The present invention relates to an apparatus for making reinforcing cages for reinforcing concrete and concrete piles.
Reinforcing cages typically have a plurality of longitudinally extending reinforcing rods. The rods are arranged such that they form a square, circular or other configuration when viewed in transverse section. The rod arrangement is maintained by a plurality of bands which extend about the rods at locations along the length of the rods. These bands are typically circular and are fixed to the rods by welding. Sometimes a continuous spiral band is employed in place of or in addition to the individual bands.
The manufacture of such cages is particularly labour intensive and typically requires the use of a stationary jig. The longitudinally extending rods are supported by the jig which maintains the positions of the rods relative to one another. A series of bands are then placed at intervals along the length of the rods. The bands are progressively welded to the rods to complete the cage. Partial disassembly of the jig is necessary to remove the finished cage from the jig. Alternatively, a band is secured to the rods and the rods are then withdrawn slightly from the jig so that further bands can be secured to the rods.
This method of manufacturing reinforcing cages is particularly labour intensive and, as a consequence, the resultant cages are expensive to manufacture.
A further problem which is often encountered when constructing particularly long cages or cages which are constructed from relatively thin gauge rods is that such cages have a tendency to twist during their construction. This problem is particularly prevalent when using the previously mentioned manufacturing technique of withdrawing the reinforcing rods from a jig.
It is therefore an object of the present invention to overcome, or at least ameliorate, one or more of the deficiencies associated with the prior art.
According to a first aspect of the present invention there is provided an apparatus for making a reinforcing cage, the apparatus comprising a frame, a former adapted to receive a plurality of longitudinally extending reinforcing rods, a bed supported by a frame, wherein the former rest on and is able to rotate relative to the bed, a drive rotating the former, a loading module located adjacent to the former, and having a shuttle mounted for longitudinal reciprocal movement towards and away from the former, whereby the shuttle may feed reinforcing rods into the former as it moves toward the former, and may withdraw the reinforcing rods from the former as a reinforcing band is placed around the withdrawn reinforcing rods, and a rotatable cage holder adapted to hold on to the reinforcing cage and to rotate with the former while holding on to the cage such that the former is unable to rotate relative to the cage holder, whereby the cage holder is able to substantially prevent twisting of the reinforcing rods as the former rotates.
Advantageously, the frame is adapted to raise and lower the former.
Preferably, the former includes a plurality of reinforcing rod supporting members. The supporting members may include tubes. The tubes may be circumferentially spaced from one another and secured together to define a cylindrical former. The tubes may be secured together by a plurality of longitudinally spaced rings which extend about the tubes. The tubes may be secured to a cylindrical pipe. The tubes may extend past at least one end of the pipe. The supporting members may include at least one plate which is secured to the pipe, the plate having apertures extending therethrough. Tubes may extend from the apertures.
The reinforcing rod supporting members may include tubes, wherein the tubes are secured together by a plurality of longitudinally spaced rings which extend about the tubes. The locations of the tubes relative to each other may be adjustable.
The reinforcing rod supporting members may include at least one plate having apertures extending therethrough. The plate may be secured to a cylindrical pipe. Tubes may extend from the apertures.
Advantageously, the bed includes a plurality of rollers which are adapted to support the former. Preferably, at least one of the rollers is driven by the drive.
Preferably, the apparatus includes a press assembly which is adapted to bias the former onto the bed.
The loading module may include a table adjacent the shuttle onto which reinforcing rods may be positioned and presented to allow the shuttle to feed the rods to the former. The loading module may be adapted to be raised and lowered. The loading module may include longitudinally extending rails along which the shuttle may be driven for movement towards and away from the former. The loading module may include a pair of longitudinally extending support rollers arranged on opposite sides of the shuttle on which the reinforcing cage is rotatably supported as the shuttle moves away from the former. An unloading ramp may be situated on one side of the shuttle opposite the table. The support rollers may be driven by a drive. A cantilevered support may extend from one end of the loading module, wherein the cantilevered support forms an extension to the loading module. The loading module may include a drive and at least one drive chain may extend between that drive and the shuttle.
The shuttle may include an upright member having one end receivable by the rails.
