Apparatus for making a tobacco rod

Information

  • Patent Grant
  • 6814080
  • Patent Number
    6,814,080
  • Date Filed
    Friday, September 5, 2003
    20 years ago
  • Date Issued
    Tuesday, November 9, 2004
    19 years ago
Abstract
Apparatus for making one or more rod-like fillers of shredded tobacco for use in the making of cigarettes or the like employs one or two pneumatic conveyors having endless foraminous belts trained over pulleys and including elongated stretches below communicating parts of a common suction chamber. A shower of intermixed tobacco shreds and smaller particles including tobacco dust and coarser particles is directed against the under sides of the elongated stretches. The shreds are attracted to and advance with the respective belts to form streams which are ready to be trimmed and thereupon draped into cigarette paper or the like. At least some smaller particles penetrate through the respective belts into the corresponding parts of the suction chamber. The contents of the suction chamber are evacuated by suction and are returned to the undersides of the elongated stretches of the belts for classification. At least some coarser particles advance with the belts and are incorporated into the respective streams of tobacco shreds. The smaller particles enter the respective parts of the suction chamber and are pneumatically conveyed to the main dedusting unit of the cigarette making plant.
Description




BACKGROUND OF THE INVENTION




The present invention relates to improvements in methods of and in apparatus for making tobacco rods. More particularly, the invention relates to improvements in methods of and in apparatus for making one or more continuous rod-like bodies, called fillers, which can be converted into tobacco-containing parts of plain or filter cigarettes, cigars, cigarillos or analogous smokers' products.




It is well known to make the rod-like filler of a cigarette by showering particles of tobacco (such as shreds of tobacco leaf laminae) which is supplied by a so-called distributor or hopper onto the exposed side of a running sieve-like endless foraminous belt while the other side of the belt travels along the open side of a stationary suction chamber. This results in conversion of the shower into a stream which contains a surplus of tobacco particles and moves lengthwise with the belt past a trimming or equalizing device which removes the surplus. The resulting rod-like filler is confined in a running continuous web of cigarette paper or other suitable wrapping material to form therewith a continuous rod which is severed at regular intervals to yield a succession of plain cigarettes of unit length or multiple unit length. Such products are ready to be confined in packs or to be provided with filter mouthpieces to form therewith filter cigarettes of unit length or multiple unit length. The making of plain or filter cigarillos, cartridges, cigars or analogous smokers' products involves or can involve procedures or steps similar to those involving the making of plain or filter cigarettes. Conventional machines for the making of plain and filter cigarettes are disclosed, for example, in U.S. Pat. No. 4,281,670 granted Aug. 4, 1981 to Heitmann et al. for “APPARATUS FOR INCREASING THE PERMEABILITY OF WRAPPING MATERIAL FOR ROD-SHAPED SMOKERS' PRODUCTS”.




It is also known to segregate particles of tobacco dust or analogous less desirable fragments of smokable material from the much more desirable elongated shreds of tobacco leaf laminae and/or from the atmosphere in a cigarette making plant. The thus segregated particles can be utilized for the making of sheets or films of reconstituted tobacco. Alternatively, such less desirable particles of dust or the like can be introduced into the tobacco stream which is borne by the foraminous belt; such introduction takes place prior to removal of the surplus, i.e., prior to conversion of the tobacco stream into a rod-like filler. The purpose of such introduction of tobacco dust and/or like particulate material into the tobacco stream is to contribute to the weight, bulk, density, “feel” and/or other desirable characteristics of smokers' products embodying lengths of the filler. It is normally preferred to remove all or practically all particles of tobacco dust from the shower or showers of tobacco particles (normally shreds) which are being conveyed to the stream-forming station.




It is equally known to evacuate from the aforementioned suction chamber of a cigarette rod making machine all or practically all particles of tobacco dust. The term “dust” is intended to embrace all such particles of tobacco and/or foreign matter entrained by full-sized tobacco shreds which do or can consist of a smokable material but are often too small to allow for appropriate interlacing with genuine tobacco shreds. The thus gathered particles of tobacco dust, as well as relatively small or very small shreds, are admitted into the tobacco stream.




It is further known to simultaneously produce a plurality of (particularly two) continuous cigarette rods each of which yields a series of plain cigarettes of unit length. Reference may be had, for example, to commonly owned U.S. Pat. No. 5,125,419 granted on Jun. 30, 1992 to Heitmann for “METHOD OF AND APPARATUS FOR MAKING PLURAL TOBACCO STREAMS”. Such arrangement multiplies the output of the cigarette making machine with two or more foraminous tobacco rod making conveyors.




As a rule, the aforementioned suction chamber is adjacent that side of an endless foraminous belt or the like which is disposed opposite the side serving to gather a stream of tobacco shreds. The suction chamber is apt to accumulate substantial quantities of tobacco dust within a relatively short interval of time. Such dust normally contains very small particles of tobacco leaves which normally adhere to the adjacent tobacco shreds on their way to the rod forming station but become separated from the shreds during the next-following processing of cigarettes of unit length or multiple unit length. The dust in the plenum chamber further contains minute particles of sand and/or rock as well as relatively small tobacco fragments which are more likely to be interlaced with desirable tobacco shreds of standard size and/or shape and which are less likely to readily penetrate through the openings of the endless foraminous belt.




The relatively small tobacco fragments develop in part during the making of tobacco shreds and in part during transport of shreds from the shredding station to the rod forming station, particularly during transport toward the foraminous belt. Some of the small fragments even penetrate into the openings of the foraminous belt and gather in the suction chamber. Additional relatively small tobacco fragments develop during transport of satisfactory shreds with the foraminous belt; thus, the end portions of a certain percentage of shreds penetrate into the openings of the belt to be sheared off the major portions of the respective tobacco shreds during separation of the respective portions of the tobacco stream from the foraminous belt.




In accordance with heretofore known procedures, all solid particles which happen to penetrate into the suction chamber are evacuated from the chamber with the air stream which enters the chamber by way of openings in the foraminous belt, which flows through the chamber, and which is evacuated by way of one or more outlets. The thus evacuated air is caused to flow into a central dedusting station of the entire cigarette making plant and the thus accumulated mass of dust and minute or relatively small tobacco shreds is thereupon converted into sheets or other configurations of reconstituted tobacco. Such procedure must be carried out by resorting to bulky and costly machinery and is expensive in spite of the fact that the reconstituted tobacco can be or is being reused for the making of smokers' products. For example, the sheet can be shredded and the thus obtained shreds are admixed to the shreds of the shower (i.e., to the shreds which are obtained as a result of comminution of tobacco leaf laminae).




