The invention relates generally to the field of plasma physics, and, in particular, to methods and apparati for confining plasma. Plasma confinement is particularly of interest for the purpose of enabling a nuclear fusion reaction.
Fusion is the process by which two light nuclei combine to form a heavier one. The fusion process releases a tremendous amount of energy in the form of fast moving particles. Because atomic nuclei are positively charged—due to the protons contained therein—there is a repulsive electrostatic, or Coulomb, force between them. For two nuclei to fuse, this repulsive barrier must be overcome, which occurs when two nuclei are brought close enough together where the short-range nuclear forces become strong enough to overcome the Coulomb force and fuse the nuclei. The energy necessary for the nuclei to overcome the Coulomb barrier is provided by their thermal energies, which must be very high. For example, the fusion rate can be appreciable if the temperature is at least of the order of 104 eV—corresponding roughly to 100 million degrees Kelvin. The rate of a fusion reaction is a function of the temperature, and it is characterized by a quantity called reactivity. The reactivity of a D-T reaction, for example, has a broad peak between 30 keV and 100 keV.
Typical fusion reactions include:
D+D→He3(0.8MeV)+n(2.5MeV),
D+T→α(3.6MeV)+n(14.1MeV),
D+He3→α(3.7MeV)+p(14.7MeV), and
p+B11→3α(8.7MeV),
where D indicates deuterium, T indicates tritium, a indicates a helium nucleus, n indicates a neutron, p indicates a proton, He indicates helium, and B11 indicates Boron-11. The numbers in parentheses in each equation indicate the kinetic energy of the fusion products.
The first two reactions listed above—the D-D and D-T reactions—are neutronic, which means that most of the energy of their fusion products is carried by fast neutrons. The disadvantages of neutronic reactions are that (1) the flux of fast neutrons creates many problems, including structural damage of the reactor walls and high levels of radioactivity for most construction materials; and (2) the energy of fast neutrons is collected by converting their thermal energy to electric energy, which is very inefficient (less than 30%). The advantages of neutronic reactions are that (1) their reactivity peaks at a relatively low temperature; and (2) their losses due to radiation are relatively low because the atomic numbers of deuterium and tritium are 1.
The reactants in the other two equations—D-He3 and p-B11—are called advanced fuels. Instead of producing fast neutrons, as in the neutronic reactions, their fusion products are charged particles. One advantage of the advanced fuels is that they create much fewer neutrons and therefore suffer less from the disadvantages associated with them. In the case of D-He3, some fast neutrons are produced by secondary reactions, but these neutrons account for only about 10 percent of the energy of the fusion products. The p-B11 reaction is free of fast neutrons, although it does produce some slow neutrons that result from secondary reactions but create much fewer problems. Another advantage of the advanced fuels is that the energy of their fusion products can be collected with a high efficiency, up to 90 percent. In a direct energy conversion process, their charged fusion products can be slowed down and their kinetic energy converted directly to electricity.
The advanced fuels have disadvantages, too. For example, the atomic numbers of the advanced fuels are higher (2 for He3 and 5 for B11). Therefore, their radiation losses are greater than in the neutronic reactions. Also, it is much more difficult to cause the advanced fuels to fuse. Their peak reactivities occur at much higher temperatures and do not reach as high as the reactivity for D-T. Causing a fusion reaction with the advanced fuels thus requires that they be brought to a higher energy state where their reactivity is significant. Accordingly, the advanced fuels must be contained for a longer time period wherein they can be brought to appropriate fusion conditions.
The containment time for a plasma is Δt=r2/D, where r is a minimum plasma dimension and D is a diffusion coefficient. The classical value of the diffusion coefficient is Dc=αi2/τie, where αi is the ion gyroradius and τie is the ion-electron collision time. Diffusion according to the classical diffusion coefficient is called classical transport. The Bohm diffusion coefficient, attributed to short-wavelength instabilities, is DB=( 1/16)αi2Ωi, where Ωi is the ion gyrofrequency. Diffusion according to this relationship is called anomalous transport. For fusion conditions, DB/Dc=( 1/16)Ωiτie≅108, anomalous transport results in a much shorter containment time than does classical transport. This relation determines how large a plasma must be in a fusion reactor, by the requirement that the containment time for a given amount of plasma must be longer than the time for the plasma to have a nuclear fusion reaction. Therefore, classical transport condition is more desirable in a fusion reactor, allowing for smaller initial plasmas.
In early experiments with toroidal confinement of plasma, a containment time of Δt≅r2/DB was observed. Progress in the last 40 years has increased the containment time to Δt≅1000 r2/DB. One existing fusion reactor concept is the Tokamak. The magnetic field of a Tokamak 68 and a typical particle orbit 66 are illustrated in
Because of anomalous transport, the minimum dimension of the plasma must be at least 2.8 meters. Due to this dimension, the ITER was created 30 meters high and 30 meters in diameter. This is the smallest D-T Tokamak-type reactor that is feasible. For advanced fuels, such as D-Hc3 and p-B11, the Tokamak-type reactor would have to be much larger because the time for a fuel ion to have a nuclear reaction is much longer. A Tokamak reactor using D-T fuel has the additional problem that most of the energy of the fusion products energy is carried by 14 MeV neutrons, which cause radiation damage and induce reactivity in almost all construction materials due to the neutron flux. In addition, the conversion of their energy into electricity must be by a thermal process, which is not more than 30% efficient.
Another proposed reactor configuration is a colliding beam reactor. In a colliding beam reactor, a background plasma is bombarded by beams of ions. The beams comprise ions with an energy that is much larger than the thermal plasma. Producing useful fusion reactions in this type of reactor has been infeasible because the background plasma slows down the ion beams. Various proposals have been made to reduce this problem and maximize the number of nuclear reactions.
For example, U.S. Pat. No. 4,065,351 to Jassby et al. discloses a method of producing counterstreaming colliding beams of deuterons and tritons in a toroidal confinement system. In U.S. Pat. No. 4,057,462 to Jassby et al., electromagnetic energy is injected to counteract the effects of bulk equilibrium plasma drag on one of the ion species. The toroidal confinement system is identified as a Tokamak. In U.S. Pat. No. 4,894,199 to Rostoker, beams of deuterium and tritium are injected and trapped with the same average velocity in a Tokamak, mirror, or field reversed configuration. There is a low density cool background plasma for the sole purpose of trapping the beams. The beams react because they have a high temperature, and slowing down is mainly caused by electrons that accompany the injected ions. The electrons are heated by the ions in which case the slowing down is minimal.
In none of these devices, however, does an equilibrium electric field play any part. Further, there is no attempt to reduce, or even consider, anomalous transport.
Other patents consider electrostatic confinement of ions and, in some cases, magnetic confinement of electrons. These include U.S. Pat. No. 3,258,402 to Farnsworth and U.S. Pat. No. 3,386,883 to Farnsworth, which disclose electrostatic confinement of ions and inertial confinement of electrons; U.S. Pat. No. 3,530,036 to Hirsch et al. and U.S. Pat. No. 3,530,497 to Hirsch et al. are similar to Farnsworth; U.S. Pat. No. 4,233,537 to Limpaecher, which discloses electrostatic confinement of ions and magnetic confinement of electrons with multipole cusp reflecting walls; and U.S. Pat. No. 4,826,646 to Bussard, which is similar to Limpaecher and involves point cusps. None of these patents consider electrostatic confinement of electrons and magnetic confinement of ions. Although there have been many research projects on electrostatic confinement of ions, none of them have succeeded in establishing the required electrostatic fields when the ions have the required density for a fusion reactor. Lastly, none of the patents cited above discuss a field reversed configuration magnetic topology.