Preferably, the rotatable cage holder has an axle which is coupled to the former such that the axle rotates in unison with the former. A plurality of cage engaging members may extend from the axle, wherein the cage engaging members are adapted to engage with the reinforcing cage. The rotatable cage holder may include a rotatable hub which is mounted to the shuttle, the hub being adapted to couple with the axle. The apparatus may include a drive which is adapted to be coupled to the axle and to move the axle towards the former. The drive may include a winch.
Preferably, the rotatable cage holder has an axle which is coupled to the former such that the axle rotates in unison with the former. A plurality of cage engaging members may extend from a rotatable hub which is mounted to the shuttle, wherein the cage engaging members are adapted to engage with the reinforcing cage. The hub may be detachably coupled to the axle.
Preferably, the apparatus may include a feed which is operable to direct a reinforcing bar towards the reinforcing rods such that rotation of the former causes the reinforcing bar to wrap around the rods in a spiral fashion. The feed may include guide rollers which are adapted to direct the reinforcing bar in a spiral fashion about the reinforcing rods extending from the former.
Advantageously, the apparatus may have a support assembly which is adjacent to the former, wherein the support assembly is adapted to support the reinforcing rods introduced into the former. The support assembly may be adapted to be raised and lowered. The support assembly may include support spiders consisting of frames and support discs rotatably received by the frames. The support discs may be coupled to the former such that the support discs and the former rotate in unison. The support discs may be coupled to the former by an axle. A guide may be located adjacent to one of the discs, wherein the guide is adapted to direct the rods which project through the former into supporting engagement with the disc.
Advantageously, the apparatus may have an ejection module which is operable to eject a reinforcing cage from the loading module. The ejection module may be adapted to support a reinforcing cage.
Preferably, the apparatus may have a support module which is adapted to support a reinforcing cage.
In order that the invention may be more fully understood and put into practice, preferred embodiments thereof will now be described with reference to the accompanying drawings.
A first embodiment of an apparatus for making reinforcing cages is illustrated in FIG. 1. The apparatus, which is designated generally by the numeral 10, has a frame 11. The frame 11 includes upright frame members 12 to 17. The frame members 12 to 17 terminate in ground engaging legs. Cross frame members 18 to 22 (see
The apparatus 10 includes a bed 25. The bed 25 includes rollers 26 to 29 (see FIGS. 3 and 4). A shaft 34 extends between rollers 26 and 28. A shaft 35 extends between rollers 27 and 29. A first drive 250 having a motor and a gearbox is operable to rotate the rollers 26 to 29.
With reference to
Referring to
The former 40 illustrated in
Referring to
As shown in
Referring to
Parallel support rollers 120, 121 extend the length of the loading module 90. The support rollers 120, 121 are configured to receive and support a reinforcing cage such that the reinforcing cage is able to rotate relative to the support rollers 120, 121. The support rollers 120, 121 rest on rollers 122, 123. Rotation of rollers 122, 123 causes the support rollers 120, 121 to rotate and vice versa.
Parallel rails 127, 128 extend the length of the loading module 90. The parallel rails 127, 128 are secured to the support frame 205.
A support member 124 extends the length of the support module 90. The support member 124 is secured to the support frame 205.
A guide rail 129 having a curved upper surface extends the length of the support module 90. The guide rail 129 is secured to the support member 124. The guide rail 129 functions to receive reinforcing rods 44 so that the rods 44 can be slid along the rail 129 and inserted into the former 40.
A cantilevered support 150 forms an extension to the loading module 90. The cantilevered support 150 includes a frame 153. Support rollers 151, 152 are mounted to the frame 153. The rollers 151, 152 function as extensions of the rollers 120, 121. The rails 127, 128, support member 124 and guide rail 129 extend along the length of the cantilevered support 150.
A drive, which is located within a housing 160, is operable to rotate rollers 120, 121, 151 and 152.
The module 90 also includes a table (not shown) which is adjacent to a longitudinal side of the module 90. The table functions as a place where reinforcing rods like those identified by the numeral 44 may rest before they are placed on the guide rail 129 for insertion into the former 40.
