1. Field of the Invention
The present invention relates generally to apparatuses and methods for optical coherence tomography, and more specifically to apparatuses and methods for providing improved optical coherence tomography images.
2. Description of the Related Art
Optical coherence tomography (OCT) is widely used in medicine to image tissues of various part of the body. See, e.g., T. Asakura, “International trends in optics and photonics ICO IV,” (Springer-Verlag, Berlin Heidelberg, 1999) pp. 359-389; D. Huang, et al. “Optical coherence tomography,” Science, Vol. 254, pp. 1178-1181 (1991); J. G. Fujimoto, et al. “Optical biopsy and imaging using optical coherence tomography,” Nature Medicine, Vol. 1, pp. 970-972 (1995); A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun., Vol. 117, pp. 43-48 (1995); G. Hausler and M. W. Lindler, “Coherence radar and spectral radar—New tools for dermatological diagnosis,” J. Biomed. Opt., Vol. 3, pp. 21-31 (1998); M. Wojtkowski, R. A. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography”, J. Biomed. Opt., Vol. 7, pp. 457-463 (2003); R. A. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Optics Express, Vol. 11, pp. 889-894 (2003); M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Optics Express, Vol. 11, pp. 2183-2189 (2003); R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency domain optical coherence tomography,” Opt. Lett., Vol. 28, pp. 2201-2203 (2003); R. A. Leitgeb et al. “Ultrahigh resolution Fourier domain optical coherence tomography,” Optics Express, Vol. 12, pp. 2156-2165 (2004).
In certain embodiments, a method determines the complex scattering function of a portion of a sample under analysis. The method comprises providing a magnitude spectrum of a complex spatial Fourier transform of a complex intermediate function. The complex intermediate function is dependent on the complex scattering function of the portion of the sample under analysis. The magnitude spectrum is obtained from power spectrum data of frequency-domain optical coherence tomography of the portion of the sample under analysis. The method further comprises providing an estimated phase term of the complex spatial Fourier transform. The method further comprises multiplying the magnitude spectrum and the estimated phase term together to generate an estimated complex spatial Fourier transform. The method further comprises calculating an inverse Fourier transform of the estimated complex spatial Fourier transform. The inverse Fourier transform of the estimated complex spatial Fourier transform is a spatial function. The method further comprises calculating an estimated intermediate function by applying at least one constraint to the inverse. Fourier transform of the estimated complex spatial Fourier transform.
In certain embodiments, a computer system comprises means for obtaining a magnitude spectrum of a complex spatial Fourier transform of a complex intermediate function. The complex intermediate function is dependent on the complex scattering function of a portion of a sample under analysis. The magnitude spectrum is obtained from power spectrum data of frequency-domain optical coherence tomography of the portion of the sample under analysis. The computer system further comprises means for estimating an estimated phase term of the complex spatial Fourier transform. The computer system further comprises means for multiplying the magnitude spectrum and the estimated phase term together to generate an estimated complex spatial Fourier transform. The computer system further comprises means for calculating an inverse Fourier transform of the estimated complex spatial Fourier transform. The inverse Fourier transform of the estimated complex spatial Fourier transform is a spatial function. The computer system further comprises means for calculating an estimated intermediate function by applying at least one constraint to the inverse Fourier transform of the estimated complex spatial Fourier transform.
In certain embodiments, an apparatus measures a frequency-domain optical coherence tomography power spectrum from a sample. The apparatus comprises a broadband light source. The apparatus further comprises an optical spectrum analyzer. The apparatus further comprises a partially reflective element optically coupled to the light source, to the optical spectrum analyzer, and to the sample. A first portion of light from the light source is reflected by the partially reflective element and propagates to the optical spectrum analyzer. A second portion of light from the light source propagates through the partially reflective element, impinges the sample, reflects from the sample, and propagates to the optical spectrum analyzer.
