This invention relates to vacuum tubes for high power microwave and mm-wave generation. More specifically it relates to phase-locked oscillators and frequency multipliers such as Gyrocons and Trirotrons.
The mm-wave region of the electromagnetic spectrum (defined herein to mean 30 GHz up to 1 THz) is still unexploited in high-power RF devices, mainly because of the lack of phased-locked sources that are able to provide substantial amount of power. Traditional linear interaction RF sources, such as Klystrons and Traveling Wave Tubes, fail to produce significant power levels at this part of the frequency spectrum. This is because their critical dimensions are small compared to the wavelength, and therefore the amount of beam current that can go through the beam apertures is very limited. There is therefore a need for compact, high power mm-wave sources. These would also enable several additional applications such as basic research, high-resolution medical imaging, navigation through sandstorms, spectroscopic detection of explosives, high bandwidth, low probability of intercept communications, space radars for debris tracking of objects less that 5 cm that present hazards to space assets such as communications satellites, and even human space flight safety in the future.
The present invention provides a vacuum tube technology, where the device size is inherently bigger than the wavelength it is operating on. It provides an improvement upon the output circuit of Gyrocons (U.S. Pat. No. 3,885,193 and U.S. Pat. No. 4,019,088) and Trirotrons (U.S. Pat. No. 4,210,845 and U.S. Pat. No. 4,520,293) to make them suitable for high power operation with low beam voltage in the mm-wave and THz part of the electromagnetic spectrum. In Gyrocons, an axial DC electron beam, originating from a pierce gun, is helically deflected, by exciting two orthogonal polarizations in a TM11 deflecting resonator with a 90° phase difference. The beam arrives at the output resonator as a current wave rotating around the axis of symmetry, and excites a traveling electromagnetic wave. The synchronism condition is given by ωRF=nωLO, where ωLO is the angular frequency of the deflecting resonator, ωRF is angular frequency of the generated signal in the output resonator, and n is the number of azimuthal variations of the target eigenmode in the output resonator. However, the type of output cavities traditional Gyrocons used employed beam pipes shielded with aluminum foils to contain the fields, thus requiring relativistic electron beams. Additionally, a complicated magnetic field profile was necessary to get the beam through those beam pipes. Scaling those designs to higher frequencies requires reducing the current dramatically, and therefore limiting the output power to levels already achieved with traditional devices. In Trirotrons, an annular radially expanding DC electron beam is radially velocity modulated using a ring resonator operating at ωLO and is intercepted at an output resonator operating at ωRF=nωLO, and having n times the number of azimuthal variation as the modulating resonator. Similarly to Gyrocons, scaling the output resonator of a Trirotron into the mm-wave and THz part of the electromagnetic spectrum requires a very narrow beam pipe and therefore limited current.
In a whispering gallery mode resonator, the electromagnetic waves bounce around a central axis, supported by the guiding surface of the resonator. Because of such a field configuration, the inner part of the resonator can be completely open without the fields leaking, as in a ring resonator. Unlike Gyrocons and Trirotrons, the whispering gallery mode resonator also acts as the collector. When the device is configured for frequency multiplication from X-band (8-12 GHz) to V-band (50-75 GHz) or W-Band (75 GHz-110 GHz), the dimensions of the output resonator allow for a device that is small enough that beam expansion is minimal, even without any focusing magnetic field, but big enough to allow for significant current to go through. There is therefore no need for a narrow beam pipe, or any sort of magnetic focusing or beam guidance compared to existing Gyrocons and Trirotrons.
The present invention provides a device for generating mm-wave radiation, the device including an electron gun emitting an electron beam, a whispering gallery mode resonator, and an output waveguide coupled to the whispering gallery mode resonator.