An unloading ramp (not shown) is located on the opposite side of the loading module 90 to the table. The ramp assists in the removal of completed reinforcing cages from the apparatus 10.
The apparatus 10 also has a shuttle 92. Referring to
A buffer member 130 is attached to one end of the upright 95. A lower edge of the buffer member 130 is configured to closely follow and complement the curve of the guide rail 129. This configuration enables the buffer member 130 to abut against the end of a reinforcing rod 44 which may rest upon the guide rail 129. Movement of the shuttle 92 towards the former 40 combined with the buffer member 130 abutting against the end of the rod 44 results in the rod 44 being slid along the guide rail 129 towards the former 40.
The upright 95 is supported by an adjustable brace member 206 which counteracts the load placed upon the upright 95 by a reinforcing cage.
The height of upright 95 may be adjusted by a mechanism which is operated by a rotating handle 207. This height adjustability allows the shuttle 92 to accommodate reinforcing cages of different diameters.
Chains or cables 131 are attached to the shuttle 92. The chains or cables 131 form continuous loops and a lower part of each loop is received within a respective guard 132. The guards 132 extend along and are secured to the loading module 90. Each chain or cable 131 extends around corresponding sprockets or pulleys which are mounted to the end of the loading module 90 which is closest to the former 40 and the end of the cantilevered support 150 which is furthest from the former 40. The sprockets or pulleys which are mounted to the cantilevered support 150 are rotated by a drive 165 (see FIG. 1). Rotation of the sprockets or pulleys by the drive 165 causes the chain or cable 131 to move around the sprockets or pulleys which results in the shuttle 92 moving along the loading module 90. The direction in which the sprockets or pulleys are rotated determines whether the shuttle 92 is moved towards or away from the former 40.
Reinforcing rods 44 are inserted into the former 40 by firstly operating the drive 165 to move the shuttle 92 away from the former 40 so that there is sufficient room on the guide rail 129 to accommodate a rod 44 between the shuttle 92 and the former 40. The rods 44 are placed onto the table which is adjacent to the loading module 90. One of the rods 44 is then rolled from the table onto the loading module 90 such that the rod 44 rests on the guide rail 129 between the shuttle 92 and the former 40. The former 40 is rotated so that the tube 43 or aperture of the former 40 which is to receive the rod 44 is aligned with the rod 44. The drive 165 is then operated so that the shuttle 92 moves towards the former 40. This movement causes the buffer member 130 to abut against an end of the rod 44 which is resting on the guide rail 129. The drive 165 continues to move the shuttle 92 towards the former 40 until the rod 44 has been inserted into the former 40 by the desired amount. The process is repeated for each rod 44.
Referring to
Referring to
Referring to
The support discs 179, 180 include hollow axles 202 which have a square cross-section. Radial support members 182 extend from each axle 202 and concentric support rings 183 are fixed to the radial support members 182. The second axle 181 extends through and is secured to the axles 202 such that axles 181 and 202 are able to rotate in unison with each other. Since the first axle 181 rotates in unison with the former 40, the support discs 179, 180 also rotate in unison with the former 40.
A guide 190 is located adjacent to the support disc 180. The guide 190 includes plates 191, 192 and 193 which are secured to the support spider 172. The guide 190 is adapted to contact the rods 44 as they are fed into the former 40. The guide 190 directs the rods 44 into supporting engagement with the support disc 180.
Referring to
To construct a cage using the apparatus 10, the third axle 204 is coupled to the hub 141 with the aid of the attachment member 222. The drive 165 is then operated to move the shuttle 92 away from the former 40 so that there is sufficient room on the guide rail 129 to accommodate a rod 44 between the shuttle 92 and the former 40. Typically, the shuttle 92 is moved to the end of the loading module 90 which is furthest from the former 40. Reinforcing rods 44 are placed on the table that is adjacent to the loading module 90 and are allowed to progress one by one onto the rail 129 until one locates forwardly of the upright 95. The shuttle 92 is then driven towards the former 40 to ensure that the rod 44 is received within a selected one of the tubes 43 or apertures of the former 40. The shuttle 92 is then returned to the previous position and the former 40 is rotated through a predetermined arc. A further rod 44 is then allowed to rest in front of upright 95 and the shuttle 92 is moved towards the former 40 to cause the rod 44 to locate inside a selected tube 43 or aperture of the former 40. This process is continued until the rods 44 have been inserted into the desired tubes 43 and apertures of the former 40.
