This application claims the priority, under 35 U.S.C. §119, of German Patent Application DE 10 2009 049 207.0, filed Oct. 9, 2009; the prior application is herewith incorporated by reference in its entirety.
The present invention relates to an apparatus for metering printing ink, including an ink fountain roller, an ink fountain and a mounting for the ink fountain. The mounting permits an adjustment of the ink fountain relative to the ink fountain roller and the mounting has at least one elastic element for generating a holding force. The invention also relates to a printing press having the apparatus.
Such apparatuses are subjected to complex loadings during printing operation, as a consequence of which the ink fountain and the ink fountain roller deflect. Various measures have already been proposed to avoid or compensate for the disruptive deflection.
It is proposed in German Published, Non-Prosecuted Patent Application DE 30 33 998 A1, corresponding to U.S. Pat. No. 4,391,192, to shorten the deflection length by fastening the ink fountain to the journals of the ink fountain roller. That fastening takes place through the use of a drawing device or traction mechanism, for example wire cables, which wrap around bearing rings that are mounted on the journals of the ink fountain roller. In order to tension the drawing device or traction mechanism, there are over-center tensioning mechanisms with dead centers, beyond which tensioning levers of the over-center tensioning mechanisms can be adjusted. It is to be assumed that the ink fountain is supported in some way, as a result of which a spacing that is required between the ink fountain and the ink fountain roller is fixed in the operating position of the ink fountain.
German Published, Non-Prosecuted Patent Application DE 34 27 909 A1, corresponding to U.S. Pat. No. 4,624,183, describes an apparatus having an ink fountain which is equipped with rollers that bear against the circumferential surface of the ink fountain roller, in order to support the ink fountain. Forces for pressing the rollers onto the ink fountain roller can be generated by springs according to one mentioned variant, and can be generated through the use of a tensioning lever which is moved past a dead center according to another mentioned variant.
German Published, Non-Prosecuted Patent Application DE 32 18 045 A1, corresponding to U.S. Pat. No. 4,502,386; German Patent DE 40 12 949 01, corresponding to U.S. Pat. No. 5,113,762; and European Patent Application EP 0 533 308 A1, corresponding to U.S. Pat. No. 5,289,772, describe further prior art. In the known apparatuses, the loadings which occur during printing operation and the resulting deflecting behavior are only taken into consideration to an insufficient extent. As a consequence, the occurrence of so-called edge supports or loadings cannot be avoided completely. Edge supports or loadings are those metering elements of the ink fountain having metering edges which are oblique in an undesired manner with respect to the generatrix of the ink fountain roller as a consequence of the deflection.
The so-called zero position of a respective metering element is defined by its set minimum spacing relative to the ink fountain roller. In the case of a satisfactorily set metering element, that spacing is approximately 5 μm. If the mentioned oblique position of the metering element is present, then only one edge of the metering element, for example the right hand edge, maintains the required spacing of 5 μm and the other edge, the left hand edge in the given example, is situated at a spacing of 15 μm relative to the ink fountain roller. That has the result that the ink layer thickness, which is averaged over the width of the metering element, is doubled. If the machine operator attempts to compensate for that effect by adjusting the metering element, it results in a metallic contact between the metering element and the ink fountain roller, and therefore results in wear which leads to machine damage.
It is accordingly an object of the invention to provide an apparatus for metering printing ink and a printing press having the apparatus, which overcome the hereinafore-mentioned disadvantages of the heretofore-known devices of this general type and in which a loading-induced contact of metering elements of an ink fountain with an ink fountain roller and resultant wear are reliably avoided.
With the foregoing and other objects in view there is provided, in accordance with the invention, an apparatus for metering printing ink. The apparatus comprises an ink fountain roller having a longitudinal outer contour, an ink fountain having a longitudinal outer contour and a mounting for the ink fountain. The mounting permits an adjustment of the ink fountain relative to the ink fountain roller. The mounting has at least one elastic element for generating a holding force. The mounting is configured in such a way that a force flux resulting from the holding force deflects the ink fountain roller so as to adapt the longitudinal outer contour of the ink fountain roller to the longitudinal outer contour of the ink fountain.
In the apparatus according to the invention, so-called edge supports or loadings are reliably avoided. The edge supports or loadings are those metering elements of the ink fountain in which the metering edges thereof are oblique in an undesired manner relative to the generatrix of the ink fountain roller. The avoidance of the edge supports or loadings plays practically no role in the case of ink fountains having metering elements which are metering cylinders or eccentrics that are pressed toward the ink fountain roller by springs. The avoidance of the edge loadings is particularly important and advantageous in the case of those ink fountains having metering elements which are configured as metering slides, tongues or levers and are not pressed against the ink fountain roller in each case by a spring. The ink fountain of the apparatus according to the invention is preferably an ink fountain of this type with metering slides or metering tongues or metering levers as metering elements.