The field reversed configuration (FRC) was discovered accidentally around 1960 at the Naval Research Laboratory during theta pinch experiments. A typical FRC topology, wherein the internal magnetic field reverses direction, is illustrated in
To address the problems faced by previous plasma containment systems, a system and apparatus for containing plasma are herein described in which plasma ions are contained magnetically in stable, large orbits and electrons are contained electrostatically in an energy well. A major innovation of the present invention over all previous work with FRCs is the simultaneous electrostatic confinement of electrons and magnetic confinement of ions, which tends to avoid anomalous transport and facilitate classical containment of both electrons and ions. In this configuration, ions may have adequate density and temperature so that upon collisions they are fused together by the nuclear force, thus releasing fusion energy.
In a preferred embodiment, a plasma confinement system comprises a chamber, a magnetic field generator for applying a magnetic field in a direction substantially along a principle axis, and an annular plasma layer that comprises a circulating beam of ions. Ions of the annular plasma beam layer are substantially contained within the chamber magnetically in orbits and the electrons are substantially contained in an electrostatic energy well. In one aspect of one preferred embodiment a magnetic field generator comprises a current coil. Preferably, the system further comprises mirror coils near the ends of the chamber that increase the magnitude of the applied magnetic field at the ends of the chamber. The system may also comprise a beam injector for injecting a neutralized ion beam into the applied magnetic field, wherein the beam enters an orbit due to the force caused by the applied magnetic field. In another aspect of the preferred embodiments, the system forms a magnetic field having a topology of a field reversed configuration.
Also disclosed is a method of confining plasma comprising the steps of magnetically confining the ions in orbits within a magnetic field and electrostatically confining the electrons in an energy well. An applied magnetic field may be tuned to produce and control the electrostatic field. In one aspect of the method the field is tuned so that the average electron velocity is approximately zero. In another aspect, the field is tuned so that the average electron velocity is in the same direction as the average ion velocity. In another aspect of the method, the method forms a field reversed configuration magnetic field, in which the plasma is confined.
In another aspect of the preferred embodiments, an annular plasma layer is contained within a field reversed configuration magnetic field. The plasma layer comprises positively charged ions, wherein substantially all of the ions are non-adiabatic, and electrons contained within an electrostatic energy well. The plasma layer is caused to rotate and form a magnetic self-field of sufficient magnitude to cause field reversal.
In other aspects of the preferred embodiments, the plasma may comprise at least two different ion species, one or both of which may comprise advanced fuels.
Having a non-adiabatic plasma of energetic, large-orbit ions tends to prevent the anomalous transport of ions. This can be done in a FRC, because the magnetic field vanishes (i.e., is zero) over a surface within the plasma. Ions having a large orbit tend to be insensitive to short-wavelength fluctuations that cause anomalous transport.
Magnetic confinement is ineffective for electrons because they have a small gyroradius—due to their small mass—and are therefore sensitive to short-wavelength fluctuations that cause anomalous transport. Therefore, the electrons are effectively confined in a deep potential well by an electrostatic field, which tends to prevent the anomalous transport of energy by electrons. The electrons that escape confinement must travel from the high density region near the null surface to the surface of the plasma. In so doing, most of their energy is spent in ascending the energy well. When electrons reach the plasma surface and leave with fusion product ions, they have little energy left to transport. The strong electrostatic field also tends to make all the ion drift orbits rotate in the diamagnetic direction, so that they are contained. The electrostatic field further provides a cooling mechanism for electrons, which reduces their radiation losses.
The increased containment ability allows for the use of advanced fuels such as D-He3 and p-B11, as well as neutronic reactants such as D-D and D-T. In the D-He3 reaction, fast neutrons are produced by secondary reactions, but are an improvement over the D-T reaction. The p-B11 reaction, and the like, is preferable because it avoids the problems of fast neutrons completely.
Another advantage of the advanced fuels is the direct energy conversion of energy from the fusion reaction because the fusion products are moving charged particles, which create an electrical current. This is a significant improvement over Tokamaks, for example, where a thermal conversion process is used to convert the kinetic energy of fast neutrons into electricity. The efficiency of a thermal conversion process is lower than 30%, whereas the efficiency of direct energy conversion can be as high as 90%.
Other aspects and features of the present invention will become apparent from consideration of the following description taken in conjunction with the accompanying drawings.
Preferred embodiments are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings, in which like reference numerals refer to like components.
An ideal fusion reactor solves the problem of anomalous transport for both ions and electrons. The anomalous transport of ions is avoided by magnetic confinement in a field reversed configuration (FRC) in such a way that the majority of the ions have large, non-adiabatic orbits, making them insensitive to short-wavelength fluctuations that cause anomalous transport of adiabatic ions. For electrons, the anomalous transport of energy is avoided by tuning the externally applied magnetic field to develop a strong electric field, which confines them electrostatically in a deep potential well. Moreover, the fusion fuel plasmas that can be used with the present confinement process and apparatus are not limited to neutronic fuels only, but also advantageously include advanced fuels. (For a discussion of advanced fuels, see R. Feldbacher & M. Heindler, Nuclear Instruments and Methods in Physics Research, A271 (1988)JJ-64 (North Holland Amsterdam).)
The solution to the problem of anomalous transport found herein makes use of a specific magnetic field configuration, which is the FRC. In particular, the existence of a region in a FRC where the magnetic field vanishes makes it possible to have a plasma comprising a majority of non-adiabatic ions.
Before describing the system and apparatus in detail, it will be helpful to first review a few key concepts necessary to understand the concepts contained herein.
Lorentz Force and Particle Orbits in a Magnetic Field
A particle with electric charge q moving with velocity {right arrow over (v)} in a magnetic field {right arrow over (B)} experiences a force {right arrow over (F)}L given by
The force {right arrow over (F)}L is called the Lorentz force. It, as well as all the formulas used in the present discussion, is given in the gaussian system of units. The direction of the Lorentz force depends on the sign of the electric charge q. The force is perpendicular to both velocity and magnetic field.
As explained, the Lorentz force is perpendicular to the velocity of a particle; thus, a magnetic field is unable to exert force in the direction of the particle's velocity. It follows from Newton's second law, {right arrow over (F)}=m{right arrow over (a)}, that a magnetic field is unable to accelerate a particle in the direction of its velocity. A magnetic field can only bend the orbit of a particle, but the magnitude of its velocity is not affected by a magnetic field.
Usually, the velocity of a particle has a component that is parallel to the magnetic field and a component that is perpendicular to the field. In such a case, the particle undergoes two simultaneous motions: a rotation around the magnetic field line and a translation along it. The combination of these two motions creates a helix that follows the magnetic field line 40. This is indicated in
A particle in its Larmor orbit revolves around a magnetic field line. The number of radians traveled per unit time is the particle's gyrofrequency, which is denoted by Ω and given by
where m is the mass of the particle and c is the speed of light. The gyroradius aL of a charged particle is given by
where v⊥ is the component of the velocity of the particle perpendicular to the magnetic field.