In one aspect, the invention provides apparatus for generating mm-wave electromagnetic radiation at an output frequency comprising: a) a whispering gallery mode resonator with a guiding surface, wherein the whispering gallery mode resonator has dimensions selected to support a whispering gallery electromagnetic eigenmode at the output frequency, b) an output waveguide coupled to the whispering gallery mode resonator through an apperture, and c) an electron beam source, wherein the electron beam source is designed to generate a velocity vector-modulated electron beam, wherein the electron beam source is configured such that the velocity vector-modulated electron beam travels substantially perpendicular to the guiding surface.
In some embodiments, the whispering gallery mode resonator is a spherical sector, wherein the whispering gallery mode resonator is designed to support two orthogonal whispering gallery eigenmodes with the same output eigen-frequency, wherein the apparatus further comprises a coupler coupling the whispering gallery mode resonator to the output waveguide, wherein the coupler is designed to couple the two orthogonal whispering gallery eigenmodes with a 90 degree phase difference to the output waveguide.
In some embodiments, the whispering gallery mode resonator is a spherical shell on equator, wherein the whispering gallery mode resonator is designed to support two orthogonal whispering gallery eigenmodes having the same output eigenfrequency, wherein the output waveguide is designed to couple the two orthogonal whispering gallery modes with a 90 degree phase difference.
In some embodiments, the whispering gallery mode resonator is a cylindrical wedge, wherein the whispering gallery mode resonator is designed to support two orthogonal whispering gallery eigenmodes having the same output eigen-frequency, wherein the output waveguide is designed to couple the two orthogonal whispering gallery modes with a 90 degree phase difference.
In some embodiments, the output waveguide has a rectangular cross-section with dimensions selected to support only one propagating mode at the output frequency.
In another aspect, the invention provides an apparatus for generating high frequency electromagnetic radiation comprising: a whispering gallery mode resonator, having: an axis of symmetry, a guiding surface, the whispering gallery mode resonator supporting two orthogonal whispering gallery eigenmodes, an output waveguide, wherein the whispering gallery mode resonator is coupled to the output waveguide and configured to couple from the output waveguide the two orthogonal whispering gallery eigenmodes with a 90 degree phase difference an electron beam source configured to generate a velocity vector-modulated electron beam that travels substantially perpendicular to the guiding surface.
In some embodiments, the whispering gallery mode resonator is a spherical sector, wherein the electron beam source is an axial electron gun designed to emit an initially continuous electron beam, the initially continuous electron beam initially travelling on an axis of symmetry and being velocity vector-modulated, wherein the apparatus further comprises a deflecting cavity resonator, the deflecting cavity resonator designed to support two orthogonal deflecting eigenmodes having the same input eigen-frequency, wherein the apparatus further comprises an input waveguide coupled to the deflecting cavity resonator and designed to couple the two orthogonal deflecting eigenmodes with a 90 degree phase difference.
In some embodiments, the whispering gallery mode resonator is a spherical shell resonator on equator, wherein the electron beam source is an annular electron gun designed to emit a continuous planar sheet beam, wherein the annular electron gun is concentric with the spherical shell resonator on equator, wherein the apparatus further comprises an annular velocity modulating resonator concentric with spherical shell resonator on equator and designed to support two orthogonal radially accelerating eigenmodes, wherein the apparatus further comprises an input waveguide coupled to the annular velocity modulating resonator and designed to couple the two orthogonal radially accelerating eigenmodes with a 90 degree phase difference, resulting in a rotating wave in the annular velocity modulating resonator, the rotating wave in the annular velocity modulating resonator having the same angular phase velocity as the rotating wave in the whispering gallery mode resonator.
In some embodiments, the whispering gallery mode resonator is a spherical shell resonator on equator, wherein the electron beam source is an annular RF electron gun concentric with the spherical shell resonator on equator, wherein the annular RF electron gun comprises an annular cathode being part of a annular velocity modulating resonator supporting two orthogonal radially accelerating eigenmodes, wherein the annular velocity modulating resonator is coupled to an input waveguide coupling the two orthogonal radially accelerating eigenmodes with a 90 degree phase difference, resulting in a rotating wave in the annular velocity modulating resonator, the rotating wave in the annular velocity modulating resonator having the same angular phase velocity as the rotating wave in the whispering gallery mode resonator.