U.S. Pat. No. 3,282,270 (granted Nov. 1, 1966 to Morris et al. for “TOBACCO-MANIPULATING APPARATUS”) discloses a method which involves segregation of tobacco dust directly at the cigarette rod making machine and immediate pneumatic reintroduction of separated dust into the shower of tobacco shreds advancing toward the foraminous belt of the pneumatic conveyor which converts the shower into a continuous tobacco stream. The introduction of dust into the shower is to be carried out by the shreds which constitute the shower, and retention of dust in the stream is to be effected by those shreds which already adhere to the exposed side of the foraminous belt.




A drawback of the just described patented proposal of Morris et al. is that only the relatively large particles of dust are intercepted by tobacco shreds at the foraminous belt. All or nearly all small particles of tobacco dust, sand and other foreign matter are free to reenter the suction chamber so that the air stream issuing from the suction chamber contains a continuously increasing percentage of dust and foreign matter. It is to be borne in mind that the shower of tobacco shreds contains and delivers to the tobacco stream forming station additional particles of tobacco dust, sand and other minute particulate material and that, sooner or later, all or nearly all such particles enter and circulate with the air stream which delivers the solid contents of the suction chamber to the shower of tobacco shreds advancing toward the foraminous belt.




OBJECTS OF THE INVENTION




An object of this invention is to provide a method which renders it possible to overcome the drawbacks of heretofore known proposals to remove tobacco dust and other undesirable particles from the mass of comminuted tobacco which is to be converted into one or more rod-like fillers in a cigarette making machine or the like.




Another object of the present invention is to provide a novel and improved method which renders it possible to recover and reuse acceptable fragments of smokable material which happen to penetrate into the suction chamber(s) of a machine for the making of one or more continuous tobacco-containing rods, such as a cigarette rod making machine.




A further object of the invention is to provide a method which reduces the likelihood or prevents the accumulation of large quantities of tobacco dust and like minute particulate material in the suction chamber(s) of a cigarette rod making or an analogous machine for the making of smokers' products.




An additional object of the instant invention is to provide a novel and improved method of achieving pronounced savings in acceptable smokable material in a machine for converting one or more showers of loose tobacco particles into one or more tobacco streams ready for conversion into rod-like tobacco fillers in a cigarette making or an analogous machine for the mass-production of rod-shaped smokers' products.




Still another object of the invention is to provide a novel and improved apparatus for the practice of the above outlined method in cigarette rod making and analogous machines.




A further object of the invention is to provide an apparatus which renders it possible to achieve substantial savings in smokable material which is processed in a machine for the making of cigarette rods and the like.




Another object of the invention is to provide an apparatus which can be installed with equal advantage in a machine for the making of a single continuous rod-shaped tobacco filler or for simultaneously turning out a plurality of such rods.




An additional object of the invention is to provide a novel and improved cigarette rod making machine.




Still another object of the invention is to provide a novel and improved arrangement for treating tobacco dust and other small particulate substances gathering in the suction chamber or chambers of a cigarette rod making or an analogous machine.




A further object of the invention is to provide novel and improved smokers' products wherein the rod-shaped smokable fillers contain tobacco dust in a distribution superior to that in presently known rod-shaped smokers' products containing recovered tobacco dust and/or smokable particles of similar size.




SUMMARY OF THE INVENTION




One feature of our invention resides in the provision of a method of building at least one stream of smokable material from a mixture containing randomly distributed relatively large first particulate material (such as standard-size shreds of tobacco leaf laminae) and randomly distributed relatively small second particulate material including a coarser or larger fraction and a finer or smaller fraction. The coarser fraction can contain or consist of fragments of standard tobacco shreds (such fragments develop in the tobacco shredding machine and/or during travel of standard-size shreds from the shredding machine into the distributor or hopper of a cigarette maker and/or during transport from the hopper to the stream building station). The finer fraction can contain tobacco dust and/or minute fragments of tobacco shreds and/or foreign matter (e.g., small particles of sand, fragments of metal and/or the like).




The improved method comprises a plurality of steps including the step of advancing the mixture against one side of at least one moving belt or band forming part of a pneumatic conveyor and having a permeability such that the at least one belt intercepts and entrains the first material but permits at least some of the second material to pass therethrough. The belt preferably constitutes an endless belt having an elongated lower reach or stretch the underside of which is the aforementioned one side and the upper side of which is adjacent the open underside of a suction chamber which forms part of the pneumatic conveyor and attracts successive increments of the mixture (such mixture can constitute an ascending shower or column of randomly intermixed first and second particulate materials) and causes the first particulate material to adhere to the underside of and to advance with the lower reach of the endless belt while permitting at least some of the second particulate material to penetrate through the lower reach and to enter the suction chamber. The method further comprises the steps of at least partially segregating the coarser and finer fractions of the at least some second material from each other (such step follows the first step as well as the evacuation of the at least some second material from the suction chamber), and of admitting at least some of the thus segregated coarser fraction into the entrained first material at the one side of the at least one belt.




The finer fraction (or that part of the finer fraction) which has passed through the belt for the second time is or can be conveyed (e.g., in an air stream or another suitable carrier medium) from the plenum chamber and is separated from the carrier medium, e.g., in the central dust collecting plant of a cigarette making factory. This ensures that the thus recovered finer fraction cannot enter the atmosphere in the plant and can be put to use, e.g., for the making of sheets or films of reconstituted tobacco.




The at least one belt of the pneumatic conveyor is caused to move lengthwise in a predetermined direction, e.g., past a station at which the surplus of entrained first material is removed by a suitable trimming or equalizing device so that the remaining part of the mass of first material constitutes a continuous rod-like filler ready to be draped into a web of cigarette paper or other suitable wrapping or draping material. The advancing step of the improved method preferably includes feeding the mixture against the one side of the at least one belt in the form of a shower (especially an ascending shower) which is elongated in the predetermined direction so that the first material which is directed against and is intercepted by the one side of the belt forms an elongated tobacco stream which is ready to be trimmed and to be thus converted into a rod-like filler.




The segregating step can include directing at least some second material against the one side of the at least one moving belt.




Alternatively or in addition to the just discussed segregating step, the latter can comprise (or further comprise) directing the at least some second material (i.e., the second material which has already passed through the at least one belt) against the first material which is being entrained by the at least one belt. Otherwise stated, the admitting step can include pneumatically conveying at least some of the segregated coarser fraction into the entrained first material.




