Further examples of possible configurations of the disclosed device, as well as preferred embodiments, are described below with reference to the appended Figures, in which:
The embodiments shown here are to be understood as examples, and do not represent a limitation of the invention to the embodiments presented. According to the invention, the reagents are cooled via a cooling apparatus simultaneously with microwave irradiation. The temperature is measured with a sensor, and the measured value is coupled into an electronic regulating system as a control signal. The magnetron's emission can be regulated electronically. The magnetron power, microwave radiation pulses, and cooling power are available as control parameters. It is thus possible to set and hold a process temperature during the microwave process. This prevents degradation of the specimens due to excessively high process temperatures.
Specimens 11 are received in at least one holding apparatus 6, e.g., a basket, and can be introduced and removed through an opening 3a located in the waveguide on the upper side. In the operating state, the opening is covered by a closure 7 that seals the chamber at the top and is embodied so that the emergence of microwave radiation is prevented. Holding apparatus 6 for specimens 11 is joined to closure 7 preferably via a (for example, rod-shaped) holding element 6a, and hangs from closure 7 into a vessel 5 made of microwave-transparent material. The vessel contains a reagent 12 that is used for processing of specimens 11. Vessel 5 is held in position from below by a second closure 4, and can be exchanged downward through lower opening 4a closed off by lower closure 4. Lower closure 4 is likewise embodied so that the emergence of microwave radiation is prevented.
In the embodiment shown, upper closure 7 also receives, in addition to the specimen carriers, at least one cooling tube 8 that is part of a cooling circuit having a pump 9 and secondary heat exchanger 10. In the exemplifying embodiment shown, cooling tube 8 is guided through openings 7a, 7b in closure 7 and extends between specimen carrier 6 and the wall of vessel 5. A liquid 13 is pumped by means of pump 9 through the cooling tube as a cooling liquid to cool reagent 12 during the microwave process, and is cooled in secondary heat exchanger 10. Liquid 13 is preferably a non-polar liquid that is not (or almost not) heated by microwave radiation, e.g., silicone oil, or a liquid having a high heat capacity, e.g., water. Cooling tube 8 is nonmetallic and is made of a material that is not heated by microwaves. It is embodied so as to guarantee good heat exchange between liquid 13 and reagent 12. It is preferably embodied from thin-walled glass or ceramic, e.g., aluminum oxide. Any circulation of reagent 12, in particular in a separate circuit, is therefore superfluous in this embodiment. When plastic is used as the tube material of cooling tube 8, the wall area must be enlarged by corrugation or other suitable geometric measures in order to guarantee good thermal contact between the cooling and process liquids despite the relatively low thermal conductivity of the wall material. Cooling homogeneity and overall cooling performance can be improved if, instead of the one cooling tube 8, two or more cooling tubes, arranged in an annulus around specimen holders 6, are operated concurrently. The use of a cooling loop, as known from chemical liquid coolers, would also be conceivable.
Depending on the desired process temperatures and the cooling power necessary therefor, secondary heat exchanger 10 can dissipate heat to a large-volume reservoir tank or else to an active cooling element, e.g., a Peltier element or a compressor refrigerator. A Peltier element whose cooling power is adapted to the cooling power of the cooling tube is preferred.
The temperature of liquid 13 is measured using a temperature sensor 15. This temperature sensor is depicted as an immersion sensor (e.g., gas thermometer or infrared thermometer having a fiber optic cable). It can, however, also be embodied as a non-contact infrared sensor that is mounted above or alongside the vessel and measures the thermal radiation emitted from the liquid or the vessel wall. The measured temperature signal is transmitted to an electronic regulating system 14. Electronic regulating system 14 can regulate the magnetron power or, if the power is permanently set, can drive the magnetron in pulse mode and thereby regulate the microwave power. Regulation of the cooling power can additionally be provided by electronic regulating system 14, the delivery capacity of pump 9 and (when a Peltier element or cooling compressor is used) the temperature in secondary heat exchanger 10 being available as control parameters.
Number | Date | Country | Kind |
---|---|---|---|
A 540/2006 | Mar 2006 | AT | national |