{right arrow over (E)}×{right arrow over (B)} Drift and Gradient Drift
Electric fields affect the orbits of charged particles, as shown in
As the ion is accelerated by the electric field 46, the magnetic field 44 bends the ion's orbit. At a certain point the ion reverses direction and begins to move in a direction opposite to the electric field 46. When this happens, the ion is decelerated, and its gyroradius therefore decreases. The ion's gyroradius thus increases and decreases in alternation, which gives rise to a sideways drift of the ion orbit 48 in the direction 50 as shown in
A similar drift can be caused by a gradient of the magnetic field 44 as illustrated in
From Eqs. 2 and 3, it follows that the gyroradius is inversely proportional to the strength of the magnetic field. When an ion moves in the direction of increasing magnetic field its gyroradius will decrease, because the Lorentz force increases, and vice versa. The ion's gyroradius thus decreases and increases in alternation, which gives rise to a sideways drift of the ion orbit 58 in the direction 60. This motion is called gradient drift. Electron orbits 62 drift in the opposite direction 64.
Adiabatic and Non-Adiabatic Particles
Most plasma comprises adiabatic particles. An adiabatic particle tightly follows the magnetic field lines and has a small gyroradius.
A non-adiabatic particle has a large gyroradius. It does not follow the magnetic field lines and is usually energetic. There exist other plasmas that comprise non-adiabatic particles.
Radiation in Plasmas
A moving charged particle radiates electromagnetic waves. The power radiated by the particle is proportional to the square of the charge. The charge of an ion is Ze, where e is the electron charge and Z is the atomic number. Therefore, for each ion there will be Z free electrons that will radiate. The total power radiated by these Z electrons is proportional to the cube of the atomic number (Z3).
Charged Particles in a FRC
In
The ion beam that forms the plasma layer 106 has a temperature; therefore, the velocities of the ions form a Maxwell distribution in a frame rotating at the average angular velocity of the ion beam. Collisions between ions of different velocities lead to fusion reactions. For this reason, the plasma beam layer 106 is called a colliding beam system.
As shown in
As shown if
A drift orbit, as shown in
A plasma layer 106 (see
While studying a plasma layer 106 in equilibrium conditions as described above, it was discovered that the conservation of momentum imposes a relation between the angular velocity of ions ωi and the angular velocity of electrons ωe. (The derivation of this relation is given below in conjunction with the theory of the invention.) The relation is
In Eq. 4, Z is the ion atomic number, mi is the ion-mass, e is the electron charge, B0 is the magnitude of the applied magnetic field, and c is the speed of light. There are three free parameters in this relation: the applied magnetic field B0, the electron angular velocity ωe, and the ion angular velocity ωi. If two of them are known, the third can be determined from Eq. 4.
Because the plasma layer 106 is formed by injecting ion beams into the FRC, the angular velocity of ions ωi is determined by the injection kinetic energy of the beam Wb which is given by
W
i=½miVi2=½mi(ωir0)2.
Here, Vi=ωir0, where Vi is the injection velocity of ions, ωi is the cyclotron frequency of ions, and r0 is the radius of the null surface 86. The kinetic energy of electrons in the beam has been ignored because the electron mass me is much smaller than the ion mass mi.
For a fixed injection velocity of the beam (fixed ωi), the applied magnetic field B0 can be tuned so that different values of ωe are obtainable. As will be shown, tuning the external magnetic field B0 also gives rise to different values of the electrostatic field inside the plasma layer. This feature of the invention is illustrated in
The values of ωe in the table above were determined according to Eq. 4. One can appreciate that ωe>0 means that Ω0>ωi in Eq. 4, so that electrons rotate in their counterdiamagnetic direction.
The above results can be explained on simple physical grounds. When the ions rotate in the diamagnetic direction, the ions are confined magnetically by the Lorentz force. This was shown in
The electrostatic field plays an essential role on the transport of both electrons and ions. Accordingly, an important aspect of this invention is that a strong electrostatic field is created inside the plasma layer 106, the magnitude of this electrostatic field is controlled by the value of the applied magnetic field B0 which can be easily adjusted.
As explained, the electrostatic field is confining for electrons if ωe>0. As shown in
Another consequence of the potential well is a strong cooling mechanism for electrons that is similar to evaporative cooling. For example, for water to evaporate, it must be supplied the latent heat of vaporization. This heat is supplied by the remaining liquid water and the surrounding medium, which then thermalize rapidly to a lower temperature faster than the heat transport processes can replace the energy. Similarly, for electrons, the potential well depth is equivalent to water's latent heat of vaporization. The electrons supply the energy required to ascend the potential well by the thermalization process that re-supplies the energy of the Maxwell tail so that the electrons can escape. The thermalization process thus results in a lower electron temperature, as it is much faster than any heating process. Because of the mass difference between electrons and protons, the energy transfer time from protons is about 1800 times less than the electron thermalization time. This cooling mechanism also reduces the radiation loss of electrons. This is particularly important for advanced fuels, where radiation losses are enhanced by fuel ions with atomic number Z>1.
The electrostatic field also affects ion transport. The majority of particle orbits in the plasma layer 106 are betatron orbits 112. Large-angle collisions, that is, collisions with scattering angles between 90° and 180°, can change a betatron orbit to a drift orbit. As described above, the direction of rotation of the drift orbit is determined by a competition between the {right arrow over (E)}×{right arrow over (B)} drift and the gradient drift. If the {right arrow over (E)}×{right arrow over (B)} drift dominates, the drift orbit rotates in the diamagnetic direction. If the gradient drift dominates, the drift orbit rotates in the counterdiamagnetic direction. This is shown in
The direction of rotation of the drift orbit determines whether it is confined or not. A particle moving in a drift orbit will also have a velocity parallel to the FRC axis. The time it takes the particle to go from one end of the FRC to the other, as a result of its parallel motion, is called transit time; thus, the drift orbits reach an end of the FRC in a time of the order of the transit time. As shown in connection with
This phenomenon accounts for a loss mechanism for ions, which is expected to have existed in all FRC experiments. In fact, in these experiments, the ions carried half of the current and the electrons carried the other half. In these conditions the electric field inside the plasma was negligible, and the gradient drift always dominated the {right arrow over (E)}×{right arrow over (B)} drift. Hence, all the drift orbits produced by large-angle collisions were lost after a transit time. These experiments reported ion diffusion rates that were faster than those predicted by classical diffusion estimates.
If there is a strong electrostatic field, the {right arrow over (E)}×{right arrow over (B)} drift dominates the gradient drift, and the drift orbits rotate in the diamagnetic direction. This was shown above in connection with
The electrostatic fields in the colliding beam system may be strong enough, so that the {right arrow over (E)}×{right arrow over (B)} drift dominates the gradient drift. Thus, the electrostatic field of the system would avoid ion transport by eliminating this ion loss mechanism, which is similar to a loss cone in a mirror device.
Another aspect of ion diffusion can be appreciated by considering the effect of small-angle, electron-ion collisions on betatron orbits.