Once the rods 44 have been loaded into the former 40, a reinforcing band 140 is welded to the rods 44. The former 40 may be rotated in a stepwise fashion to allow this to be done. The shuttle 92 is then moved towards the former 40 to allow the hooked members 94 to engage with the band 140. The shuttle 92 may then be moved progressively away from the former 40 to draw the rods 44 from the tubes 43 or apertures of the former 40. As the rods 44 are withdrawn the former 40 is rotated and the reinforcing band 81 is wound in a spiral fashion around the rods 44. The band 81 is welded onto the rods 44 as the rods 44 are withdrawn and in this way a reinforcing cage is produced.
Once the cage is finished the hooked members 94 are released from the ring 140 and the third axle 204 is detached from the hub 141. The winch 200 is then operated to move the third axle 204 towards the former 40. The shuttle 92 is then moved to the end of the loading module 90 which is furthest from the former 40 so that the shuttle 92 does not obstruct the removal of the completed cage from the apparatus 10. The completed cage is then caused to travel down the ramp which is adjacent to the loading module 90 and the process may then be recommenced to produce another cage.
As an alternative to the above method of operation, the third axle 204 may be coupled to the hub 141 after the reinforcing rods 44 have been inserted into the former 40.
If a former 40 including the previously described reinforcing rod storage feature is used, the operation of the apparatus 10 is substantially the same as described above except for a few minor differences. Firstly, the former 40 is oriented so that the tubes of the former 40 which provide the storage feature are adjacent to the loading module 90. The reinforcing bands are then placed over the protruding tubes of the former 40 either before or after the reinforcing rods 44 have been loaded into the former 40.
The remaining operation is substantially the same as was previously described. However, as the reinforcing rods 44 are progressively withdrawn from the former 40, the reinforcing bands are sequentially slid from the tubes of the former 40 and onto the rods 44. The reinforcing bands are then welded to the rods 44.
It should be appreciated that the reinforcing bands may also be stored inwardly of the reinforcing rods 44. This would require the former 40 to provide supports for the reinforcing bands which are located inwardly of the tubes 43 or apertures through which the reinforcing rods 44 extend.
The apparatus 10 may be used to produce cages having various transverse profiles. For example, the apparatus 10 may be used to produce cages having square, circular or triangular transverse profiles.
A second embodiment of an apparatus 10 for making reinforcing cages is illustrated in FIG. 10. The apparatus 10 is configured for making reinforcing cages for concrete piles. For convenience, features of the second embodiment of the apparatus 10 that are similar or correspond to features of the first embodiment of the apparatus 10 have been referenced using the same reference numbers.
The second embodiment of the apparatus 10 is similar to the first embodiment of the apparatus 10 which was described previously with reference to
Referring to
Webs 210 are attached to the interior of the first pipe 220 and extend the length of the first pipe 220. The webs 210 support a second cylindrical pipe 208 which is concentric with the first pipe 220. The second pipe 208 extends the length of the first pipe 220. The webs 210 also support a hollow first axle 203. The first axle 203 extends the length of the first pipe 220. Minor webs 223 extend between the first pipe 220 and the second pipe 208. The minor webs 223 extend the full length of the cylinder 220. The first axle 203 receives a hollow third axle 204 which is slidable with respect to the first axle 203. The first and third axles 203, 204 each have a square cross-section and are dimensioned so that there is minimal or no rotational slippage between the first axle 203 and the third axle 204.
A plate 211 is secured to the end of the former 40 which is closest to the loading module 90. The plate 211 is secured to the former 40 using bolts or other suitable attachment means. A plurality of apertures extend through the plate 211. The apertures are arranged such that they form the comers of a square.
The former 40 could also be configured to provide a reinforcing band storage feature in a similar manner to the formers 40 described in connection with the first embodiment of the apparatus 10.
Both of the frames 11 of the second embodiment of the apparatus 10 are the same as the frame 11 which was described in connection with the first embodiment of the apparatus 10.