The advancing step of the improved method can include advancing the mixture against a relatively large first portion of the one side of the at least one belt, and the segregating step of such method can include directing the at least some second material against a relatively small portion of the one side of the at least one belt so that the finer fraction passes through the at least one belt and at least some of the coarser fraction moves with the at least one belt, and evacuating the finer fraction at the other side of the at least one belt. Such evacuating step can include entraining the finer fraction in an air stream and the improved method can further comprise the step of regulating the quantity of air forming the air stream to establish at the other side of the at least one belt a constant subatmospheric pressure. As already mentioned above, the belt is arranged to move in a predetermined direction (such as past the trimming or equalizing station), and the at least some second material is preferably directed against the one side of such belt upstream of the locus or loci of delivery of first material.




The segregating step of the improved method can include directing the at least some second material into the mixture advancing against the one side of the at least one moving belt. Such method can further comprise the step of converting the entrained first material into a rod-like filler, and such converting step can include removing a first portion (namely the surplus) of the entrained first material from a second portion at the one side of the at least one moving belt; the directing step preferably includes admitting the at least some second material into the second portion of the advancing first material, namely, into the portion which, upon completion of the trimming or equalizing operation, constitutes the rod-like filler.




The improved method can further comprise the step of imparting to the at least some of the segregated second faction a component of movement in the direction of lengthwise movement of the mixture-receiving portion or reach of the belt; the segregated second fraction is preferably imparted such movement prior to the admitting step.




The improved method can be resorted to for simultaneously building at least two streams of smokable material. Such method can further include the step of breaking up the mixture into at least two flows, and the advancing step then includes simultaneously advancing each of the at least two flows against one side of one of at least two discrete moving belts. Still further, such method comprises the step of dividing the at least some second material, which has passed through the respective one of the at least two belts, into at least two masses prior to the segregating step. The just described embodiment of the improved method can further comprise the step of introducing each of the at least two masses into a different one of the at least two streams.




Another feature of the present invention resides in the provision of an apparatus for building at least one stream of smokable material from a mixture containing randomly distributed relatively large first particulate material (such as standard-size shreds of tobacco leaf laminae) and relatively small second particulate material (such as tobacco dust, small or very small portions of tobacco shreds, particles of sand and the like). The improved apparatus comprises at least one pneumatic conveyor having an endless running belt (including a first side and a second side) and at least one first suction chamber adjacent one side of the belt and having an outlet, and the apparatus further comprises means for feeding at least a portion of the mixture against the other side of the belt opposite the first suction chamber. The belt has a permeability such that it entrains the first material but permits at least some second material to pass into the first suction chamber. The improved apparatus also comprises means for evacuating second material from the first suction chamber by way of the aforementioned outlet, means for admitting the evacuated second material against the other side of the belt and/or against the first material being entrained by the belt, at least one second suction chamber disposed at the one side of the belt and serving to gather second material being furnished by the admitting means and having passed through the belt due to suction in the at least one second chamber, and means for drawing air and second material from the at least one second chamber.




The material admitting means and/or the means for drawing second material from the at least one second suction chamber can comprise one or more air conveying pipes, hoses and/or analogous conduits.




The volume of the at least one first suction chamber can greatly exceed the volume of the at least one second suction chamber.




The at least one pneumatic conveyor further includes means (such as one or more driven pulleys) for moving the belt in a predetermined direction, and the at least one second suction chamber can be provided or installed upstream of the at least one first suction chamber (as seen in the predetermined direction). Alternatively, the at least one second suction chamber can be provided in the at least one first suction chamber. The length of the at least one first suction chamber can exceed (e.g., it can be several times) the length of the at least one second suction chamber, as seen in the predetermined direction. Furthermore, the at least one second suction chamber can be spaced apart from the material admitting means, again as seen in the predetermined direction.




It is also possible to construct and install the means for admitting the evacuated second material in such a way that it discharges second material into the feeding means.




The means for admitting the evacuated second material can be arranged to discharge second material with a component of movement in the predetermined direction.




The apparatus can further comprise signal generating sensors and/or other suitable means for monitoring the pressure in the at least one first and/or in the at least one second suction chamber and/or means for regulating the pressure in the at least one first suction chamber. The regulating means can include control means for processing signals being furnished by the aforementioned sensor means and means for adjusting (when warranted) the air drawing means in response to the processed signals.




If the improved apparatus is utilized in a machine for simultaneously producing two or more rod-like fillers of smokable material, the transporting means includes at least two conveyors (each having an endless foraminous belt) and at least one second suction chamber for each conveyor. The feeding means of such apparatus includes means for dividing the mixture into several fractions, one for each conveyor, and means for feeding a discrete fraction of the mixture against the other side of the belt of each conveyor. The means for admitting evacuated second maerial then includes means for directing second material toward the other side of the respective belt at least substantially opposite the respective second suction chamber so that at least a substantial part of the second material having been discharged against the other side of the respective belt is drawn into the respective second suction chamber. In such apparatus, the means for admitting the evacuated second material against the other side of the respective belt and/or against the first material being entrained by the respective belt further includes adjustable means for breaking up second material into discrete masses, one for each of the directing means.




The novel features which are considered as characteristic of the invention are set forth in particular in the appended claims. The improved apparatus itself, however, both as to its construction and the modes of installing and utilizing the same, together with numerous additional important and advantageous features and attributes thereof, will be best understood upon perusal of the following detailed description of certain presently preferred specific embodiments with reference to the accompanying drawings.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a schematic partly elevational and partly sectional view of an apparatus embodying one form of the present invention and being designed for use in a machine which is set up to simultaneously turn out a plurality of rod-shaped tobacco fillers;





FIG. 2

is a enlarged fragmentary schematic sectional view of a device which can be utilized in the apparatus of

FIG. 1

to divide a flow of segregated small particles of smokable material into two discrete masses;





FIG. 3

is a similar view of a second device which can be put to use in lieu of the device shown in

FIG. 2

;





FIG. 4

shows an apparatus which is somewhat different from that shown in

FIG. 1

; and





FIG. 5

shows an apparatus which constitutes a simplification of the apparatus shown in

FIG. 1

or


4


.











DESCRIPTION OF PREFERRED EMBODIMENTS





FIG. 1

shows an apparatus which is designed to supply two discrete rod-shaped fillers


43


,


44


of smokable material (primarily shredded tobacco leaf laminae) to two discrete wrapping mechanisms of a cigarette making machine of the type disclosed, for example, in aforementioned U.S. Pat. No. 5,125,419 granted Jun. 30, 1992 to Heitmann for “METHOD OF AND APPARATUS FOR MAKING PLURAL TOBACCO STREAMS”. A cigarette making machine which can embody the apparatus of

FIG. 1

is known as PROTOS 2 (distributed by the assignee of the present application).