In certain embodiments described herein, the concept of minimum-phase functions is applied to improve optical coherence tomography systems. Certain embodiments described herein advantageously provide a simple processing technique for the conventional frequency-domain OCT configuration that enables a better signal-to-noise ratio, an improved measurement range, and that requires a lower-resolution optical spectrum analyzer than the currently existing processing techniques. Certain embodiments described herein rely on the property of minimum-phase functions (MPFs) to advantageously allow a function, complex or real, to be recovered from only its Fourier transform (FT) magnitude data.
Certain embodiments described herein are useful in computer-implemented analyses of the complex field scattering function of frequency-domain OCT. The general-purpose computers used for such analyses can take a wide variety of forms, including network servers, workstations, personal computers, mainframe computers and the like. The code which configures the computer to perform such analyses is typically provided to the user on a computer-readable medium, such as a CD-ROM. The code may also be downloaded by a user from a network server which is part of a local-area network (LAN) or a wide-area network (WAN), such as the Internet.
The general-purpose computer running the software will typically include one or more input devices, such as a mouse, trackball, touchpad, and/or keyboard, a display, and computer-readable memory media, such as random-access memory (RAM) integrated circuits and a hard-disk drive. It will be appreciated that one or more portions, or all of the code may be remote from the user and, for example, resident on a network resource, such as a LAN server, Internet server, network storage device, etc. In typical embodiments, the software receives as an input a variety of information concerning the material (e.g., structural information, dimensions, previously-measured magnitudes of reflection or transmission spectra).
In typical OCT configurations, such as those shown in
In the frequency-domain OCT configuration schematically illustrated by
where g(z′)=R·δ(z′)+ƒ(z′−z0) and is referred to herein as the intermediate function or the effective scattering function of the system, δ(z′) is the spatial Dirac-delta function, k′=k−2π/λ0, λ0 is the center frequency of S(k), R is the field reflectivity of the reference mirror, z0 is the offset distance between the reference arm and the tissue arm, as shown in
I(ƒ)=S(ƒ)·|G(ƒ)|2 (2)
where G(ƒ) is the spatial FT of g(z′)=R·δ(z′)+ƒ(z′−z0). If S(ƒ) is broad and smooth enough to determine the resolution of the OCT system, then I(ƒ)≈s·|G(ƒ)|2, where s is simply a proportionality constant.
The conventional processing techniques of frequency-domain OCT measurements are based on a processing algorithm which directly takes the inverse FT of Eq. (2). Certain embodiments described herein are compared to the conventional processing techniques by assuming that S(ƒ) is broad enough to present a simple and fair comparison by assuming that, without loss of generality, the constant s has been dropped, i.e., I(ƒ)≈|G(ƒ)|2. This assumption will also be made for the conventional processing techniques, so it has no effect on the discussion herein and the effect of S(ƒ) on the resolution of the OCT system is not relevant to certain embodiments described herein.
In the conventional processing techniques, taking the inverse Fourier transform (IFT) of the measured OSA spectrum (I(ƒ)≈|G(ƒ)|2) directly yields:
IFT{|G(ƒ)|2}=|R|2·δ(z′)+A.C.{ƒ(z′)}+R·ƒ*(−z−z0)+R*·ƒ(z−z0) (3)
where A.C. denotes the complex auto-correlation function, and ‘*’ denotes the complex conjugate operation. The important term for the recovery of the tissue scattering function is the last term of Eq. (3), i.e., R*ƒ(z−z0). However, the A.C.{ƒ(z′)} term in Eq. (3) is centered around z=0 and usually obscures R*·ƒ(z−z0) by spatial aliasing, thereby degrading the sensitivity and the signal-to-noise ratio of the frequency-domain OCT measurements. In the conventional processing techniques, z0 is chosen to be large enough such that R*·ƒ(z−z0) is shifted in space away from the origin, thereby reducing spatial aliasing with the A.C.{ƒ(z′)} term. For example, for a broadband source with a coherence length of about 40 micrometers, a value of z0>200 micrometers would be sufficient to significantly avoid the spatial overlap. By filtering the R*·ƒ(z−z0) term around z=z0, the complex scattering potential of the tissue of interest, ƒ(z), is recovered. However, choosing z0 to be large enough to avoid spatial aliasing introduces other problems. For example, large values of z0 cause the fringes observed in the OSA spectrum to get closer to one another, which can become a significant problem, especially for a low-resolution OSA. Furthermore, in general, a large value of z0 reduces the accessible depth information in the tissue for a given OSA in the OCT configuration.
