The present invention relates to the use of dampeners and/or stabilizers in an archery bow and, in particular, various structures for releasably mounting at least one dampener and/or stabilizer to an archery bow for effectively absorbing energy from the release of the archery bow.
The archery bow is a simple mechanical device used to store energy derived from the archer during the drawing of the archery bow. When the archer releases the bow string or cable, the archery bow's energy is rapidly released. The greater portion of this energy is spent on launching the arrow, and much of the remaining energy is directed to the archery bow wherein the excess energy results in noise or is simply lost in the transfer process. Some of the energy directed back into the archery bow returns to its original undrawn state; however, much of this energy goes into excessive movement of various archery bow components, resulting in archery bow hand shock and system vibrations.
Because the trajectory of the arrow may be affected by any movement or vibration of the archery bow during the arrow's launch, it is desirable to reduce and/or eliminate such vibrations to the greatest extent possible by absorbing the energy in the archery bow. Thus, stabilizers and dampeners for archery bows have been designed and utilized in the archery field for many years. Such stabilizers and dampeners help absorb the shock and vibration that occur during the launch and release of an arrow from the archery bow.
Certain shock and vibration dampening devices have been created using lightweight materials, such as rubber and plastics. These devices have been mounted directly to the archery bows in an attempt to absorb such shock and vibration from the archery bow. However, the placement of these devices on the archery bow can be critical as to how well the dampening device operates. Many of these shock and dampening devices are mounted permanently to the archery bow, and therefore, the dampening device cannot be moved or changed. This is a disadvantage since an archer is unable to change the location or type of dampening device based on the performance characteristics of the dampening device.
Thus, it would be desirable to provide an apparatus that allowed for the effective and removable mounting of a dampener and/or stabilizer to an archery bow for absorbing energy from a released archery bow.
The present invention provides an apparatus for absorbing energy from the release of an archery bow. The apparatus of the present invention provides an elongated support structure releasably connectable to at least one vibration reduction insert. Each of the vibration reduction inserts have a substantially cylindrical shape and at least one substantially C-shaped recess along an outer edge of the vibration reduction insert. A releasable fastener is connected to one end of the support structure, and the fastener is releasably connectable to the archery bow such that the support structure is extendible in a cantilevered position relative to the archery bow.
The support structure of the present invention may have a substantially oval configuration having an outer frame with cross supports extending across the frame. The frame and the cross supports may be connectable to the vibration reduction inserts. The cross supports may have a honeycomb configuration, a cross-hatch configuration, or an arched cross-hatch configuration.
The vibration reduction insert may be made from a vibration reduction material. Along an edge of the C-shaped recess, the vibration reduction insert may have a U-shaped recess that extends toward the radial center of the vibration reduction insert. There may be two substantially C-shaped recesses and the C-shaped recesses may be substantially coaxially aligned. Each of the C-shaped recesses may have a substantially U-shaped recess that is substantially coaxially aligned with the other U-shaped recess. The vibration reduction insert may include a plurality of adjoining, solid discs that are coaxially aligned.
The various features, advantages and other uses of the present apparatus will become more apparent by referring to the following detailed description and drawings in which:
Referring to the drawings, the present invention will now be described in detail with reference to the disclosed embodiments.
As seen in
In order to mount the dampener 12 and/or the stabilizer 14 in a position that will effectively absorb residual energy from the archery bow 16, the apparatus 10 of the present invention provides several embodiments. As seen in
In another embodiment, the support structure 18 of the apparatus 10 of the present invention may utilize a plurality of substantially cylindrical rods 32 connected to a pair of end caps 34, 36. The end caps 34 shown in
Specialized outer casings 38 may be provided for securing the dampener 12 and/or the stabilizer 14 to the rods 32. The casings 38 are substantially cylindrical and allow the dampener 12 or the stabilizer 14 to snap into and out of the casing 38. The casings 38 have an aperture 39 extending there through for receiving one of the rods 32. A pair of bosses 40 having an aperture extending there through are integrally formed on the casing 38 for allowing a second rod 32 to extend through the casing 38. A set screw 42 may be provided in the casing 38 wherein the set screw 42 is threaded against the rod 32 to secure the casing 38 in a set position relative to the rods 32. The casings 38 may be mounted at various angles and at a various longitudinal spacing with respect to the rods 32 to provide various energy-absorbing characteristics. The rods 32 may be fabricated from any high strength, lightweight material, such as various polymeric and metallic materials, and the end caps 34, 36 and the casings 38 may be formed of any high strength, lightweight material, such as polymeric materials.