In some embodiments, the whispering gallery mode resonator is a cylindrical wedge resonator on equator, wherein the electron beam source is an annular electron gun designed to emit a continuous planar sheet beam, wherein the annular electron gun is concentric with the cylindrical wedge resonator, wherein the apparatus comprises an annular velocity modulating resonator concentric with the cylindrical wedge resonator, wherein the annular velocity modulating resonator is designed to support two orthogonal radially accelerating eigenmodes, wherein the apparatus comprises an input waveguide coupled to the annular velocity modulating resonator and configured to couple the two orthogonal radially accelerating eigenmodes with a 90 degree phase difference, resulting in a rotating wave in the annular velocity modulating resonator, the rotating wave in the annular velocity modulating resonator having the same angular phase velocity as the rotating wave in the whispering gallery mode resonator.
In some embodiments, the whispering gallery mode resonator is a cylindrical wedge resonator on equator, wherein the electron beam source is an annular RF electron gun concentric with the cylindrical wedge resonator, wherein the annular RF electron gun comprises an annular cathode being part of an annular velocity modulating resonator coupled to an input waveguide and designed to support two orthogonal radially accelerating eigenmodes, wherein the annular velocity modulating resonator is coupled to an input waveguide designed to couple the two orthogonal radially accelerating eigenmodes with a 90 degree phase difference, resulting in a rotating wave in the annular velocity modulating resonator, the rotating wave in the annular velocity modulating resonator having the same angular phase velocity as the rotating wave in the whispering gallery mode resonator.
In another aspect, the invention provides an apparatus for generating high frequency electromagnetic radiation comprising: an electron source generating a pencil electron beam, an input waveguide, a deflecting cavity resonator positioned on an axis of symmetry, having beam pipes for the electron beam to enter and exit the deflecting cavity resonator, wherein the deflecting cavity resonator is designed to support two orthogonal deflecting eigenmodes having the same input eigen-frequency, wherein the deflecting cavity resonator is coupled to the input waveguide, wherein the input waveguide couples the two orthogonal deflecting eigenmodes with a 90 degree phase difference, resulting in a rotating wave in the deflecting cavity resonator, an output waveguide, a whispering gallery mode resonator, positioned along the axis of symmetry after the deflecting cavity resonator, wherein the whispering gallery mode resonator has a guiding surface and is designed to support two orthogonal whispering gallery eigenmodes having the same output eigen-frequency, wherein the whispering gallery mode resonator is coupled to the output waveguide, wherein the output waveguide is designed to couple the two orthogonal whispering gallery eigenmodes with a 90 degree phase difference, resulting in a rotating wave in the whispering gallery mode resonator, the rotating wave in the deflecting cavity resonator having the phase velocity as the rotating wave in the whispering gallery mode resonator, an electron beam source designed to produce an initially continuous electron beam, initially travelling on the axis of symmetry, through the deflecting cavity resonator.
In some embodiments, the opening for the electron beam to exit the deflecting cavity resonator is formed by nose cones, wherein the whispering gallery mode resonator is a spherical sector resonator formed between the nose cones and a spherical shell.
In some embodiments, the opening for the electron beam to exit the deflecting cavity resonator is formed by nose cones, wherein the whispering gallery mode resonator is a conical piece of an abstract cross-section shell formed between the nose cones and an abstract surface, symmetric by the axis of symmetry.
For a more complete understanding of the invention, reference is made to the following description and accompanying drawings, in which:
As shown in
The apparatus functions to generate high frequency electromagnetic radiation by extracting power from a velocity vector-modulated electron beam 114 inside a whispering gallery mode resonator 100, coupled to an output waveguide 102.