Certain embodiments described herein utilize a simple processing technique that is based on minimum-phase functions (MPFs) to improve the resolution, the signal-to-noise ratio, and the measurement range of the recovered images in frequency-domain OCT systems. The intermediate function g(z′)=R·δ(z′)+ƒ(z′−z0) in an OCT system is close to an MPF, if not an exact MPF.
For the intermediate function g(z′)=R·δ(z′)+ƒ(z′−z0), relevant to the power spectrum measurement of OCT, tissue typically has nT≈1.5, so max{|ƒ(z′)|}<<1 (where max {|ƒ(z′)|} is the maximum magnitude of the tissue scattering function), whereas R is approximately equal to 1. Therefore in such configurations, the intermediate function g(z′)=R·δ(z′)+ƒ(z′−z0) has a dominant peak at the origin, so g(z′) either is close to an MPF or is an exact MPF. In certain embodiments, this property of the intermediate function g(z′) is used to uniquely recover the tissue scattering function ƒ(z) from only the knowledge of |G(ƒ)|, regardless of the value of z0. In certain embodiments in which the condition of max{|ƒ(z′)|}<<1 is not satisfied, more power can be directed to the reference arm to make R larger, and hence to have a dominant peak at the origin for g(z′)=R·δ(z′)+ƒ(z′−z0).
It is generally not possible to fully recover a one-dimensional function from the knowledge of its FT magnitude alone. However, there are families of functions which are exceptions to this rule for which the FT phase can be recovered from the FT magnitude alone, and visa versa. One exemplary such family is the family of minimum-phase functions (MPFs). An MPF is characterized by having a z-transform with all its poles and zeros either on or inside the unit circle. As a result of this property, the FT phase and the logarithm of the FT magnitude of an MPF are Hilbert transforms of one another. See, e.g., V. Oppenheim and R. W. Schafer, “Digital Signal Processing,” (Prentice Hall, 2002), Chap. 7; T. F. Quatieri, Jr., and A. V. Oppenheim, “Iterative techniques for minimum phase signal reconstruction from phase or magnitude,” IEEE Trans. Acoust., Speech, Signal Processing, Vol. 29, pp. 1187-1193 (1981); M. Hayes, J. S. Lim, and A. V. Oppenheim, “Signal reconstruction from phase or magnitude,” IEEE Trans. Acoust., Speech, Signal Processing, Vol. 28, pp. 672-680 (1980). Consequently, an MPF can be calculated from only its FT amplitude.
In certain embodiments, this recovery of the function of interest (e.g., the intermediate function g(z′)=R·δ(z′)+ƒ(z′−z0)) can be obtained from only its FT amplitude (e.g., |G(ƒ)|) by first taking the Hilbert transform of the logarithm of the function's FT magnitude (e.g., the logarithmic Hilbert transform of the function's FT magnitude) to obtain the FT phase, and then inverting the full complex FT. However, this direct approach is not the preferred solution because of difficulties in its numerical implementation, in particular phase unwrapping. In certain embodiments, an iterative error-reduction technique is used, as described more fully below.
A second approach for the recovery of the function of interest (e.g., the intermediate function g(z′)=R·δ(z′)+ƒ(z′−z0)) is to use an iterative error-reduction method. Examples of iterative error-reduction methods include, but are not limited to, those described by J. R. Fienup, “Reconstruction of an object from the modulus of its Fourier transform,” Opt. Lett., Vol. 3, pp. 27-29 (1978) or R. W. Gerchberg and W. O. Saxton, “Practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik, Vol. 35, pp. 237-246 (1972).