The character


1


denotes a so-called distributor or hopper which is set up to feed a mixture containing relatively large first particulate material (such as customary tobacco shreds shown at


5




a


and


6




a


) and relatively small second particulate material (such as tobacco dust, particles of sand and/or metal and relatively small (comminuted) tobacco shreds) into a duct


2


. The latter feeds a composite tobacco shower


3


containing the mixture of randomly distributed large first and small second particulate material into the range of a stationary separating tool


4


which divides the shower


3


into two discrete narrower showers


5


and


6


. The ascending particles are attracted by a composite first suction chamber


15


having two sections or portions


15




a


,


15




b


each of which forms part of a discrete pneumatic conveyor. The two conveyors serve as a means for transporting the first particulate material and some of the second particulate material from the distributor


1


to the wrapping mechanisms of the machine embodying the improved apparatus.




The first conveyor comprises an endless foraminous running belt or strip


7


which is trained over pulleys


9


and


10


. The substantially horizontal lower reach or stretch of the belt


7


advances in the direction of arrow


13


when at least one of the pulleys


9


and


10


is driven by a suitable prime mover, e.g., an electric motor or the like.

FIG. 1

shows a prime mover


9




a


which is arranged to drive the front pulley


9


.




The lower section


15




a


of the composite suction chamber


15


has an open underside adjacent the upper side of the lower stretch or reach of the foraminous belt


7


. This lower section of the chamber


15


extends along the major part of the upper side of the lower stretch of the belt


7


. As shown in

FIG. 1

, the lower section


15




a


extends from the front pulley


9


toward but slightly short of the rear pulley


10


.




The construction of the illustrated upper pneumatic conveyor is or can be identical with that of the lower conveyor. Thus, the upper conveyor comprises an endless running belt or strip


8


which is trained over two pulleys


11


,


12


and is set in motion (note the arrow


14


) in response to starting of a prime mover


11




a


for the pulley


11


. It is clear that the prime mover


9




a


can drive the pulleys


9


,


11


of both pneumatic conveyors. The open underside of the upper section


15




b


of the suction chamber


15


extends along the upper side of the lower stretch or reach of the foraminous belt


8


all the way from the front pulley


11


toward but slightly short of the rear pulley


12


.




The shower


5


which is separated from the shower


3


by the tool


4


ascends toward the underside of the lower reach of the belt


7


and its larger particulate material


5




a


is entrained in the direction of the arrow


13


. The thus accumulated stream of large particles


5




a


is caused to advance past a conventional trimming or equalizing device


16


which removes the surplus


45


but permits the thus obtained rod-like filler


43


to advance into the aforementioned wrapping mechanism which confines the filler


43


in an elongated wrapper of cigarette paper or the like. Such wrapper and the filler


43


together constitute a continuous cigarette rod which is ready to be subdivided into a row of plain cigarettes of unit length or multiple unit length. The plain cigarettes are fed into a packing machine or into a so-called tipping machine which latter assembles the plain cigarettes with filter mouthpieces to form filter cigarettes of unit length or multiple unit length.




The right-hand shower


6


shown in

FIG. 1

is caused (by the section


15




b


of the first suction chamber


15


and/or by a blower (not shown) of the distributor


1


) to rise toward the underside of the lower reach of the endless belt


8


of the second pneumatic conveyor further including the pulleys


11


,


12


and the prime mover


11




a


. The thus obtained stream (including the larger particles


6




a


) is advanced (in the direction of arrow


14


) past a second trimming or equalizing device


17


which removes the surplus


46


but permits the thus obtained rod-like filler


44


to advance into a second wrapping mechanism wherein this filler is processed in the same way as the filler


43


.




A certain percentage of relatively small second particles which are entrained by the larger particles


5




a


and


6




a


in the showers


5


and


6


is advanced with the lower reaches of the belts


7


and


8


. The permeabilities of the belts


7


and


8


are such that the remaining relatively small second particles pass through the lower stretches of these belts and advance in the respective sections


15




a


,


15




b


of the first suction chamber


15


toward the outlet


15




c


of the section


15




b


. A suction generating material evacuating device


20


is set up to draw air and the remaining percentage


47


of the relatively small particles through the outlet


15




c


, through a conduit


18


, and into a separator


19


which intercepts the solid contents of the air stream flowing from the outlet


15




c


to the device


20


. The separator


19


can be a so-called Mahle Industriefilter Type SFK 1560 distributed by Knecht Filterwerke GmbH, Öhringen, Federal Republic Germany.




A conduit


21


conveys the separated solid material from the separator


19


to a dividing means


22


which breaks up the separated mixture of second particles into masses received by two discrete conduits


23


,


24


for delivery back to the respective pneumatic conveyors.




The mixture


47


which is being evacuated through the outlet


15




c


of the section


15




b


of the composite plenum chamber


15


can contain some or all (small or minute) particles of tobacco dust, sand, metal or the like as well as a certain percentage of fragmentized tobacco shreds (i.e., of fragmentized particles of shreds of the type shown at


5




a


and


6




a


). The fragmentizing of shreds can begin during advancement of shreds from the shredding machine or machines into the distributor


1


, during advancement of shreds in the showers


5


,


6


and/or on impact against the undersides of lower stretches of the belts


7


and


8


. For example, the end portions of certain shreds forming part of the accumulations shown at


5




a


and


6




a


penetrate into the openings of the belts and are broken off in response to impingement of the exposed portions of such shreds upon the accumulations


5




a


and


6




a


and/or vice versa. In accordance with a feature of the present invention, at least the relatively large fragments of tobacco shreds in the masses flowing through the conduits


23


,


24


are recovered and immediately or delayedly introduced into the streams including the fillers


43


,


44


and the respective surplusses


45


,


46


. This entails substantial savings in tobacco and contributes to the so-called fullness (“feel”) of the finished plain cigarettes.




The reintroduced material is shown at


50


in the tobacco stream advancing with the underside of the lower stretch of the belt


7


, and at


51


in the tobacco stream advancing with the underside of the lower reach of the belt


8


. The distances between the lower stretches of the belts


7


,


8


and the rotary knives of the respective trimming devices


16


,


17


are such that the reintroduced materials


50


,


51


form part of the corresponding rod-shaped fillers


43


and


44


. In other words, the reintroduced materials


50


and


51


form part of cigarette rods which are obtained as a result of confining the fillers


43


,


44


in webs of cigarette paper or other suitable wrapping material.