A feeder 80 is mounted to the frame 11 which is closest to the loading module 90. The feeder 80 includes a frame member 226 which is attached to an upright frame member 224 and a cylinder assembly 225. Guide rollers 227 are attached to the frame member 226 in the manner shown. The position of the frame member 226 relative to the upright member 224 may be adjusted by means of rails 230 on the upright 224. A further guide wheel 229 is carried by a cylinder assembly 228 which is attached to the press assembly 50. The feeder 80 can be located on either side of the former 40 so as to feed the reinforcing band 81 in different directions about the reinforcing rods 44.
Referring to
The operation of the second embodiment of the apparatus 10 illustrated in
A third embodiment of the cage making apparatus 10 is illustrated in FIG. 14. For convenience, features of the third embodiment of the apparatus 10 that are similar or correspond to features of the previously described embodiments of the apparatus 10 have been referenced using the same reference numbers. The apparatus 10 includes a frame 11, former 40, bed 25 drive means (not shown) for rotating the former 40, loading module 90, shuttle 92, a rotatable cage holder 303 and a support assembly 170.
The loading module 90 includes a support frame 205 which is formed form a plurality of frame members 232 to 234. Frame members 232 are pivotally attached to a lower portion of the support frame 205 which is formed from frame members 233 and 234. Frame members 232 are also pivotally attached to a shuttle support 93. Adjustable rams 235 interconnect the shuttle support 93 to the lower portion of the support frame 205. This arrangement allows the shuttle support 93 to be selectively raised, lowered and tilted.
The loading module 90 also has longitudinally extending support rollers 120, 121 which function to receive and support a reinforcing cage. Drives 160 are operable to rotate the rollers 120, 121.
A shuttle 92 is mounted for reciprocal movement along the shuttle support 93. The shuttle 92 includes an upright 95 which is received by a track on the shuttle support 93. Although not shown in
Frame 11 supports the bed 25 on which the former 40 rests. The configuration of the bed 25 is such that the former 40 is able to rotate relative to the bed 25. The former 40 can be raised and lowered by the frame 11.
The support assembly 170 is substantially the same as the support assembly which was described in connection with the first embodiment of the apparatus 10. The only significant difference between the support assembly 170 shown in FIG. 14 and the previously described support assembly 170 is that the spiders 171 are interconnected by frame members 302. Also, the rotatable support discs (not specifically indicated) which form part of the spiders 171 are mounted on a hollow second axle 181. The second axle 181 extends the full length of the support assembly 170. The height adjustable legs 175, which are typically drive by rams (not shown), enable the height of the support assembly 170 to be varied.
The rotatable cage holder 303 includes a hollow third axle 204 and a cage clamp 236 which is attached to one end of the third axle 204. The third axle 204 is received by the second axle 181 in such a way that the axles 204 and 181 are rotationally locked together. The third axle 204 can be retracted into the second axle 181 such that the cage clamp 236 is substantially retracted into the former 40. The third axle 204 is retracted into the second axle 181 by operating a winch (not shown) to retract a cable (not shown). The cable extends through the axles 181, 204 and is attached to the cage clamp 236. The winch (not shown) is located at an opposite end of the support assembly 170 to the former 40.
Referring to
Also visible in
A portion of the support assembly 170 which is furthest from the former 40 is illustrated in FIG. 16. The winch previously referred to is designated generally by the numeral 200. The winch 200 is mounted on a frame member 209 which extends from the support assembly 170.
The former 40 is illustrated in FIG. 17. The former 40 includes two annular rings 41 and 42. Brackets 237 interconnect the rings 41 and 42. The rings 41, 42 each have a plurality of apertures (not specifically indicated) which are located near the internal edge of the rings 41, 42. Attached to some of these apertures are brackets 238 which support tubes 43. The position of each bracket 238 (and hence the tubes 43) is adjustable relative to the rings 41 and 42. Thus, a single former 40 can be configured to produce a cages having different cross sections.