For the purpose of modeling the invention, a one-dimensional equilibrium model for the colliding beam system is used, as shown in
Vlasov-Maxwell Equations
Equilibrium solutions for the particle density and the electromagnetic fields in a FRC are obtained by solving self-consistently the Vlasov-Maxwell equations:
where j=e, i and i=1, 2, . . . for electrons and each species of ions. In equilibrium, all physical quantities are independent of time (i.e., ∂/∂t=0). To solve the Vlasov-Maxwell equations, the following assumptions and approximations are made:
(a) All the equilibrium properties are independent of axial position z (i.e., ∂/∂z=0). This corresponds to considering a plasma with an infinite extension in the axial direction; thus, the model is valid only for the central part 88 of a FRC.
(b) The system has cylindrical symmetry. Hence, all equilibrium properties do not depend on θ(i.e., ∂/∂θ=0).
(c) The Gauss law, Eq. 8, is replaced with the quasi-neutrality condition: Σjnjej=0. By assuming infinite axial extent of the FRC and cylindrical symmetry, all the equilibrium properties will depend only on the radial coordinate r. For this reason, the equilibrium model discussed herein is called one-dimensional. With these assumptions and approximations, the Vlasov-Maxwell equations reduce to:
Rigid Rotor Distributions
To solve Eqs. 10 through 12, distribution functions must be chosen that adequately describe the rotating beams of electrons and ions in a FRC. A reasonable choice for this purpose are the so-called rigid rotor distributions, which are Maxwellian distributions in a uniformly rotating frame of reference. Rigid rotor distributions are functions of the constants of motion:
where mj is particle mass, {right arrow over (v)} is velocity, Tj is temperature, nj(0) is density at r=0, and ωj is a constant. The constants of the motion are
where Φ is the electrostatic potential and Ψ is the flux function. The electromagnetic fields are
Substituting the expressions for energy and canonical angular momentum into Eq. 13 yields
That the mean velocity in Eq. 14 is a uniformly rotating vector gives rise to the name rigid rotor. One of skill in the art can appreciate that the choice of rigid rotor distributions for describing electrons and ions in a FRC is justified because the only solutions that satisfy Vlasov's equation (Eq. 10) are rigid rotor distributions (e.g., Eq. 14). A proof of this assertion follows:
Proof
We require that the solution of Vlasov's equation (Eq. 10) be in the form of a drifted Maxwellian:
i.e., a Maxwellian with particle density nj(r), temperature Tj(r), and mean velocity uj(r) that are arbitrary functions of position. Substituting Eq. 16 into the Vlasov's equation (Eq. 10) shows that (a) the temperatures Tj(r) must be constants; (b) the mean velocities {right arrow over (u)}j(r) must be uniformly rotating vectors; and (c) the particle densities nj(r) must be of the form of Eq. 15. Substituting Eq. 16 into Eq. 10 yields a third-order polynomial equation in {right arrow over (v)}:
Grouping terms of like order in {right arrow over (v)} yields
For this polynomial equation to hold for all {right arrow over (v)}, the coefficient of each power of {right arrow over (v)} must vanish.
The third-order equation yields Tj(r)=constant.
The second-order equation gives
For this to hold for all {right arrow over (v)}, we must satisfy
which is solved generally by
{right arrow over (u)}
j({right arrow over (r)})=({right arrow over (ω)}j×{right arrow over (r)})+{right arrow over (u)}0j (17)
In cylindrical coordinates, take {right arrow over (u)}0j=0 and {right arrow over (ω)}j=ωj{circumflex over (z)}, which corresponds to injection perpendicular to a magnetic field in the {circumflex over (z)} direction. Then, {right arrow over (u)}j({right arrow over (r)})=ωjrθ.
The zero order equation indicates that the electric field must be in the radial direction, i.e., {right arrow over (E)}=Er{circumflex over (r)}.
The first-order equation is now given by
The second term in Eq. 18 can be rewritten with
The fourth term in Eq. 18 can be rewritten with
Using Eqs. 19 and 20, the first-order Eq. 18 becomes
The solution of this equation is
where Er=−dΦ/dr and nj(0) is given by
Here, nj0 is the peak density at r0.
Solution of Vlasov-Maxwell Equations
Now that it has been proved that it is appropriate to describe ions and electrons by rigid rotor distributions, the Vlasov's equation (Eq. 10) is replaced by its first-order moments, i.e.,
which are conservation of momentum equations. The system of equations to obtain equilibrium solutions reduces to:
Solution for Plasma with One Type of Ion
Consider first the case of one type of ion fully stripped. The electric charges are given by ej=−e,Ze. Solving Eq. 24 for Er with the electron equation yields
and eliminating Er from the ion equation yields
Differentiating Eq. 28 with respect to r and substituting Eq. 25 for dBz/dr yields
with Te=Ti=constant, and ωi, ωe, constants, obtaining
The new variable ξ is introduced:
Eq. 29 can be expressed in terms of the new variable ξ:
Using the quasi-neutrality condition,
yields
Here is defined
where the meaning of Δr will become apparent soon. If Ni=ni/ni0, where ni0 is the peak density at r=r0, Eq. 32 becomes
Using another new variable,
the solution to which is
where χ0=χ(r0) because of the physical requirement that Ni(r0)=1.
Finally, the ion density is given by
The significance of r0 is that it is the location of peak density. Note that ni(0)=ni(√{square root over (2)}r0). With the ion density known, Bz can be calculated using Eq. 11, and Er can be calculated using Eq. 27.
The electric and magnetic potentials are
Taking r=√{square root over (2)}r0 to be the radius at the wall (a choice that will become evident when the expression for the electric potential Φ(r) is derived, showing that at r=√{square root over (2)}r0 the potential is zero, i.e., a conducting wall at ground), the line density is
Thus, Δr represents an “effective thickness.” In other words, for the purpose of line density, the plasma can be thought of as concentrated at the null circle in a ring of thickness Δr with constant density ne0.
The magnetic field is
The current due to the ion and electron beams is
Using Eq. 39, the magnetic field can be written as
If the plasma current Iθ vanishes, the magnetic field is constant, as expected.
These relations are illustrated in
The magnetic field is
using the following definition for β:
With an expression for the magnetic field, the electric potential and the magnetic flux can be calculated. From Eq. 27,
Integrating both sides of Eq. 28 with respect to r and using the definitions of electric potential and flux function,
Φ≡−∫=0=rErdr′ and Ψ≡∫=0=rBz(r′)r′dr′, (44).