In accordance with another feature of the invention, the deflection line of the ink fountain roller is convex with regard to the ink fountain. The axial or longitudinal deflection line of the ink fountain roller extends in a curved manner toward the ink fountain. That outer contour line of the ink fountain roller which faces the ink fountain is preferably curved in the same direction as the outer contour line, which faces the ink fountain roller, of the ink fountain which is likewise deflected under the action of operating forces. An optimum adaptation can be achieved, in which the two outer contour lines extend parallel to one another or equidistantly to one another substantially over their entire length, with the result that the gap which is formed by the two outer contour lines has one and the same gap width substantially over its entire length. The outer contour line of the ink fountain, which outer contour line extends parallel to the outer contour line of the ink fountain roller, can be formed by the metering edges of metering elements of the ink fountain which are disposed in a row. The curvatures of the ink fountain roller and the ink fountain generated by the deflection are reversible and decrease when the holding and operating forces fall away.
In accordance with a further feature of the invention, the ink fountain has first supporting rollers, through which the ink fountain is supported on the ink fountain roller if the ink fountain is set against the ink fountain roller. The first supporting rollers can include only two first supporting rollers, of which one rolls on a roller raceway close to one end of a body or barrel of the ink fountain roller, on the body, and the other rolls on a roller raceway close to the other end of the body, on the body. However, the first supporting rollers can also include more than two first supporting rollers, for example two supporting roller pairs. Independently of the number of the first supporting rollers, their supporting roller raceways which are provided on the body of the ink fountain roller are situated outside the maximum printing width of the printing press, with the result that the first supporting rollers cannot cause any disruptions in the printed image. As a result of the first supporting rollers, the deflection length which is relevant for the metering gap advantageously results from the spacing between the first supporting rollers. Furthermore, an automatic compensation takes place of roundness faults of the ink fountain roller and of thermally induced changes in the spacing between the geometric rotational axis of the ink fountain roller and the geometric rotational axis of a joint of the ink fountain.
In accordance with an added feature of the invention, second supporting rollers, which are spring-loaded, are disposed diametrically with respect to the first supporting rollers. The springs which are used for the spring loading of the second supporting rollers can, for example, be helical springs, disk springs or other elastic elements. The second supporting rollers can include only two second supporting rollers which in each case roll individually close to the respective end of the body of the ink fountain roller, on the body, and can also include more than two second supporting rollers, for example two supporting roller pairs. The second supporting rollers can be disposed so as to be substantially flush with the first supporting rollers in the circumferential direction of the ink fountain roller and can roll on the same roller raceways as the first supporting rollers. The second supporting rollers are advantageous with regard to an increase in the rigidity and a minimization of the bearing play of the ink fountain roller.
In accordance with an additional feature of the invention, a metering gap lies substantially on an imaginary connecting line which extends from the first supporting rollers to the second supporting rollers. The metering gap is formed by the metering elements together with the ink fountain roller. The common contact point which the first supporting rollers form together with the ink fountain roller and the common contact point which the second supporting rollers form together with the ink fountain roller, preferably lie substantially on one and the same connecting center line. Accordingly, the two contact points and the geometric rotational axis of the ink fountain roller are disposed collinearly.
In accordance with yet another feature of the invention, the at least one elastic element is formed by springs, by which the ink fountain is loaded. The springs can be compression springs or tensile springs which press or pull the ink fountain with the first supporting rollers against the ink fountain roller. The two last-mentioned developments are advantageous in the following respect: the force which is exerted by the first supporting rollers on the ink fountain roller and the force which is exerted by the second supporting rollers on the ink fountain roller are directed substantially counter to one another and, due to the explained supporting roller positioning, together form a resulting force, the main component of which is directed in the direction of the force which is exerted by the first supporting rollers on the ink fountain roller, but is smaller than the latter, as a result of which bearing relief of the ink applicator roller is achieved.
In accordance with yet a further feature of the invention, the ink fountain is supported on frame-side stops if the ink fountain is set against the ink fountain roller. The frame-side stops are disposed on a main or auxiliary frame of the printing press and thus not on the ink fountain roller. As a result of the adjustment of the ink fountain toward the ink fountain roller, the ink fountain comes into contact with the stops, of which one is disposed on the operating side of the printing press and the other is disposed on the drive side.
In accordance with yet an added feature of the invention, the ink fountain is held on the stops by a pliant drawing device or traction mechanism or devices which wraps or wrap around the bearing rings of the ink fountain roller. The pliant drawing device or traction mechanism can be a flexible drawing device or traction mechanism, such as cables, bands and belts, or multiple-link drawing devices or traction mechanisms, such as chains. The bearing rings are mounted on journals of the ink fountain roller and are substantially flush with the stops, that is to say there is no offset or only a low offset in the direction parallel to the rotational axis of the ink fountain roller between the bearing ring and the stop on the respective machine side (the drive side or the operating side).
In accordance with yet an additional feature of the invention, the at least one elastic element is formed by springs, by which the drawing device or traction mechanism or devices is or are loaded. The springs are tensile springs, for example tensile springs which are configured as helical springs, and are attached in each case with their one spring end to a drawing device or traction mechanism end of the respective drawing device or traction mechanism and with their other spring end to a basic body of the ink fountain. The other drawing device or traction mechanism ends, to which the springs are not attached, are attached to the basic body. The springs are under prestress if the ink fountain is set against the ink fountain roller. One advantage includes the fact that, if the springs are used, the drawing device or traction mechanism can be non-elastic and can, for example, be wire cables.