Referring to
Referring to
With reference to
Referring to
Referring to
Referring to
A hollow member 251 is received by and rotationally locks with the member 247. Member 251 is slidable with respect to the member 247 and is retained relative to the member 247 by a retaining pin (not specifically indicated). A bracket 252 is fixed to member 251.
A plurality of cage engaging members are pivotally attached to the member 247. Each cage engaging member includes a tine 249 and a cage engaging portion 301 which extends from the tine 249. A first end of each tine 249 is pivotally attached to the bracket 248. Braces 253 are pivotally attached to the tines 249 and the bracket 252. This arrangement enables the tines 249 to be opened or collapsed. The position of pin 256 relative to members 245 and 247 governs the amount by which the tines 249 are opened. A hollow member 254 is received by and rotationally locks with the member 251. A hook 255 extends from an end of the member 254.
Referring to
Referring to
Also, the former 40 has a larger diameter. To compensate for this, the bed 25 has been lowered by reducing the height of the frame 11. Also, the loading module 90 has been lowered by increasing the inclination of the frame members 232.
A chain 265 couples the cage clamp 236 to a rotatable hub 264 which is mounted to the upright 260 of the shuttle 92 by a bracket 263. Apertures 262 in the upright 260 enable the height of the bracket 263 to be adjusted. A brace 261 supports the upright 260.
The former 40 used in the apparatus 10 of
Also shown in
The apparatus 10 illustrated in
Further detail of the ejection module 268 is shown in FIG. 36. It can be seen that hinges 271 attach the ejection module 268 to the support plates 269. A ram 270 also connects the ejection module 268 to the loading module 90.
With reference to
An end view of the apparatus 10 of
An end view of the apparatus 10 of
An end view of the apparatus 10 of
The height of the loading module 90 is typically varied before the loading of reinforcing rods 44 into the former 40 and before the welding phase of the construction process commences. When the reinforcing rods 44 are being loaded into the former 40, the height of the loading module 90 is adjusted so that the guide rail 129 is aligned with a lowermost tube 43 of the former 40. After the reinforcing rods 44 have been loaded into the former 40 the loading module 90 is lowered so that the outer periphery of the constructed cage will engage with the rollers 120, 121 of the support module 90.
A fourth embodiment of the apparatus 10 is illustrated in FIG. 46. For convenience, features of the apparatus 10 that are similar or correspond to features of the previously described embodiments of the apparatus 10 have been referenced using the same reference numbers. The apparatus 10 is configured for constructing reinforcing cages for concrete piles. The apparatus 10 does not have a support assembly 170. Instead, the apparatus 10 utilises a long former 289 which is supported at either end by frames 11. A former 40, similar to that illustrated in
A perspective view of the apparatus 10 of
The former 289 is illustrated in greater detail in FIG. 50. The former 289 is similar to the former 40 illustrated in FIG. 13.
In the embodiment shown, the clamp 294 has two substantially identical halves 295 and 296 which are hinged at 297 and fixed at 298. The clamp 294 has a void which is bordered by edge 299. The clamp 294 is shown clamped around the reinforcing rods 44 of a cage having a square cross-section. It should be appreciated though that the clamp 294 could be modified to accommodate cages with a variety of cross-sections.
The foregoing describes only some embodiments of the present invention and modifications, obvious to those skilled in the art, can be made thereto without departing from the scope of the present invention.
It is to be understood that the term “comprising” as used herein is to be understood in the inclusive sense of “having” or “including” and not in the exclusive sense of “consisting essentially of”.
Number | Date | Country | Kind |
---|---|---|---|
PR0375 | Sep 2000 | AU | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/AU01/01208 | 9/26/2001 | WO | 00 | 7/2/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO02/26417 | 4/4/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4150475 | Bondpers et al. | Apr 1979 | A |
5665254 | Isono et al. | Sep 1997 | A |
6092341 | Yamashita et al. | Jul 2000 | A |
6223785 | Barden | May 2001 | B1 |
Number | Date | Country |
---|---|---|
2321495 | Jan 1996 | AU |
24 26 027 | Dec 1974 | DE |
0 035 477 | Nov 1991 | EP |
1449144 | Sep 1976 | GB |
Number | Date | Country | |
---|---|---|---|
20040049910 A1 | Mar 2004 | US |