which yields
Now, the magnetic flux can be calculated directly from the expression of the magnetic field (Eq. 41):
Substituting Eq. 46 into Eq. 45 yields
Using the definition of β,
Finally, using Eq. 48, the expressions for the electric potential and the flux function become
Relationship Between ωi and ωe
An expression for the electron angular velocity a can also be derived from Eqs. 24 through 26. It is assumed that ions have an average energy ½mi(rωi)2, which is determined by the method of formation of the FRC. Therefore, ωi is determined by the FRC formation method, and ωe can be determined by Eq. 24 by combining the equations for electrons and ions to eliminate the electric field:
Eq. 25 can then be used to eliminate (ωi−ωe) to obtain
Eq. 52 can be integrated from r=0 to rB=√{square root over (2)}r0. Assuming r0/Δr>>1, the density is very small at both boundaries and Bz=−B0(0±√{square root over (β)}). Carrying out the integration shows
Using Eq. 33 for Δr yields an equation for ωe:
where
Some limiting cases derived from Eq. 54 are:
In the first case, the current is carried entirely by electrons moving in their diamagnetic direction (ωe<0). The electrons are confined magnetically, and the ions are confined electrostatically by
In the second case, the current is carried entirely by ions moving in their diamagnetic direction (ωi>0). If ωi is specified from the ion energy ½mi(rωi)2, determined in the formation process, then ωe=0 and Ω0=ωi identifies the value of B0, the externally applied magnetic field. The ions are magnetically confined, and electrons are electrostatically confined by
In the third case, ωe>0 and Ω0>ωi. Electrons move in their counter diamagnetic direction and reduce the current density. From Eq. 33, the width of the distribution ni(r) is increased; however, the total current/unit length is
Here, rB=√{square root over (2)}r0 and r0Δr∝(ωi−ωe)−1 according to Eq. 33. The electron angular velocity ωe can be increased by tuning the applied magnetic field B0. This does not change either I0 or the maximum magnetic field produced by the plasma current, which is B0√{square root over (β)}=(2π/c)I0. However, it does change Δr and, significantly, the potential Φ. The maximum value of Φ is increased, as is the electric field that confines the electrons.
Tuning the Magnetic Field
In
The case of ωe=−ωi and B0=1.385 kG involves magnetic confinement of both electrons and ions. The potential reduces to Φ/Φ0=mi(rωi)2/[80(Te+Ti)], which is negligible compared to the case ωe=0. The width of the density distribution Δr is reduced by a factor of 2, and the maximum magnetic field B0√{square root over (β)} is the same as for ωe=0.
Solution for Plasmas of Multiple Types of Ions
This analysis can be carried out to include plasmas comprising multiple types of ions. Fusion fuels of interest involve two different kinds of ions, e.g., D-T, D-He3, and H—B11. The equilibrium equations (Eqs. 24 through 26) apply, except that j=e, 1, 2 denotes electrons and two types of ions where Z1=1 in each case and Z2=Z=1, 2, 5 for the above fuels. The equations for electrons and two types of ions cannot be solved exactly in terms of elementary functions. Accordingly, an iterative method has been developed that begins with an approximate solution.
The ions are assumed to have the same values of temperature and mean velocity Vi=rωi. Ion-ion collisions drive the distributions toward this state, and the momentum transfer time for the ion-ion collisions is shorter than for ion-electron collisions by a factor of an order of 1000. By using an approximation, the problem with two types of ions can be reduced to a single ion problem. The momentum conservation equations for ions are
In the present case, T1=T2 and ω1=ω2. Adding these two equations results in
where ni=n1+n2; ωi=ω1=ω2; Ti=T1=T2; nimi=n1m1+n2m2; and niZ=n1+n2Z.
The approximation is to assume that mi and Z are constants obtained by replacing n1(r) and n2(r) by n10 and n20, the maximum values of the respective functions. The solution of this problem is now the same as the previous solution for the single ion type, except that Z replaces Z and mi replaces mi. The values of n1 and n2 can be obtained from n1+n2=ni and n1+Zn2=neZni. It can be appreciated that n1 and n2 have the same functional form.
Now the correct solution can be obtained by iterating the equations:
The first iteration can be obtained by substituting the approximate values of Bs(ξ) and Ne(ξ) in the right hand sides of Eqs. 62 and 63 and integrating to obtain the corrected values of n1(r), n2(r), and Bz(r).
Calculations have been carried out for the data shown in Table 1, below. Numerical results for fusion fuels are shown in
Zi
mi
Around the outside of the chamber wall 305 is an outer coil 325. The outer coil 325 produce a relatively constant magnetic field having flux substantially parallel with principle axis 315. This magnetic field is azimuthally symmetrical. The approximation that the magnetic field due to the outer coil 325 is constant and parallel to axis 315 is most valid away from the ends of the chamber 310. At each end of the chamber 310 is a mirror coil 330. The mirror coils 330 are adapted to produce an increased magnetic field inside the chamber 310 at each end, thus bending the magnetic field lines inward at each end. (See
The outer coil 325 and mirror coils 330 are shown in
The chamber wall 305 may be formed of a material having a high magnetic permeability, such as steel. In such a case, the chamber wall 305, due to induced countercurrents in the material, helps to keep the magnetic flux from escaping the chamber 310, “compressing” it. If the chamber wall were to be made of a material having low magnetic permeability, such as plexiglass, another device for containing the magnetic flux would be necessary. In such a case, a series of closed-loop, flat metal rings could be provided. These rings, known in the art as flux delimiters, would be provided within the outer coils 325 but outside the circulating plasma beam 335. Further, these flux delimiters could be passive or active, wherein the active flux delimiters would be driven with a predetermined current to greater facilitate the containment of magnetic flux within the chamber 310. Alternatively, the outer coils 325 themselves could serve as flux delimiters.
As explained above, a circulating plasma beam 335, comprising charged particles, may be contained within the chamber 310 by the Lorentz force caused by the magnetic field due to the outer coil 325. As such, the ions in the plasma beam 335 are magnetically contained in large betatron orbits about the flux lines from the outer coil 325, which are parallel to the principle axis 315. One or more beam injection ports 340 are also provided for adding plasma ions to the circulating plasma beam 335 in the chamber 310. In a preferred embodiment, the injector ports 340 are adapted to inject an ion beam at about the same radial position from the principle axis 315 where the circulating plasma beam 335 is contained (i.e., around the null surface). Further, the injector ports 340 are adapted to inject ion beams 350 (See
Also provided are one or more background plasma sources 345 for injecting a cloud of non-energetic plasma into the chamber 310. In a preferred embodiment, the background plasma sources 345 are adapted to direct plasma 335 toward the axial center of the chamber 310. It has been found that directing the plasma this way helps to better contain the plasma 335 and leads to a higher density of plasma 335 in the containment region within the chamber 310.
Conventional procedures used to form a FRC primarily employ the theta pinch-field reversal procedure. In this conventional method, a bias magnetic field is applied by external coils surrounding a neutral gas back-filled chamber. Once this has occurred, the gas is ionized and the bias magnetic field is frozen in the plasma. Next, the current in the external coils is rapidly reversed and the oppositely oriented magnetic field lines connect with the previously frozen lines to form the closed topology of the FRC (see
In contrast, the FRC formation methods of the present invention allow for ample control and provide a much more transparent and reproducible process. In fact, the FRC formed by the methods of the present invention can be tuned and its shape as well as other properties can be directly influenced by manipulation of the magnetic field applied by the outer field coils 325. Formation of the FRC by methods of the present inventions also results in the formation of the electric field and potential well in the manner described in detail above. Moreover, the present methods can be easily extended to accelerate the FRC to reactor level parameters and high-energy fuel currents, and advantageously enables the classical confinement of the ions. Furthermore, the technique can be employed in a compact device and is very robust as well as easy to implement—all highly desirable characteristics for reactor systems.