In accordance with again another feature of the invention, the drawing device or traction mechanism is inherently flexible and forms the at least one elastic element, and over-center tensioning mechanisms are provided which have a dead center position for tensioning the drawing device or traction mechanism. In this development, the drawing devices or traction mechanisms can be extended reversibly and can, for example, be rubber bands. The over-center tensioning mechanisms in each case include a tensioning lever, to which the end of the respective drawing device or traction mechanism is attached. It is advantageous that, as a result of the integration of the spring function into the drawing device or traction mechanism, no separate springs are required for this function, with the result that production costs are reduced.
In accordance with again a further feature of the invention, the ink fountain is mounted in such a way that it can be adjusted about a rotary joint relative to the ink fountain roller. The ink fountain is pivoted around the rotary joint, in order to adjust the ink fountain toward the ink fountain roller into the mentioned operating position and away from the ink fountain roller into the likewise mentioned maintenance position.
With the objects of the invention in view, there is concomitantly provided a printing press, comprising an apparatus according to the invention or an apparatus which corresponds to one of the developments thereof mentioned above.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in an apparatus for metering printing ink and a printing press having the apparatus, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Referring now in detail to the figures of the drawings, in which mutually corresponding elements and components are denoted by the same designations and first, particularly, to
The figures show an ink fountain roller 3 and an ink fountain 4 of the inking unit 2. Furthermore, the inking unit 2 includes ink applicator rollers which roll on a printing form, axially moving distributor rollers and transfer rollers, which are all not shown in the drawing. If the inking unit 2 is a ductor inking unit, it includes a ductor roller which periodically comes into contact with the ink fountain roller 3, and if the inking unit 2 is a film inking unit, it includes a film roller which removes printing ink from the ink fountain roller 3 and the circumferential speed of which corresponds substantially to the circumferential speed of the printing form.
The ink fountain 4 is a so-called wedge-shaped ink fountain and can be pivoted about a rotary joint 5 which is parallel to the rotational axis of the ink fountain roller 3. The ink fountain 4 includes metering elements 6 which are disposed in a row that is parallel to the ink fountain roller 3. The metering elements can be adjusted with respect to one another through the use of so-called zone screws 7 and can be adjusted in the process to different spacings from the ink fountain roller 3, in order to generate an inking profile on the latter with ink layers of different thickness in the individual inking zones. The metering elements 6 can be metering slides or metering levers or metering tongues which are formed on one and the same metering blade. A configuration of the metering elements 6 as metering tongues which are separate from one another is shown in the drawing by way of example. The ink fountain roller 3 is mounted through a pivot bearing 8 in a frame 9 which has a respective side wall 10 shown in
Now that the common features of the different exemplary embodiments have been described together in the above text, the special features of the respective exemplary embodiments will be described in the following text. In the first exemplary embodiment which is shown in
In the following text, common features of the second exemplary embodiment which is shown in
In the exemplary embodiments according to
One special feature of the apparatus shown in
One special feature of the apparatus shown in
However, the mounting 28 can also be configured in such a way that the deflection line 31 extends linearly, as is specified in the diagram according to
Finally, it is to be noted that, although the ideal case (shown in the drawing) of the parallelism of the two outer contours 29, 30 with one another is to be aimed for, it is not achieved completely in one or the other application. However, the invention also has an advantageous effect in those cases, in which the magnitude of the deviation from the parallelism of the two contour courses with one another is reduced by the adaptation of the course of the outer contour 29 of the ink fountain roller 3 to the course of the outer contour 30 of the ink fountain 4.
Number | Date | Country | Kind |
---|---|---|---|
10 2009 049 207 | Oct 2009 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
2948217 | Witt | Aug 1960 | A |
3566787 | Moos | Mar 1971 | A |
4391192 | Wieland | Jul 1983 | A |
4502386 | Cappel et al. | Mar 1985 | A |
4611538 | Simeth | Sep 1986 | A |
4624183 | Kunkel et al. | Nov 1986 | A |
5113762 | Abendroth et al. | May 1992 | A |
5289772 | Kohara et al. | Mar 1994 | A |
7389728 | Hieronymus et al. | Jun 2008 | B2 |
Number | Date | Country |
---|---|---|
3033998 | Apr 1982 | DE |
3218045 | Nov 1983 | DE |
3400831 | Jul 1985 | DE |
3427909 | Feb 1986 | DE |
4012949 | Mar 1991 | DE |
0533308 | Mar 1993 | EP |
S5777575 | May 1982 | JP |
S62236741 | Oct 1987 | JP |
H04224956 | Aug 1992 | JP |
Entry |
---|
German Search Report dated Jun. 30, 2010. |
Number | Date | Country | |
---|---|---|---|
20110100242 A1 | May 2011 | US |