In certain embodiments, the only quantity that is fed into the method 100 is the magnitude spectrum |GM(ƒ)| of the complex spatial FT of the complex intermediate function g(z′), where the subscript M denotes that this magnitude spectrum is a measured quantity, as shown by the operational block 110. In certain embodiments, providing the magnitude spectrum |GM(ƒ)| corresponding to the intermediate function g(z′) comprises measuring a frequency-domain OCT power spectrum from the portion of the sample under analysis and calculating the square-root of the measured frequency-domain OCT power spectrum to yield the measured FT magnitude spectrum |GM(ƒ)|. In certain other embodiments, providing the magnitude spectrum |GM(ƒ)| comprises providing a previously-measured frequency-domain OCT power spectrum and calculating the square-root of the previously-measured frequency-domain OCT power spectrum or providing the square-root of a previously-measured frequency-domain OCT power spectrum.
Since the FT phase term is missing from the measurement, an initial guess for the phase, φ0 (ƒ), is used to provide an estimated phase term exp(jφ0) in the operational block 120. In certain embodiments, this initial guess does not significantly affect the accuracy of the result of the convergence of the method 100. For this reason, the initial guess for the phase φ0(ƒ) can be conveniently chosen to equal zero (e.g., φ0(ƒ)=0) or some other real or complex constant (e.g., π, π/2). In certain embodiments, the initial guess for the phase can be a previously-stored function φ0(ƒ) retrieved from the computer system. In certain embodiments, the initial guess for the phase can be a phase obtained from a different portion of the sample. For example, in tissue imaging, the initial guess for the phase φ0(ƒ) can be a phase resulting from a portion of the tissue adjacent to the portion of the surface under analysis. Thus, in a real imaging situation, the initial guess for the phase φ0(ƒ) can be dynamically assigned to be the new phase resulting from a previous measurement. In certain embodiments, the initial guess for the phase can be calculated from the measured magnitude spectrum |GM(ƒ)| using a logarithmic Hilbert transform.
In certain embodiments, the magnitude spectrum and the estimated phase term are multiplied together to generate an estimated complex spatial Fourier transform |GM|·exp(jφ0). The inverse Fourier transform (IFT) of |GM|·exp(jφ0) is then computed numerically, as shown by the operational block 130, to calculate an inverse Fourier transform g′(z) of the estimated complex spatial Fourier transform, wherein the inverse Fourier transform g′(z) is a spatial function. In certain embodiments, the operational block 140 comprises applying at least one constraint to the inverse Fourier transform g′(z) to calculate an estimated intermediate function g1(z). In certain embodiments in which the sample has a known spatial extent, applying the at least one constraint comprises setting the IFT to zero for regions outside the known spatial extent of the sample. For example, since g′(z) approximates a minimum-phase function (MPF) and since MPFs are causal, only the z≧0 portion of g′(z) is retained (e.g., the causality condition), and all values of g′(z) for z<0 are set to zero, thereby producing a new function g1(z).
In certain embodiments in which the intermediate function g(z) has a known spatial extent (e.g., to be less than 1 millimeter deep), the operational block 140 can also include setting the inverse Fourier transform g′(z) to zero for regions outside the known spatial extent of the intermediate function g(z) by inserting zeros for z greater than this limit (e.g., z>1 millimeter) to produce the function g1(z), thereby advantageously speeding up convergence of the error-reduction method. In certain embodiments, the new function g1(z) provided by the operational block 140 serves as a first estimate of the complex MPF (i.e., the estimated intermediate function g(z)).