The manner in which the dividing means


22


splits the mixture


47


into two masses which are returned to the respective pneumatic conveyors (i.e., to the belts


7


and


8


) will the described in full detail with reference to

FIGS. 2 and 3

.




The character


25


denotes in

FIG. 1

an ejector which can be utilized in lieu of the dividing means


22


to expel solid particles from an air stream in the conduit


21


.




The means for admitting second material (mixture


47


) against the undersides of lower stretches of the belts


7


,


8


and/or against the streams of first material already adhering (by suction) to the belts includes a total of four additional (second) suction chambers


28




a


(adjacent the upper side of the lower stretch of the belt


7


in the lower section


15




a


of the first suction chamber


15


),


28




b


(adjacent the upper side of the lower reach of the belt


7


behind the section


15




a


, as seen in the direction of the arrow


13


),


29




a


(adjacent the upper side of the lower reach or stretch of the belt


8


in the upper section


15




b


of the first chamber


15


) and


29




b


(adjacent the upper side of the lower stretch of the belt


8


behind the section


15




b


, as seen in the direction of arrow


14


). The second suction chambers


28




a


,


28




b


,


29




a


and


29




b


are much smaller than the suction chamber


15


; in fact, the volume of each of the suction chambers


28




a


,


28




b


is a small fraction of the volume of the section


15




a


, and the volume of each of the suction chambers


29




a


,


29




b


is a small fraction of the volume of the section


15




b


. Furthermore, the length of each of the second suction chambers


28




a


,


28




b


(as seen in the direction of the arrow


13


) is a small fraction of the length of the section


15




a


, and the length of each of the second chambers


29




a


,


29




b


is a small fraction of the length of the section


15




b


(as seen in the direction of the arrow


14


).




The conduit


23


carries a material admitting nozzle


26




a


which directs the recovered mixture of second particles against the growing tobacco stream on the lower reach of the belt


7


in such direction that some of the thus reintroduced (second) material is propelled and/or is drawn toward the underside of the second suction chamber


28




a


. A second material admitting nozzle


26




b


of the conduit


23


discharges recovered second material in a direction toward the underside of the lower reach of the belt


7


and against the underside of the second suction chamber


28




b.






The conduit


24


carries two material admitting nozzles


27




a


,


27




b


which respectively discharge second material against the growing tobacco stream at the underside of the lower reach at the belt


8


(as well as toward the underside of the suction chamber


29




b


). The means for drawing air and for thus evacuating the solid contents of the suction chambers


28




a


,


28




b


by suction comprises conduits


30




a


,


30




b


which discharge into a common conduit


32


. The latter discharges into a second suction generating device


35


which segregates the solid particles from the gaseous carrier medium and discharges such second particles into a suitable disposing or processing unit


35




a


, e.g., into the central dust disposing or de-dusting or processing unit


35




a


of the plant or factory in which the machine embodying the apparatus of

FIG. 1

is being put to use.




The means for evacuating the solid contents of the second suction chambers


29




a


,


29




b


comprises conduits


31




a


,


31




b


leading to the conduit


32


which delivers the solid particles to the aforementioned suction generating device


35


. The segregated solid particles are admitted into the dedusting unit


35




a.






The apparatus of

FIG. 1

further comprises a control unit


39


which receives signals furnished by a pressure sensor


36


in the second suction chamber


28




a


, by a pressure sensor


37


in the second suction chamber


29




a


, and by a pressure sensor


38


in the upper section


15




b


of the composite first suction chamber


15


. The control unit


39


processes the signals from the sensors


36


,


37


,


38


and, when necessary, actuates the one and/or the other of the throttle valves


33


,


34


or other suitable flow and/or pressure regulating means in the respective conduits


30




a


,


31




a


. The conductors for the transmission of processed signals from the control unit


39


to the valves


33


and


34


are respectively shown at


40


and


41


. A conductor


42


connects the control unit


39


with the suction generating device


35


.




The nozzle


26




a


is installed in that portion of the duct


2


which guides the shower


5


, i.e., the mixture of smaller particles furnished by the conduit


23


can be fed directly into the shower


5


. Analogously, the nozzle


27




a


discharges second material directly into the shower


6


advancing toward the underside of the lower reach of the belt


8


.




The apparatus of

FIG. 1

can be set up to operate with the nozzle


26




a


and/or


26




b


as well as with the nozzle


27




a


and/or


27




b


. The actual positions of the second suction chambers


28




a


,


28




b


,


29




a


,


29




b


and of the associated nozzles


26




a


,


26




b


,


27




a


,


27




b


can be different from those shown in

FIG. 1

, for example, if the shifting of one or more nozzles to different position(s) renders such nozzle or nozzles more readily accessible in a cigarette making machine or an analogous machine embodying the apparatus of FIG.


1


. The latter shows the presently preferred positions of the nozzles and of the associated second suction chambers. As a rule, there is sufficient room between the distributor


1


and the belts


7


and


8


to accommodate the nozzles


26




a


,


26




b


and


27




a


,


27




b


in a manner to render them accessible for inspection, maintenance (such as cleaning) and/or replacement.




The second chambers


28




a


,


28




b


are installed slightly downstream of the respective nozzles


26




a


,


26




b


(as seen in the direction indicated by the arrow


13


), and the same applies for the positions of the second chambers


29




a


,


29




b


relative to the nozzles


27




a


,


27




b


(as seen in the direction of the arrow


14


). Therefore, the inclinations of all of the nozzles


26




a


,


26




b


,


27




a


,


27




b


are such that these nozzles discharge second material with components of movement in the directions indicated by the respective arrows


13


and


14


.




The apparatus of

FIG. 1

can be operated with the nozzles,


26




a


,


27




a


, with the nozzles


26




b


,


27




b


, with the nozzles


26




a


,


27




a


and


26




b


,


27




b


, or even with a single nozzle (


26




a


,


26




b


,


27




a


or


27




b


), depending upon the percentage of small particles


47


in the showers


5


and


6


and/or upon the desired ratio of smaller particles to be removed from the showers


5


and


6


. In many instances, the apparatus will be operated with the nozzles


26




a


or


26




b


and


27




a


or


27




b


open so that at least some smaller particles will be withdrawn from the shower


5


as well as from the shower


6


.