In the present methods, FRC formation relates to the circulating plasma beam 335. It can be appreciated that the circulating plasma beam 335, because it is a current, creates a poloidal magnetic field, as would an electrical current in a circular wire. Inside the circulating plasma beam 335, the magnetic self-field that it induces opposes the externally applied magnetic field due to the outer coil 325. Outside the plasma beam 335, the magnetic self-field is in the same direction as the applied magnetic field. When the plasma ion current is sufficiently large, the self-field overcomes the applied field, and the magnetic field reverses inside the circulating plasma beam 335, thereby forming the FRC topology as shown in
The requirements for field reversal can be estimated with a simple model. Consider an electric current Ip carried by a ring of major radius r0 and minor radius a<<r0. The magnetic field at the center of the ring normal to the ring is Bp=2πIp/(cr0). Assume that the ring current Ip=Npe(Ω0/2π) is carried by Np ions that have an angular velocity Ω0. For a single ion circulating at radius r0=V0/Ω0, Ω0=eB0/mic is the cyclotron frequency for an external magnetic field B0. Assume V0 is the average velocity of the beam ions. Field reversal is defined as
which implies that Np>2r0/α1, and
where αi=e2/mic2=1.57×10−16 cm and the ion beam energy is ½miV02. In the one-dimensional model, the magnetic field from the plasma current is Bp=(2π/c)ip, where ip, is current per unit of length. The field reversal requirement is ip>eV0/πr0αi=0.225 kA/cm, where B0=69.3 G and ½miV02=100 eV. For a model with periodic rings and Bz is averaged over the axial coordinate Bi=(2π/c)(Ip/s) (s is the ring spacing), if s=r0, this model would have the same average magnetic field as the one dimensional model with ip=Ip/s.
Combined Beam/Betatron Formation Technique
A preferred method of forming a FRC within the confinement system 300 described above is herein termed the combined beam/betatron technique. This approach combines low energy beams of plasma ions with betatron acceleration using the betatron flux coil 320.
The first step in this method is to inject a substantially annular cloud layer of background plasma in the chamber 310 using the background plasma sources 345. Outer coil 325 produces a magnetic field inside the chamber 310, which magnetizes the background plasma. At short intervals, low energy ion beams are injected into the chamber 310 through the injector ports 340 substantially transverse to the externally applied magnetic field within the chamber 310. As explained above, the ion beams are trapped within the chamber 310 in large betatron orbits by this magnetic field. The ion beams may be generated by an ion accelerator, such as an accelerator comprising an ion diode and a Marx generator. (see R. B. Miller, An Introduction to the Physics of Intense Charged Particle Beams, (1982)). As one of skill in the art can appreciate, the externally applied magnetic field will exert a Lorentz force on the injected ion beam as soon as it enters the chamber 310; however, it is desired that the beam not deflect, and thus not enter a betatron orbit, until the ion beam reaches the circulating plasma beam 335. To solve this problem, the ion beams are neutralized with electrons and directed through a substantially constant unidirectional magnetic field before entering the chamber 310. As illustrated in
When the plasma beam 335 travels in its betatron orbit, the moving ions comprise a current, which in turn gives rise to a poloidal magnetic self-field. To produce the FRC topology within the chamber 310, it is necessary to increase the velocity of the plasma beam 335, thus increasing the magnitude of the magnetic self-field that the plasma beam 335 causes. When the magnetic self-field is large enough, the direction of the magnetic field at radial distances from the axis 315 within the plasma beam 335 reverses, giving rise to a FRC. (See
To increase the velocity of the circulating plasma beam 335 in its orbit, the betatron flux coil 320 is provided. Referring to
For field reversal, the circulating plasma beam 335 is preferably accelerated to a rotational energy of about 100 eV, and preferably in a range of about 75 eV to 125 eV. To reach fusion relevant conditions, the circulating plasma beam 335 is preferably accelerated to about 200 keV and preferably to a range of about 100 keV to 3.3 MeV. In developing the necessary expressions for the betatron acceleration, the acceleration of single particles is first considered. The gyroradius of ions r=V/Ωi will change because V increases and the applied magnetic field must change to maintain the radius of the plasma beam's orbit, r0=V/Ωc
and Ψ is the magnetic flux:
From Eq. 67, it follows that
and Bz=−2Bz+B0, assuming that the initial values of BF and Bc are both B0. Eq. 67 can be expressed as
After integration from the initial to final states where ½mV02=W0 and ½mV2=W, the final values of the magnetic fields are:
assuming B0=69.3 G, W/W0=1000, and r0/ra=2. This calculation applies to a collection of ions, provided that they are all located at nearly the same radius r0 and the number of ions is insufficient to alter the magnetic fields.
The modifications of the basic betatron equations to accommodate the present problem will be based on a one-dimensional equilibrium to describe the multi-ring plasma beam, assuming the rings have spread out along the field lines and the z-dependence can be neglected. The equilibrium is a self-consistent solution of the Vlasov-Maxwell equations that can be summarized as follows:
(a) The density distribution is
which applies to the electrons and protons (assuming quasi neutrality); r0 is the position of the density maximum; and Δr is the width of the distribution; and
(b) The magnetic field is
where Bc is the external field produced by the outer coil 325. Initially, Bc=B0. This solution satisfies the boundary conditions that r=ra and r=rb are conductors (Bnormal=0) and equipotentials with potential Φ=0. The boundary conditions are satisfied if r02=(ra2+rb2)/2. ra=10 cm and r0=20 cm, so it follows that rb=26.5 cm. Ip is the plasma current per unit length.
The average velocities of the beam particles are Vi=r0ωi and Ve=r0ωe, which are related by the equilibrium condition:
where Ωi=eBc/(mic). Initially, it is assumed Bc=B0, ωi=Ωi, and ωe=0. (In the initial equilibrium there is an electric field such that the {right arrow over (E)}×{right arrow over (B)} and the ∇B×{right arrow over (B)} drifts cancel. Other equilibria are possible according to the choice of Bc) The equilibrium equations are assumed to be valid if ωi and Bc are slowly varying functions of time, but r0=Vi/Ωi remains constant. The condition for this is the same as Eq. 66. Eq. 67 is also similar, but the flux function Ψ has an additional term, i.e., Ψ=πr02Bz where
The magnetic energy per unit length due to the beam current is
from which
The betatron condition of Eq. 70 is thus modified so that
and Eq. 67 becomes:
After integrating,
For W0=100 eV and W=100 keV, Δ
If the final energy is 200 keV, Bc=3.13 kG and BF=34.5 kG. The magnetic energy in the flux coil would be
The plasma current is initially 0.225 kA/cm corresponding to a magnetic field of 140 G, which increases to 10 kA/cm and a magnetic field of 6.26 kG. In the above calculations, the drag due to Coulomb collisions has been neglected. In the injection/trapping phase, it was equivalent to 0.38 volts/cm. It decreases as the electron temperature increases during acceleration. The inductive drag, which is included, is 4.7 volts/cm, assuming acceleration to 200 keV in 100 μs.
The betatron flux coil 320 also balances the drag from collisions and inductance. The frictional and inductive drag can be described by the equation:
where (Ti/mi)<Vb<(Tg/m). Here, Vb is the beam velocity, Te and Ti are electron and ion temperatures, Ib is the beam ion current, and
is the ring inductance. Also, r0=20 cm and a=4 cm.