In certain embodiments, the FT of the estimated intermediate function g1(z) is calculated in the operational block 150, thereby providing a new calculated phase φ1(ƒ) (hence a new calculated phase term exp(jφn)) and a new magnitude spectrum |G1(ƒ)| for the FT of the estimated intermediate function g1(z). In certain embodiments, the calculated FT magnitude spectrum |G1(ƒ)| is replaced by the measured magnitude spectrum |GM(ƒ)|, as shown by the arrow 160. In certain embodiments, the loop is then repeated using the measured magnitude spectrum |GM(ƒ)| and the calculated phase term exp(jφ1) as the new input function in the operational block 130, which provides a second function g2 (z). In certain embodiments, only a single iteration is used, while in other embodiments, this loop is repeated until convergence is achieved. In certain embodiments, convergence is defined to be achieved when the difference between consecutive estimates of the function ∫|gn(z)−gn-1(z)|2dz/∫|gn(z)|2dz is less than a predetermined value, for example 0.1%. In certain embodiments, less than 100 iterations are adequate for achieving convergence, taking less than a second to compute using a rather slow programming environment such as MATLAB 5 on a 500 MHz computer with 29 data points. In certain embodiments, applying the constraint in the operational block 140 advantageously reduces the number of iterations which achieve convergence.
In certain other embodiments, the loop is repeated a predetermined number of times (e.g., 100). In certain embodiments, the predetermined number of times is selected to be sufficiently large so that the method achieves, or is close to achieving, convergence. In certain embodiments, at the end of the n-th iteration, gn (z) is the recovered complex MPF. In certain other embodiments, the iterations of the loop are stopped when the user (e.g., the doctor reviewing the OCT images) determines that the image quality is sufficient.
Empirical results indicate that such iterative error-reduction methods converge to the minimum-phase function corresponding to a given FT magnitude. (See, e.g., T. F. Quatieri, Jr., and A. V. Oppenheim, “Iterative techniques for minimum phase signal reconstruction from phase or magnitude,” IEEE Trans. Acoust., Speech, Signal Processing, Vol. 29, pp. 1187-1193 (1981); A. Ozcan et al., “Iterative processing of second-order optical nonlinearity depth profiles,” Opt. Express, Vol. 12, pp. 3367-3376 (2004); A. Ozcan et al., “Group delay recovery using iterative processing of amplitude of transmission spectra of fibre Bragg gratings,” Electron. Lett., Vol. 40, pp. 1104-1106 (2004).) In other words, for the infinite family of FT phase functions that can be associated with a known (e.g., measured) FT magnitude, certain embodiments described herein converge to the one and only one FT phase function that has the minimum phase. Since this solution is unique, if it is known a priori that the function to be reconstructed is an MPF (or that the function approximates an MPF), then the solution provided by the error-reduction method is the correct function.
To understand intuitively which physical functions such as g(z′) are likely to be minimum-phase functions, gmin(n) is used to denote an MPF, where n is an integer that numbers sampled values of the function variable (e.g., space z′ for the tissue scattering potential g(z′)). Because all physical MPFs are causal, gmin(n) must be equal to zero for n<0. As discussed by V. Oppenheim and R. W. Schafer in “Digital Signal Processing,” (Prentice Hall, 2002), Chap. 7, the energy of a minimum-phase function, which is defined as
for m samples of the function, satisfies the following inequality:
for all possible values of m>0. In Eq. (4), g(n) represents any of the functions that have the same FT magnitude as gmin(n). This property suggests that most of the energy of gmin(n) is concentrated around n=0. Stated differently, any function, complex or real, with a dominant peak around n=0 (i.e., close to the origin) will be either a minimum-phase function or close to one, and thus the function will work extremely well with iterative error-reduction methods in accordance with certain embodiments described herein. Although there may be other types of MPFs besides functions with a dominant peak, this class of MPFs can be used as described herein because they are straightforward to construct with OCT data and because they yield exceedingly good results. See, also, A. Ozcan, M. J. F. Digonnet, and G. S. Kino, “Iterative processing of second-order optical nonlinearity depth profiles,” Opt. Express, Vol. 12, pp. 3367-3376 (2004).