The whispering gallery mode resonator 100 functions to extract energy from the velocity vector-modulated electron beam 114 into high frequency electromagnetic radiation that will be used outside the apparatus. The whispering gallery mode resonator 100 supports a whispering gallery electromagnetic eigenmode that has the dominant electric field vector component in the direction of the velocity vector-modulated electron beam 114 propagation. The velocity vector-modulated electron beam 114 interacts with the whispering gallery electromagnetic eigenmode transferring energy from the electrons into the whispering gallery electromagnetic eigenmode. The whispering gallery electromagnetic eigenmode is supported on a guiding surface 106, that functions to constrain the electromagnetic field inside the whispering gallery mode resonator 100. The guiding surface 106 also functions as the collector of the apparatus, where the velocity vector-modulated electron beam 114 is being dumped at the end of the interaction with the whispering gallery electromagnetic eigenmode. The whispering gallery mode resonator 100 is coupled to an output waveguide 102 through a coupling aperture 104 that functions to transfer electromagnetic energy outside the apparatus.
The whispering gallery mode resonator 100 preferably comprises a guiding surface 106 with some cross section, fully revolved around an axis of symmetry 116. The whispering gallery mode resonator 100 is sized to support the whispering gallery electromagnetic eigenmode at a specific design frequency. This whispering gallery mode resonator 100 supports two degenerate whispering gallery electromagnetic eigenmodes at the same frequency, which are orthogonal to each other. By exciting the degenerate whispering gallery electromagnetic eigenmodes with a 90° phase difference, a rotating or circularly polarized wave is excited. Embodiments may include a number of coupling apertures. Each aperture 104 couples the whispering gallery mode resonator 100 to an output waveguide 102. Each coupling aperture 104 is positioned and sized to allow for a specific design percentage of the extracted energy from the electrons to be radiated inside the output waveguide 102.
A continuous helically deflected electron beam interacts with the spherical sector resonator 202. As the beam travels in the radial direction in spherical coordinates, helically deflected, the effect of space charge gets reduced. Additionally, since the frequency context is not encoded as longitudinal bunching, but as a rotational current wave, space charge is not limiting any more, in contrast to devices like klystrons or Travelling Wave Tubes. At millimeter wavelengths the dimensions of this resonator allow for a device that is small enough that beam expansion is minimal, even without any focusing magnetic field, but big enough to allow for significant current to go through. There is therefore no need for a narrow beam pipe, or any sort of magnetic focusing or beam guidance compared to gyrocons.
The electron beam originates from an axial electron gun 204 and is preferably circularly deflected by a deflecting resonator 206. The frequency multiplication apparatus 212 preferably comprises an axial electron gun 204 generating an electron beam, a whispering gallery mode resonator 202 output resonator sized to support two orthogonal eigenmodes at the output frequency of interest fout, a deflecting resonator 206 sized to support two orthogonal eigenmodes at the m-th subharmonic of the output frequency of interest
As will be discussed elsewhere, embodiments may also include input and output waveguides.
is the spherical bessel function, Pnm(cos θ) is the associated legendre polynomial, m is the number of azimuthal variations, n is the order of the Legendre Polynomial,
fRF is the eigenmode frequency of the resonator, Zo is the free-space impedance,
χ′n,1 is the first zero of the derivative of the spherical bessel function of order n. When n is large, the field profile decays fast with decreasing r, because of the bessel function. There is no need for an inner conductive surface, and the mode can be supported by only the surfaces shown in
As shown in
Where n is the number of azimuthal variations,
fRF is the eigenmode frequency of the resonator, Zo is the free-space impedance,
χ′n,1 is the first zero of the derivative of the bessel function of order n, and ko2=kz2+kr2. When n is large, the field profile decays fast with decreasing r, because of the bessel function. There is no need for an inner conductive surface, and the mode can be supported by only the surfaces shown in
As shown in
is the spherical bessel function, n is the number of azimuthal variations,
fRF is the eigenmode frequency of the resonator, Zo is the free-space impedance,
χ′n,1 is the first zero of the derivative of the spherical bessel function of order n. When n is large, the field profile decays fast with decreasing r, because of the bessel function. There is no need for an inner conductive surface, and the mode can be supported by the surfaces shown in
The electron beam preferably originates from an annular electron gun 600 and is preferably velocity-modulated by an annular ring resonator 602. As shown in
As illustrated elsewhere, whispering gallery mode resonator 604 is coupled to an output waveguide, and annular ring resonator 602 is coupled to an input waveguide.