The operation is as follows:




The distributor


1


of the cigarette rod making machine delivers a wide tobacco shower


3


into the duct


2


wherein the tool


4


divides the wide shower into two narrower showers


5


and


6


. The showers


5


and


6


rise against the undersides of the lower reaches of the respective foraminous belts


7


,


8


where the larger particles


5




a


and


6




a


accumulate to form two streams advancing in the directions respectively indicated by the arrows


13


and


14


. The stream advancing with the belt


7


is equalized by the trimming device


16


which removes the surplus


45


but allows the thus obtained rod-like filler


43


to advance toward the respective wrapping mechanism. The stream advancing with the belt


8


is equalized by the trimming device


17


which removes the surplus


46


but permits the thus obtained rod-like filler


44


to advance with the belt


8


toward the corresponding wrapping mechanism. Wrapping mechanisms which can be utilized in combination with the apparatus of

FIG. 1

are disclosed, for example, in commonly owned U.S. Pat. No. 4,721,119 granted Jan. 26, 1988 to Ludszeweit et al. for “ROD MAKING MACHINE WITH MEANS FOR ADJUSTING THE POSITION OF WRAPPING MATERIAL”.




Suction in the composite first chamber


15


is selected in such a way that the streams including the larger particles


5




a


and


6




a


are attracted to the respective belts


7


,


8


as well as that at least some smaller particles (shown in the upper section


15




b


of the chamber


15


, as at


47


) penetrate through the respective belts and flow with air toward and through the outlet


15




c


, i.e., into the evacuating conduit


18


. Such smaller particles


47


issue from the nozzles


26




a


,


27




a


and penetrate through the growing streams at the undersides of lower stretches of the belts


7


and


8


and enter the respective sections


15




a


,


15




b


of the composite first suction chamber


15


to be evacuated with the stream of air flowing into the conduit


18


under the action of the suction generating device


20


. The separator or filter


19


intercepts the smaller particles


47


and admits them into the conduit


21


. The dividing means


22


breaks the flow of particles


47


ito two masses which are respectively admitted into the conduits


23


and


24


.




If the nozzles


26




a


,


27




a


are open, they discharge the respective portions


48


,


49


of the mixture


47


into the respective showers


5


,


6


for entrainment toward the undersides of the lower stretches of the respective foraminous belts


7


and


8


. The coarse fractions


50


,


51


in the streams being entrained by the respective belts


7


,


8


contain the larger constituents of the masses flowing in the conduits


23


,


24


and being discharged by the respective nozzles


26




a


,


27




a


. Tobacco dust


52


,


53


and other minute constituents of the masses issuing from the nozzles


26




a


,


27




a


are attracted by suction in the respective sections


15




a


,


15




b


of the first suction chamber


15


as well as by suction in the respective second suction chambers


28




a


,


29




a


and are withdrawn therefrom via conduits


30




a


,


31




a


to enter the dedusting unit


35




a


by way of the conduit


32


and suction generating device


35


.




The particles


50


,


51


constitute the coarser fractions of the mixtures being discharged by the nozzles


26




a


and


27




a


, and the particles


52


,


53


constitute tobacco dust and other minute particles of similar size. The streams of tobacco shreds at the undersides of lower reaches or stretches of the belts


7


,


8


intercept coarser partices of the mixture


47


, e.g., fragments of broken-up tobacco shreds. Even though such coarser particles of the mixture


47


normally constitute or can constitute a relatively small percentage of the shower


3


being supplied by the duct


2


of the distributor


1


, they nevertheless contribute significantly to the economy of operation of the cigarete rod making machine embodying the apparatus of FIG.


1


. The smallest particles of the masses being supplied to the nozzles


26




a


,


27




a


via conduits


23


,


24


penetrate through the respective tobacco streams and through the lower stretches of the respective belts


7


,


8


to gather (at


52


and


53


) primarily in the respective second suction chambers


28




a


,


29




a


. Such particles are evacuated into the dedusting unit


35




a


via conduits


30




a


,


31




a


,


32


and suction generating device


35


.




If the nozzles


26




a


,


27




a


are closed but the nozzles


26




b


,


27




b


are free to discharge those portions of the mixture


47


which are respectively delivered by the conduits


23


and


24


, at least some of the coarser fractions of the mixture


47


are intercepted and entrained by the lower reaches of the belts


7


,


8


(for addition to the respective streams


43


+


45


and


44


+


46


, and the finer fractions (corresponding to those shown at


52


,


53


) are permitted to penetrate into the second suction chambers


28




b


,


29




b.






The signals from the pressure sensors


36


,


37


,


38


are processed by the control unit


39


which (when necessary) initiates an adjustment of the valves


33


and


34


in order to increase or reduce the quantities of fine particles


52


,


53


entering the dedusting unit


35




a


accordingly. Additional pressure sensors can be provided in the second suction chambers


28




b


,


29




b


for evacuation of larger or smaller quantities of finer or finest particles via conduits


30




b


,


31




b


when the nozzles


26




a


,


27




a


are closed but the nozzles


26




b


,


27




b


are free to discharge minute particles received from the respective conduits


23


,


24


. The valves mounted in the conduits


30




b


,


31




b


are not shown in FIG.


1


.




It is also possible to open the nozzles


26




a


,


27




a


simultaneously with the nozzles


26




b


,


27




b


, to open three of the four nozzles, or to open only one of the four nozzles. This depends upon the composition of the shower


3


and/or upon the desired percentage of finer particles being admitted into the dedusting unit


35




a.






The control unit


39


can be set up to operate the valves


33


,


34


and the suction generating device


35


(via conductors


40


,


41


and


42


) in such a way that there are no abrupt changes of pressure at the boundaries between the second chambers


28




a


,


29




a


and the respective sections


15




a


,


15




b


of the first suction chamber


15


.




The means


22


for dividing the second particles


47


being delivered by the conduit


21


into two masses which enter the conduits


23


,


24


can be constructed and operated in a manner as shown in

FIG. 2

or


3


.

FIG. 2

shows a conduit


102


(corresponding to conduit


21


shown in

FIG. 1

) which supplies a stream of air and the particles


47


into a dust separator


101


. Cleaned air is evacuated via conduit


103


, and a gate


104


transfers the separated solid particles


47


into a collecting receptacle


105


. The latter is provided with ejectors


108


,


109


which respectively deliver particles to the conduits


110


,


111


corresponding to the conduits


23


,


24


shown in

FIG. 1. A

pivotable partition


106


is provided to distribute the particles entering the receptacle


105


between the ejectors


108


and


109


, i.e., between the conduits


110


and


111


. A handgrip portion


107


(e.g., a lever) is provided to select the angular position of the partition


106


and hence the ratios of solid prticles leaving the receptacle


105


and entering the ejectors


108


,


109


. The gate


104


can include or constitute a cell wheel which is rotatable about a fixed axis and has vanes or blades which transfer solid particles from the dust separator


101


into the collecting receptacle


105


.