The Coulomb drag is determined by
To compensate the drag, the betatron flux coil 320 must provide an electric field of 1.9 volts/cm (0.38 volts/cm for the Coulomb drag and 1.56 volts/cm for the inductive drag). The magnetic field in the betatron flux coil 320 must increase by 78 Gauss/μs to accomplish this, in which case Vb will be constant. The rise time of the current to 4.5 kA is 18 μs, so that the magnetic field BF will increase by 1.4 kG. The magnetic field energy required in the betatron flux coil 320 is
betatron Formation Technique
Another preferred method of forming a FRC within the confinement system 300 is herein termed the betatron formation technique. This technique is based on driving the betatron induced current directly to accelerate a circulating plasma beam 335 using the betatron flux coil 320. A preferred embodiment of this technique uses the confinement system 300 depicted in
As indicated, the main component in the betatron formation technique is the betatron flux coil 320 mounted in the center and along the axis of the chamber 310. Due to its separate parallel windings construction, the coil 320 exhibits very low inductance and, when coupled to an adequate power source, has a low LC time constant, which enables rapid ramp up of the current in the flux coil 320.
Preferably, formation of the FRC commences by energizing the external field coils 325, 330. This provides an axial guide field as well as radial magnetic field components near the ends to axially confine the plasma injected into the chamber 310. Once sufficient magnetic field is established, the background plasma sources 345 are energized from their own power supplies. Plasma emanating from the guns streams along the axial guide field and spreads slightly due to its temperature. As the plasma reaches the mid-plane of the chamber 310, a continuous, axially extending, annular layer of cold, slowly moving plasma is established.
At this point the betatron flux coil 320 is energized. The rapidly rising current in the coil 320 causes a fast changing axial flux in the coil's interior. By virtue of inductive effects this rapid increase in axial flux causes the generation of an azimuthal electric field E (see
The inductively created electric field couples to the charged particles in the plasma and causes a ponderomotive force, which accelerates the particles in the annular plasma layer. Electrons, by virtue of their smaller mass, are the first species to experience acceleration. The initial current formed by this process is, thus, primarily due to electrons. However, sufficient acceleration time (around hundreds of micro-seconds) will eventually also lead to ion current. Referring to
As noted above, the current carried by the rotating plasma gives rise to a self magnetic field. The creation of the actual FRC topology sets in when the self magnetic field created by the current in the plasma layer becomes comparable to the applied magnetic field from the external field coils 325, 330. At this point magnetic reconnection occurs and the open field lines of the initial externally produced magnetic field begin to close and form the FRC flux surfaces (see
The base FRC established by this method exhibits modest magnetic field and particle energies that are typically not at reactor relevant operating parameters. However, the inductive electric acceleration field will persist, as long as the current in the betatron flux coil 320 continues to increase at a rapid rate. The effect of this process is that the energy and total magnetic field strength of the FRC continues to grow. The extent of this process is, thus, primarily limited by the flux coil power supply, as continued delivery of current requires a massive energy storage bank. However, it is, in principal, straightforward to accelerate the system to reactor relevant conditions.
For field reversal, the circulating plasma beam 335 is preferably accelerated to a rotational energy of about 100 eV, and preferably in a range of about 75 eV to 125 eV. To reach fusion relevant conditions, the circulating plasma beam 335 is preferably accelerated to about 200 keV and preferably to a range of about 100 keV to 3.3 MeV. When ion beams are added to the circulating plasma beam 335, as described above, the plasma beam 335 depolarizes the ion beams.
Experiment 1: Propagating and Trapping of a Neutralized Beam in a Magnetic Containment Vessel to Create an FRC.
Beam propagation and trapping were successfully demonstrated at the following parameter levels:
The beam was generated in a deflagration type plasma gun. The plasma beam source was neutral Hydrogen gas, which was injected through the back of the gun through a special puff valve. Different geometrical designs of the electrode assembly were utilized in an overall cylindrical arrangement. The charging voltage was typically adjusted between 5 and 7.5 kV. Peak breakdown currents in the guns exceeded 250,000 A. During part of the experimental runs, additional pre-ionized plasma was provided by means of an array of small peripheral cable guns feeding into the central gun electrode assembly before, during or after neutral gas injection. This provided for extended pulse lengths of above 25 μs.
The emerging low energy neutralized beam was cooled by means of streaming through a drift tube of non-conducting material before entering the main vacuum chamber. The beam plasma was also pre-magnetized while streaming through this tube by means of permanent magnets.
The beam self-polarized while traveling through the drift tube and entering the chamber, causing the generation of a beam-internal electric field that offset the magnetic field forces on the beam. By virtue of this mechanism it was possible to propagate beams as characterized above through a region of magnetic field without deflection.
Upon further penetration into the chamber, the beam reached the desired orbit location and encountered a layer of background plasma provided by an array of cable guns and other surface flashover sources. The proximity of sufficient electron density caused the beam to loose its self-polarization field and follow single particle like orbits, essentially trapping the beam. Faraday cup and B-dot probe measurements confirmed the trapping of the beam and its orbit. The beam was observed to have performed the desired circular orbit upon trapping. The beam plasma was followed along its orbit for close to ¾ of a turn. The measurements indicated that continued frictional and inductive losses caused the beam particles to loose sufficient energy for them to curl inward from the desired orbit and hit the betatron coil surface at around the ¾ turn mark. To prevent this, the losses could be compensated by supplying additional energy to the orbiting beam by inductively driving the particles by means of the betatron coil.
Experiment 2: FRC Formation Utilizing the Combined Beam/Betatron Formation Technique.
FRC formation was successfully demonstrated utilizing the combined beam/betatron formation technique. The combined beam/betatron formation technique was performed experimentally in a chamber 1 m in diameter and 1.5 m in length using an externally applied magnetic field of up to 500 G, a magnetic field from the betatron flux coil 320 of up to 5 kG, and a vacuum of 1.2×10−5 torr. In the experiment, the background plasma had a density of 1013 cm−3 and the ion beam was a neutralized Hydrogen beam having a density of 1.2×1013 cm−3, a velocity of 2×107 cm/s, and a pulse length of around 20 μs (at half height). Field reversal was observed.
Experiment 3: FRC Formation Utilizing the Betatron Formation Technique.
FRC formation utilizing the betatron formation technique was successfully demonstrated at the following parameter levels:
The experiments proceeded by first injecting a background plasma layer by two sets of coaxial cable guns mounted in a circular fashion inside the chamber. Each collection of 8 guns was mounted on one of the two mirror coil assemblies. The guns were azimuthally spaced in an equidistant fashion and offset relative to the other set. This arrangement allowed for the guns to be fired simultaneously and thereby created an annular plasma layer.
Upon establishment of this layer, the betatron flux coil was energized. Rising current in the betatron coil windings caused an increase in flux inside the coil, which gave rise to an azimuthal electric field curling around the betatron coil. Quick ramp-up and high current in the betatron flux coil produced a strong electric field, which accelerated the annular plasma layer and thereby induced a sizeable current. Sufficiently strong plasma current produced a magnetic self-field that altered the externally supplied field and caused the creation of the field reversed configuration. Detailed measurements with B-dot loops identified the extent, strength and duration of the FRC.