As shown in
and coupled to an input waveguide 910.
The frequency multiplication apparatus 900 functions to generate high frequency radiation at a frequency that is the m-th harmonic of the input excitation frequency. An electron beam 902 originating from an electron gun 912 is velocity-vector modulated in an input resonator 908. The input resonator 908 is sized to support two degenerate orthogonal eigenmodes with the specific field configuration required in the specific embodiment, at frequency fin. The two degenerate orthogonal eigenmodes have min azimuthal variations. The input resonator 908 is coupled to an input waveguide 910, in such a way that the two orthogonal eigenmodes are coupled with a 90° phase difference, appearing as a rotating electromagnetic wave. The fields of this rotating electromagnetic wave have an azimuthal dependence of the form e−j2πf
The electron beam 902 drifts after interacting with the field inside the input resonator 908, and in the end interacts with the field inside the whispering gallery mode resonator 904. The whispering gallery mode resonator 904 is sized to support two degenerate orthogonal eigenmodes with the specific field configuration required in the specific embodiment, at frequency fout=mfin. The two degenerate orthogonal eigenmodes have mout=m·min azimuthal variations. The whispering gallery mode resonator 904 is coupled to an output waveguide 906, in such a way that the two orthogonal eigenmodes are coupled with a 90° phase difference, appearing as a rotating electromagnetic wave. The fields of this rotating electromagnetic wave have an azimuthal dependence of the form e−j2πf
Because the phase velocity of the rotating electromagnetic wave in both the input resonator 908 and whispering gallery mode resonator 904 match, power is extracted from the electron beam 902 inside the whispering gallery mode resonator 904.
As shown in
As shown in
Each deflecting resonator described in
As shown in
The deflecting resonator 1402 is coupled to input waveguide 1404 in such a way that the two orthogonal eigenmodes are coupled with a 90° phase difference, appearing as a rotating electromagnetic wave. The deflecting resonator 1402 is preferably coupled to an input waveguide 1404 through two orthogonally place waveguides and a hybrid coupler (detailed in
As shown in
As shown in
As shown in
The hybrid coupler 2000 functions to create a 90° phase difference between two coupling apertures 2004 and 2006, each of which couples power only to one of the two degenerate eigenmodes. The miter bends 2028, 2030 function to connect each output arm of the hybrid coupler 2000 to each of the coupling apertures 2004 and 2006. The waveguide taper 2032 functions to connect each output arm of the hybrid coupler 2000 to the waveguides 2034, 2036 used to connect the resonator 2002 to the outside world. The dummy features 2008 and 2010 function to symmetrize the fields inside the resonator 2002.
In the embodiment shown in
Similarly, in the embodiment shown in
As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3885193 | Budker | May 1975 | A |
4019088 | Budker | Apr 1977 | A |
4210845 | Lebacqz | Jul 1980 | A |
4520293 | Muller | May 1985 | A |
4912367 | Schumacher | Mar 1990 | A |
5263043 | Walsh | Nov 1993 | A |
7062131 | Ilchenko | Jun 2006 | B2 |
9268195 | Camacho | Feb 2016 | B1 |
9703045 | Evans | Jul 2017 | B2 |
9741521 | Perkins | Aug 2017 | B1 |
Number | Date | Country | |
---|---|---|---|
20170367171 A1 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
62332390 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15588002 | May 2017 | US |
Child | 15675690 | US |