The manually operable handgrip portion


107


can be replaced with an electric motor or with any other suitable automatically operable device capable of properly selecting the positions of the partition


106


.




The structure which is shown in

FIG. 3

constitutes another presently prefered version of the separator or dividing means


22


. A pneumatic conduit


201


(corresponding to the conduit


21


in the apparatus of

FIG. 1

) supplies a mixture (corresponding to the mixture


47


shown in

FIG. 1

) of finer and coarser smaller particles to a branch


206


serving to establish a connection between the discharge end of the conduit


201


and the intake ends of two conduits


202


,


203


corresponding to the conduits


23


,


24


shown in

FIG. 1. A

pivotable flap


204


at the junction of the conduit


201


with the conduits


202


,


203


has an end portion


205


extending into the conduit


201


and serving to determine the distribution of the mass of particles arriving via conduit


201


into the masses of particles being admitted into the conduits


202


and


203


. The flap


204


can be pivoted by hand (as in the embodiment of

FIG. 2

) or automatically, e.g., by an electric motor receiving signals from a control unit, not shown in FIG.


3


.





FIG. 4

illustrates an apparatus which constitutes a modification of the apparatus shown in FIG.


1


. The main difference between these apparatus is that, in

FIG. 4

, the nozzles


26




a


,


27




a


and the corresponding second suction chambers


28




a


,


29




a


are omitted. The suction chambers


28




b


,


29




b


of

FIG. 4

respectively contain fluid pressure sensors


36


,


37


which transmit signals to the control unit


39


. In all other respects, the apparatus of

FIG. 4

is or can be identical with the apparatus of FIG.


1


. The particles which are supplied by the nozzles


26




b


,


27




b


are classified only by the lower reaches or stretches of the respective foraminous belts


7


,


8


. Larger particles (such as acceptable-size fragments of tobacco shreds) are entrained by the respective belts


7


,


8


to be admixed to the materials of the showers


5


and


6


, respectively. The smallest particles (such as tobacco dust) are admixed to the particles which form therewith a mass


47


which is evacuated by suction through the conduit


18


and into the separator


19


.





FIG. 5

shows an apparatus constituting a further simplification of the apparatus shown in

FIG. 1 and a

simplification of the apparatus shown in FIG.


4


. This apparatus is designed for use in a cigarette making machine having a single wrapping mechanism, namely for the rod-like tobacco filler


44


. The separator


22


of

FIG. 1

is not necessary, and the same holds true for the conduits


23


,


24


, i.e., the conduit


21


delivers all segregated smaller particles to the nozzle


27




a.






All such parts of the apparatus shown in

FIGS. 4 and 5

which are identical with or plainly analogous to those shown in

FIG. 1

are denoted by similar reference characters.




The improved apparatus can be modified in a number of additional ways without departing from the spirit of the invention. For example, the sensors


36


,


37


and


38


can be omitted if the apparatus of

FIG. 1

is provided with means (not shown) for intermittently or continuously withdrawing samples of the solid particles gathering in the first suction chamber


15


. The results of examination of such samples can be utilized to adjust the valve


33


and/or


34


in order to select appropriate subatmospheric pressures in the corresponding suction chambers.




Furthermore, the separator


19


can be dimensioned to separate solid particles from a fluid carrier being supplied by the conduit


18


as well as by one or more additional conduits supplying fluid laden with tobacco dust and/or fragments of tobacco shreds which are to be separated from fluid (normally air) and admitted to the streams at the underside of the lower stretch of the belt


7


and/or


8


. For example, the separator


19


can receive air from the area surrounding the cigarette making machine which embodies the structure of

FIG. 1

, provided that such air contains that percentage of useful smokable material which warrants the withdrawal of smokable material and its admission into one or more tobacco streams (such as the stream including the constituents


43


,


45


at the underside of the lower stretch of the belt


7


and/or the stream including the the constituents


44


,


46


at the underside of the lower reach of the belt


8


).




The separator


22


can be combined with the separator


19


so that the conduit


21


can be omitted.





FIG. 1

shows that the widths of the flows of recovered smaller particles issuing from the nozzles


26




a


,


27




a


are mere fractions of the widths of the corresponding showers


5


,


6


(as seen in the directions respectively indicated by the arrows


13


and


14


). This ensures that all of the particulate material issuing from the nozzles


26




a


,


27




a


and passing through the respective growing streams at the undersides of the lower reaches of the respective belts


7


,


8


, as well as through the respective belts, can be intercepted and gathered by relatively small second suction chambers


28




a


,


29




a


. The above applies with equal force for the nozzles


26




b


,


27




b


and the respective suction chambers


28




b


,


29




b.






It is normally desirable to ensure that only certain categories (sizes) of particles contained in the mixtures


48


,


49


be introduced into the tobacco streams advancing with the lower stretches of the belts


7


and


8


. It is equally desirable to ensure that the dedusting unit


35




a


receive only tobacco dust and particles of similar size. All this is accomplished in the apparatus of

FIG. 1

by directing the mixtures


48


,


49


into the showers


5


and


6


so that the segregation of reusable tobacco particles (such as fragments of tobacco shreds) can begin in the showers


5


,


6


and continue at the respective stream building stations where the acceptable tobacco particles are intercepted by the growing tobacco streams and/or by the lower stretches of the respective foraminous belts


7


,


8


. Those small particles which are admitted by the nozzles


26




a


,


27




a


and are drawn into the respective second suction chambers


28




a


,


29




a


are of proper size to be conveyed into the dedusting unit


35




a


. However, a certain percentage of such smaller particles is intercepted by the respective tobacco streams and advances therewith toward the respective trimming devices


16


,


17


. Supplying of tobacco streams with a surplus (such as those shown at


45


and


46


) is desirable and advantageous because, once the surplus is removed, the remaining portions


43


,


44


of the tobacco streams invariably constitute two rod-like fillers having constant cross sections throughout and being convertible into parts of cigarettes having constant diameters and densities. Such parameters contribute to the quality of the rod-shaped smokers' products.




In a standard cigarette making machine, the filler


43


or


44


constitutes about two thirds of the stream including the components


43


,


45


or


44


,


46


of the respective tobacco streams, i.e., the trimming devices are normally positioned to remove surplusses


44


,


46


each of which constitutes one-third of the tobacco stream being advanced by the respective belt


7


,


8


. As already mentioned above, and as shown in

FIG. 1

, the recirculated (medium sized) tobacco particles


50


and


51


are admitted into those portions of the tobacco streams which ultimately constitute the rod-like fillers


43


,


44


.