An example of typical data is shown by the traces of B-dot probe signals in
Overall, this technique not only produces a compact FRC, but it is also robust and straightforward to implement. Most importantly, the base FRC created by this method can be easily accelerated to any desired level of rotational energy and magnetic field strength. This is crucial for fusion applications and classical confinement of high-energy fuel beams.
Experiment 4: FRC Formation Utilizing the Betatron Formation Technique.
An attempt to form an FRC utilizing the betatron formation technique has been performed experimentally in a chamber 1 m in diameter and 1.5 m in length using an externally applied magnetic field of up to 500 G, a magnetic field from the betatron flux coil 320 of up to 5 kG, and a vacuum of 5×10−6 torr. In the experiment, the background plasma comprised substantially Hydrogen with of a density of 1013 cm−3 and a lifetime of about 40 μs. Field reversal was observed.
Significantly, these two techniques for forming a FRC inside of a containment system 300 described above, or the like, can result in plasmas having properties suitable for causing nuclear fusion therein. More particularly, the FRC formed by these methods can be accelerated to any desired level of rotational energy and magnetic field strength. This is crucial for fusion applications and classical confinement of high-energy fuel beams. In the confinement system 300, therefore, it becomes possible to trap and confine high-energy plasma beams for sufficient periods of time to cause a fusion reaction therewith.
To accommodate fusion, the FRC formed by these methods is preferably accelerated to appropriate levels of rotational energy and magnetic field strength by betatron acceleration. Fusion, however, tends to require a particular set of physical conditions for any reaction to take place. In addition, to achieve efficient burn-up of the fuel and obtain a positive energy balance, the fuel has to be kept in this state substantially unchanged for prolonged periods of time. This is important, as high kinetic temperature and/or energy characterize a fusion relevant state. Creation of this state, therefore, requires sizeable input of energy, which can only be recovered if most of the fuel undergoes fusion. As a consequence, the confinement time of the fuel has to be longer than its burn time. This leads to a positive energy balance and consequently net energy output.
A significant advantage of the present invention is that the confinement system and plasma described herein are capable of long confinement times, i.e., confinement times that exceed fuel burn times. A typical state for fusion is, thus, characterized by the following physical conditions (which tend to vary based on fuel and operating mode):
Average ion temperature: in a range of about 30 to 230 keV and preferably in a range of about 80 keV to 230 keV
Average electron temperature: in a range of about 30 to 100 keV and preferably in a range of about 80 to 100 keV
Coherent energy of the fuel beams (injected ion beams and circulating plasma beam): in a range of about 100 keV to 3.3 MeV and preferably in a range of about 300 keV to 3.3 MeV.
Total magnetic field: in a range of about 47.5 to 120 kG and preferably in a range of about 95 to 120 kG (with the externally applied field in a range of about 2.5 to 15 kG and preferably in a range of about 5 to 15 kG).
Classical Confinement time: greater than the fuel burn time and preferably in a range of about 10 to 100 seconds.
Fuel ion density: in a range of about 1014 to less than 1016 cm−3 and preferably in a range of about 1014 to 1015 cm−3.
Total Fusion Power: preferably in a range of about 50 to 450 kW/cm (power per cm of chamber length)
To accommodate the fusion state illustrated above, the FRC is preferably accelerated to a level of coherent rotational energy preferably in a range of about 100 keV to 3.3 MeV, and more preferably in a range of about 300 keV to 3.3 MeV, and a level of magnetic field strength preferably in a range of about 45 to 120 kG, and more preferably in a range of about 90 to 115 kG. At these levels, high energy ion beams can be injected into the FRC and trapped to form a plasma beam layer wherein the plasma beam ions are magnetically confined and the plasma beam electrons are electrostatically confined.
Preferably, the electron temperature is kept as low as practically possible to reduce the amount of bremsstrahlung radiation, which can, otherwise, lead to radiative energy losses. The electrostatic energy well of the present invention provides an effective means of accomplishing this.
The ion temperature is preferably kept at a level that provides for efficient burn-up since the fusion cross-section is a function of ion temperature. High direct energy of the fuel ion beams is essential to provide classical transport as discussed in this application. It also minimizes the effects of instabilities on the fuel plasma. The magnetic field is consistent with the beam rotation energy. It is partially created by the plasma beam (self-field) and in turn provides the support and force to keep the plasma beam on the desired orbit.
The fusion products are born predominantly near the null surface from where they emerge by diffusion towards the separatrix 84 (see
Initially the product ions have longitudinal as well as rotational energy characterized by ½ M(vpar)2 and ½ M(vperp)2. Vperp is the azimuthal velocity associated with rotation around a field line as the orbital center. Since the field lines spread out after leaving the vicinity of the FRC topology, the rotational energy tends to decrease while the total energy remains constant. This is a consequence of the adiabatic invariance of the magnetic moment of the product ions. It is well known in the art that charged particles orbiting in a magnetic field have a magnetic moment associated with their motion. In the case of particles moving along a slow changing magnetic field, there also exists an adiabatic invariant of the motion described by ½ M(vperp)2/B. The product ions orbiting around their respective field lines have a magnetic moment and such an adiabatic invariant associated with their motion. Since B decreases by a factor of about 10 (indicated by the spreading of the field lines), it follows that vperp will likewise decrease by about 3.2. Thus, by the time the product ions arrive at the uniform field region their rotational energy would be less than 5% of their total energy; in other words almost all the energy is in the longitudinal component.
While the invention is susceptible to various modifications and alternative forms, a specific example thereof has been shown in the drawings and is herein described in detail. It should be understood, however, that the invention is not to be limited to the particular form disclosed, but to the contrary, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the appended claims.
This application is a continuation of U.S. Ser. No. 12/511, 266 filed Jul. 29, 2009, which is a continuation of U.S. Ser. No. 11/498,804 filed Aug. 1, 2006, now U.S. Pat. No. 7,569,995, which is a continuation of U.S. Ser. No. 11/173,204 filed Jul. 1, 2005, now U.S. Pat. No. 7,129,656, which is a divisional of U.S. Ser. No. 10/328,703 filed Dec. 23, 2002, now U.S. Pat. No. 7,026,763, which is a continuation of U.S. Ser. No. 10/066,424, filed Jan. 31, 2002, now U.S. Pat. No. 6,664,740, which claims the benefit of provisional U.S. application Ser. No. 60/266,074, filed Feb. 1, 2001 and provisional U.S. application Ser. No. 60/297,086, filed on Jun. 8, 2001, which applications are fully incorporated herein by reference.
This invention was made with Government support under Contract No. N00014-99-1-0857, awarded by the Office of Naval Research. Some background research was supported by the U.S. Department of Energy for 1992 to 1993. The Government has certain rights in this invention.
Number | Date | Country | |
---|---|---|---|
60297086 | Jun 2001 | US | |
60266074 | Feb 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10328703 | Dec 2002 | US |
Child | 11173204 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12511266 | Jul 2009 | US |
Child | 13915521 | US | |
Parent | 11498404 | Aug 2006 | US |
Child | 12511266 | US | |
Parent | 11173204 | Jul 2005 | US |
Child | 11498404 | US | |
Parent | 10066424 | Jan 2002 | US |
Child | 10328703 | US |