Recovering ƒ(z) from only the knowledge of |G(ƒ)| using error-reduction methods compatible with certain embodiments described herein advantageously provides significant advantages in frequency-domain OCT over the conventional processing approaches. In certain embodiments, the error-reduction method does not utilize a minimum constraint for z0, so z0 can conveniently be chosen close to zero. Such embodiments provide a significant improvement on the resolution requirement of the OSA of the OCT system. Furthermore, since the depth measurement range into the tissue is inversely proportional to the maximum spatial frequency measured in the OSA spectrum, in principle, a value of z0 close to zero allows a larger measurement range for the OCT configuration. In certain embodiments, the error-reduction method deals with the square-root of the measured power spectrum √{square root over (I(k′))}, whereas the conventional approaches take a direct IFT of I(k′). In terms of noise sensitivity, in certain such embodiments, the error-reduction method performs much better than the conventional approach, since the noise term in I(k′) is much stronger than in √{square root over (I(k′))}. (For example, by adding some random noise to √{square root over (I(k′))}, i.e., √{square root over (I(k′))}+noise, the added noise term becomes stronger, i.e., ˜2·√{square root over (I(k′))}·noise. In certain embodiments, the error-reduction method advantageously avoids the degradation in the signal-to-noise ratio in the classical processing techniques associated with the spatial aliasing due to the A.C.{θ(z′)} term in Eq (3), thereby yielding a better performance.
In an example numerical simulation, to simulate a rather challenging problem, the complex tissue scattering function is simulated to be a uniform random variable, both in magnitude and phase, as shown by solid lines in
The solid lines of
The parameter of the ratio of R to max {|ƒ(z′)|} indicates how close the effective complex scattering function g(z′)=R·δ(z′)+ƒ(z′−z0), is to a true MPF. In the example numerical simulations discussed above, this ratio was chosen to be 1/0.04=25. For typical imaged tissue samples, the scattering function is quite weak, so a ratio of 25 is a reasonable assumption. However, for certain embodiments in which max{|ƒ(z′)|}<<1 is not satisfied, an uneven beam splitter can be used in the OCT configuration to increase this ratio. Other numerical simulations have shown that the iterative error-reduction method 100 of
In certain embodiments, the reference mirror used in the lower arm of the Michelson interferometer shown in
For certain embodiments in which an angled fiber end 70 is used in the configuration schematically illustrated by
Various embodiments of the present invention have been described above. Although this invention has been described with reference to these specific embodiments, the descriptions are intended to be illustrative of the invention and are not intended to be limiting. Various modifications and applications may occur to those skilled in the art without departing from the true spirit and scope of the invention as defined in the appended claims.
This application is a divisional of U.S. patent application Ser. No. 11/384,170, filed Mar. 17, 2006, now U.S. Pat. No. 7,493,227, and incorporated in its entirety by reference herein, and which claims the benefit of U.S. Provisional Application No. 60/662,652, filed Mar. 17, 2005, which is incorporated in its entirety by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
4627731 | Waters et al. | Dec 1986 | A |
5530544 | Trebino et al. | Jun 1996 | A |
5909659 | Fujita | Jun 1999 | A |
5994690 | Kulkarni et al. | Nov 1999 | A |
6002480 | Izatt et al. | Dec 1999 | A |
6219142 | Kane | Apr 2001 | B1 |
6539148 | Kim et al. | Mar 2003 | B1 |
6657727 | Izatt et al. | Dec 2003 | B1 |
7019838 | Izatt et al. | Mar 2006 | B2 |
7130052 | Kane | Oct 2006 | B1 |
7359062 | Chen et al. | Apr 2008 | B2 |
7643952 | Ozcan et al. | Jan 2010 | B2 |
7733497 | Yun et al. | Jun 2010 | B2 |
20030174335 | Sun et al. | Sep 2003 | A1 |
20040239938 | Izatt | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
05-52740 | Mar 1993 | JP |
05-264402 | Oct 1993 | JP |
10-10047 | Jan 1998 | JP |
Number | Date | Country | |
---|---|---|---|
20090207414 A1 | Aug 2009 | US |
Number | Date | Country | |
---|---|---|---|
60662652 | Mar 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11384170 | Mar 2006 | US |
Child | 12372225 | US |