide at a concentration of between 0.1% and 60% dry weight before being mixed with the fiber suspension, more preferably has a concentration of between 2% and 40% dry weight before being mixed with the fiber suspension.


[0033] Distribution cross 15 distributes the fiber suspension in a radially outward direction toward toothed ring 18. Toothed ring regulates the flow of the fiber suspension into gas ring 48.


[0034] A reactant gas, such as carbon dioxide, ozone and/or steam, preferably carbon dioxide, is injected into gas ring 48 from reactant gas supply 20. The carbon dioxide is injected into gas ring 48 at a temperature between approximately −15° C. and 120° C., preferably at a temperature between approximately 20° C. and 90° C. Moreover, the carbon dioxide is injected into gas ring 48 at a pressure of between approximately 0.1 and 6 bar, preferably between approximately 0.5 and 3 bar. The fiber suspension has a pH within gas ring 48 of between approximately 6.0 and 10 pH, preferably between approximately 7.0 and 8.5 pH. The temperature and pressure of the carbon dioxide gas, the pH of the fiber suspension, and reaction time within gas ring 48, primarily determine the type of calcium carbonate crystals which are formed as a result of a chemical reaction between the carbon dioxide and the lime in the fiber suspension. The calcium carbonate crystals have a rombohedral, scalenohedral or sphere shape, depending upon these operating conditions. The calcium carbonate crystals are loaded into the lumen as well as on the walls of the individual fibers within the fiber suspension. The formed calcium carbonate crystals have a size distribution of between approximately 0.05 and 5 micrometers, preferably of between 0.3 and 2.5 micrometers.


[0035] The loaded fiber suspension then flows from gas ring 48 through rotor and stator assembly 16. More particularly, the fiber suspension flows through gap 44, as well as the spaces between adjacent teeth 46 of rotor 40 and stator 42. Rotor and stator assembly 16 distributes the calcium carbonate crystals in the fiber suspension. The fiber suspension has a pulp consistency of between approximately 0.1% and 50% when passing through rotor and stator assembly 16, and preferably has a pulp consistency of between approximately 2.5% and 35%. The fiber suspension, loaded with calcium carbonate crystals on and in individual fibers within the fiber suspension, is discharged through accept outlet 30 to atmospheric pressure for further processing, such as to a machine or chest.


[0036] While this invention has been described as having a preferred design, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.


Claims
  • 1. An apparatus for loading fibers in a fiber suspension with calcium carbonate, comprising: a housing having an inlet and an accept outlet; a rotatable distribution member positioned within said housing; a rotor and stator assembly positioned within said housing radially outside of said distribution member, including a rotor and stator in opposed relationship defining a gap there between, said gap being between approximately 3 mm and 75 mm; a toothed ring interposed between said distribution member and said rotor and stator assembly, said toothed ring and said rotor and stator assembly defining a gas ring therebetween; and a reactant gas supply fluidly coupled with said gas ring.
  • 2. The fiber loading apparatus of claim 1, said gap being between approximately 3 mm and 20 mm.
  • 3. The fiber loading apparatus of claim 2, said gap being between approximately 3 mm and 18 mm.
  • 4. The fiber loading apparatus of claim 1, said gap being between approximately 5 mm and 18 mm.
  • 5. A method for loading fibers in a fiber suspension with calcium carbonate, said method comprising steps of: providing the fiber suspension with a fiber consistency of between about 2.5% and 60%; mixing with the fiber suspension at least one of calcium hydroxide and calcium oxide; mixing reactant gas with the fiber suspension, the reactant gas including at least one of carbon dioxide, ozone and steam; providing a rotor and stator assembling including a rotor and a stator defining a gap therebetween of between about 3 mm and 75 mm.; passing the fiber suspension through the gap together with the at least one of calcium hydroxide and calcium oxide and the at least one of carbon dioxide, ozone and steam; and rotating the rotor during said passing step and controlling the rotational speed of the rotor to provide a tangential velocity of between about 20 and 100 meters per second.
  • 6. The method of claim 5, including controlling the rotational speed of the rotor to provide a tangential velocity of between about 40 and 60 meters per second.
  • 7. The method of claim 5, including controlling the gap between the rotor and stator to between approximately 3 mm and 20 mm.
  • 8. The method of claim 7, including controlling the rotational speed of the rotor to provide a tangential velocity of between about 40 and 60 meters per second.
  • 9. The method of claim 5 including controlling the gap between the rotor and stator to between approximately 5 mm and 18 mm.
  • 10. The method of claim 9, including controlling the rotational speed of the rotor to provide a tangential velocity of between about 40 and 60 meters per second.
  • 11. The method of claim 5, including controlling the fiber suspension to a fiber consistency of between about 15% and 35%.
  • 12. The method of claim 5, including mixing calcium hydroxide with the fiber suspension, and controlling the calcium hydroxide to a concentration of between about 0.1% and 60% dry weight before said step of mixing calcium hydroxide with the fiber suspension.
  • 13. The method of claim 5, including mixing calcium hydroxide with the fiber suspension, and controlling the calcium hydroxide to a concentration of between about 2% and 40% dry weight before said step of mixing calcium hydroxide with the fiber suspension.
  • 14. The method of claim 5, including controlling the fiber suspension to between about 6.0 and 10.0 pH before said step of mixing reactant gas with the fiber suspension.
  • 15. The method of claim 5, including providing carbon dioxide as the reactant gas, and controlling the temperature of the carbon dioxide to between about 15° C. and 120° C.
  • 16. The method of claim 15, including controlling the pressure of the carbon dioxide to between about 0.1 and 6 bar.
  • 17. The method of claim 5, including controlling the fiber suspension to a fiber consistency of between about 0.1% and 50% in the gap between the rotor and stator.
  • 18. The method of claim 17, including controlling the rotational speed of the rotor to provide a tangential velocity of between about 40 and 60 meters per second.
  • 19. The method of claim 17, including controlling the gap between the rotor and stator to between approximately 3 mm and 20 mm.
  • 20. The method of claim 19, including controlling the rotational speed of the rotor to provide a tangential velocity of between about 40 and 60 meters per second.
  • 21. The method of claim 5, including controlling the fiber suspension to a fiber consistency of between about 2.5% and 35% in the gap between the rotor and stator.
  • 22. A method for loading fibers with calcium carbonate, comprising steps of: providing a high consistency suspension of the fibers; mixing with the high consistency suspension at least one of calcium hydroxide and calcium oxide and a reactant gas including at least one of carbon dioxide, ozone and steam; passing the mixture through a gap between a rotor and stator while rotating the rotor; and controlling the gap and rotational speed of the rotor to provide low shear treatment of the fibers.
  • 23. The method of claim 22, including selectively determining a crystal type of the calcium carbonate formed by controlling at least one of a temperature and pressure of the reactant gas, a pH of the suspension, and an exposure time of the suspension to the reactant gas.
CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This is a continuation of U.S. patent application Ser. No. 09/902,975, entitled “APPARATUS FOR LOADING FIBERS IN A FIBER SUSPENSION WITH CALCIUM CARBONATE”, filed Jul. 11, 2002.

Continuations (1)
Number Date Country
Parent 09902975 Jul 2001 US
Child 10712599 Nov 2003 US