Though it is possible to install the nozzles


26




a


,


27




a


in the respective showers


5


,


6


at a considerable distance from the respective belts


7


,


8


, it is normally preferred to place such nozzles close to or into immediate proximity of the undersides of lower stretches of the respective belts


7


,


8


; this ensures that the second suction chambers


28




a


,


29




a


can gather all or nearly all small particles which should be delivered to the dedusting unit


35




a


. As already mentioned hereinabove, the positions of the nozzles


26




a


,


27




a


relative to the respective second suction chambers


28




a


,


29




a


are selected, at least to a certain extent, with a view to ensure that the nozzles are readily accessible in a cigarette making or an analogous machine which can employ apparatus of the present invention. The selected orientations of the nozzles


26




a


,


27




a


(as well as


26




b


,


27




b


) in such a way that the material issuing from their orifices has a component of movement in the direction of the arrow


13


or


14


ensure more satisfactory entrainment of small tobacco particles by the tobacco streams accumulating at the undersides of the lower stretches of the belts


7


and


8


.




An important function of the control unit


39


and of the associated sensors (including those shown at


36


,


37


and


38


) is that it ensures the establishment of an at least substantially constant pressure along the upper sides of lower stretches of the belts


7


and


8


. This is achievable in a simple and efficient manner by regulating the rate of evacuation of air via conduits


30




a


,


31




a.






The widths of the second suction chambers


28




a


,


28




b


and/or


29




a


,


29




b


(as seen in the directions indicated by the respective arrows


13


,


14


) preferably exceed the widths or the diameters of the outlets of the respective nozzles


26




a


,


27




a


and/or


26




b


,


27




b


. This enhances the ability of the second suction chambers to gather the small particles which are to be conveyed to the dedusting unit


35




a.






Without further analysis, the foregoing will so fully reveal the gist of the present invention that others can, by applying current knowledge, readily adapt it for various applications without omitting features that, from the standpoint of prior art, fairly constitute essential characteristics of the generic and specific aspects of the above outlined contribution to the art of making cigarettes or the like and, therefore, such adaptations should and are intended to be comprehended within the meaning and range of equivalence of the appended claims.



Claims
  • 1. Apparatus for building at least one stream of smokable material from a mixture containing relatively large first particulate material and relatively small said particulate material, comprising:transporting means including a pneumatic conveyor having an endless running belt including a first side and a second side, and at least one first suction chamber adjacent one side of said belt and having an outlet; means for feeding at least a portion of the mixture against the other side of the belt opposite said first suction chamber, said belt having a permeability such that it entrains the first material but permits at least some second material to pass into said chamber; means for evacuating second material from the first suction chamber by way of said outlet; means for admitting evacuated second material against at least one of (a) said other side of said belt and (b) the first material being entrained by the belt; at least one second suction chamber disposed at said one side of said belt and arranged to gather second material being furnished by said admitting means and having passed through the belt due to suction in at least one of said chambers; and means for drawing air and second material from said at least one second suction chamber.
  • 2. The apparatus of claim 1, wherein at least one of said material admitting means and said means for drawing air and second material comprises at least one air conveying conduit.
  • 3. The apparatus of claim 1, wherein the volume of said at least one first suction chamber greatly exceeds the volume of said at least one second suction chamber.
  • 4. The apparatus of claim 1, wherein said at least one pneumatic conveyor further includes means for moving said belt in a predetermined direction, said at least one second suction chamber being disposed upstream of said at least one first suction chamber, as seen in said predetermined direction.
  • 5. The apparatus of claim 1, wherein said at least one second suction chamber is disposed in said at least one first suction chamber.
  • 6. The apparatus of claim 1, wherein said at least one pneumatic conveyor further includes means for moving said belt in a predetermined direction, said at least one second suction chamber having a first length and said at least one first suction chamber having a greater second length, as seen in said predetermined direction.
  • 7. The apparatus of claim 1, wherein said at least one pneumatic conveyor further includes means for moving said belt in a predetermined direction, said at least one second suction chamber being spaced apart from said admitting means as seen in said predetermined direction.
  • 8. The apparatus of claim 1, wherein said means for admitting the evacuated second material is arranged to discharge second material into said feeding means.
  • 9. The apparatus of claim 1, wherein said at least one pneumatic conveyor further includes means for moving said belt in a predetermined direction, said means for admitting the evacuated second material being arranged to discharge second material with a component of movement in said predetermined direction.
  • 10. The apparatus of claim 1, further comprising means for monitoring the pressure in said at least one second suction chamber.
  • 11. The apparatus of claim 1, further comprising means for monitoring the pressure in said at least one first suction chamber.
  • 12. The apparatus of claim 1, further comprising means for regulating the pressure in said at least one second suction chamber.
  • 13. The apparatus of claim 1, further comprising signal generating first sensor means for monitoring the pressure in said at least one first suction chamber, second signal generating sensor means for monitoring the pressure in said at least one second suction chamber, control means for processing the signals being generated by said first and second sensor means, and means for adjusting said air drawing means in response to signals being processed by said control means.
  • 14. The apparatus of claim 1, wherein said transporting means includes two conveyors each having an endless foraminous running belt and discrete second suction chambers for each belt, said feeding means including means for dividing the mixture into two fractions, and means for feeding a discrete one of said fractions of the mixture against the other side of each of said belts, said means for admitting including means for directing second material toward the other side of the respective belt at least substantially opposite the respective second suction chamber so that at least a substantial part of second material having been directed against the other side of the respective belt is drawn into the respective second suction chamber.
  • 15. The apparatus of claim 14, wherein said means for admitting further includes adjustable means for breaking up second material into a plurality of discrete masses, one for each of said directing means.
Priority Claims (1)
Number Date Country Kind
100 51 031 Oct 2000 DE
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a divisional application of application Ser. No. 09/976,291 filed Oct. 15, 2001, which claims priority of the commonly owned German application Serial No. 100 51 031.0 filed Oct. 14, 2000. The disclosure of the above-referenced patent applications, as well as that of each US and foreign patent and patent application identified in the specification of the present application, is incorporated herein by reference.

US Referenced Citations (5)
Number Name Date Kind
3282270 Morris et al. Nov 1966 A
4003385 Adebahr et al. Jan 1977 A
4281670 Heitmann et al. Aug 1981 A
4721119 Ludszeweit et al. Jan 1988 A
5125419 Heitmann Jun 1992 A
Foreign Referenced Citations (1)
Number Date Country
39 19 720 Dec 1990 DE