In yet another embodiment, the support structure 18 of the apparatus 10 of the present invention may provide an elongated cylindrical rod 44 having a pair of end caps 46, 48 connected to each end of the rod 44, as seen in
To secure at least one of the dampeners 12 and/or the stabilizers 14 to the apparatus 10, the support structure 18 of the apparatus 10 may provide arcuate shaped brackets 54 connected to the rod 44. One end of the brackets 54 has a substantially cylindrical configuration that is formed by a pair of semi-circular portions 56 that overlap and are connected to the rod 44. The pair of semi-circular portions 56 of the bracket 54 is secured to the rod 44 through the use of a pair of conventional fasteners 58 that extend through corresponding apertures provided in bosses 60 formed on each of the pair of semi-circular portions 56 of the bracket 54. By loosening and tightening the fasteners 58 on the bracket 54, the position of the bracket 54, and thus the position of the dampeners 12 and the stabilizers 14, can be adjusted along a longitudinal axis of the rod 44 and can be rotated with respect to the longitudinal axis of the rod 44. At the opposite, free end 61 of the bracket 54, an aperture is integrally formed in the bracket 54 for receiving the dampener 12 and/or the stabilizer 14. A snap fit or friction fit is provided in the aperture in the free end 61 of the bracket 54 for connecting the dampener 12 and/or the stabilizer 14 to the bracket 54. This also allows the archer to replace the dampener 12 and/or the stabilizer 14 with dampeners 12 and/or stabilizers 14 having the desired performance characteristics. The rod 44, the end caps 46, 48, and the brackets 54 may be fabricated from a lightweight, high strength material, such as a metallic or a polymeric material.
In use, the archer selects the apparatus 10 and threadably connects one of the embodiments of the apparatus 10 of the present invention to the archery bow 16. The archer may exchange the dampeners 12 and/or the stabilizers 14 with various other dampeners 12 and stabilizers 14 to provide various energy absorption characteristics in the archery bow 16. In addition, the archer may position the dampeners 12 and/or the stabilizers 14 in various positions, depending on the embodiment utilized in the present invention and depending on the desired characteristic of the apparatus 10.
In another embodiment of the present invention, the apparatus 10 may provide an arched cross-hatch configuration and/or a vibration reduction insert 105. As seen in
The support structure 18 may have various cross-members 126 that are defined by various voids or apertures that extend through the support structure 18. The cross-members 126 extend between the outer frame 124 and create a substantially arched cross-hatch configuration, wherein the cross-members 126 are substantially curvilinear. The cross-members 126 and the outer frame 124 of the support structure 18 may also be utilized to form at least one substantially circular aperture 130 provided in the support structure 18.
The vibration reduction insert 105 is solid, substantially cylindrical, and is made of a vibration reduction material, such as rubber or plastic, as seen in
The second portion 122 of the vibration reduction insert 105 is a disc having an annular ridge 123 protruding near the middle. When the vibration reduction insert 105 is inserted into the aperture 130 in the support structure 18, the annular ridge 123 engages one of the annular grooves 131 in the aperture 130 to secure the vibration reduction insert 105 within the aperture 130. A pair of substantially C-shaped recesses 125 are formed in an outer edge 127 of the second portion 122 and are located on opposite sides of the second portion 122, such that the pair of C-shaped recesses 125 are substantially coaxial. The C-shaped recesses 115, 125, 135 of the first portion 111, the second portion 122, and the third portion 133 are coaxially aligned, which define two recesses 140, 141 extending longitudinally through the vibration reduction insert 105 that assist with insertion/removal of the vibration reduction insert 105 in the aperture 130 by allowing the archer to position his or her fingers in the recesses 140, 141 while the vibration reduction insert 105 is in the aperture 130.
Similar to the other embodiments, this embodiment is not limited to one or two vibration reduction inserts 105, but rather, other numbers or combinations of the vibration reduction inserts 105 may exist. This allows an archer to customize the apparatus 10 by interchanging various vibration reduction inserts 105 having different absorption and dampening characteristics. To use, the archer selects the desired configuration of the apparatus 10 and inserts the vibration reduction inserts 105 into the apertures 130 in the support structure 18. Depending on the desired positioning of the vibration reduction insert 105, the annular ridge 123 on the vibration reduction insert 105 can engage any of the annular grooves 131 in the support structure 18. To enable attachment of the apparatus 10 to the archery bow 16, the head 109 of the fastener 120 is inserted into the first aperture 121 in the support structure 18 and secured to the support structure 18 through the use of the set screw 112 in the second aperture 113. Once assembled, the apparatus 10 is threadably connected to the archery bow 16 by engaging the threaded portion 110 of the fastener 120 with the threaded aperture in the archery bow 16. When attached, the apparatus 10 extends outward from the body portion 22 of the archery bow 16 in a cantilevered position relative to the archery bow 16. The apparatus 10 is ideally suited to be used in the same vertical plane as the archery bow 16, wherein the longitudinal axis of the fastener 120 is substantially perpendicular to the longitudinal axis of the vibration reduction insert 105; however, the apparatus 10 may be used in other positions as well.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
This patent application is a continuation-in-part of U.S. patent application Ser. No. 13/604,972, filed Sep. 6, 2012.
Number | Name | Date | Kind |
---|---|---|---|
3412725 | Hoyt, Jr. | Nov 1968 | A |
3670712 | Izuta | Jun 1972 | A |
5090396 | Bickel et al. | Feb 1992 | A |
5611325 | Kudlacek | Mar 1997 | A |
5657741 | Todd | Aug 1997 | A |
5911215 | Fisher, Jr. | Jun 1999 | A |
D442251 | Fitzgerald, Jr. | May 2001 | S |
D446278 | Fitzgerald, Jr. | Aug 2001 | S |
D448827 | Chipman | Oct 2001 | S |
6382201 | McPherson et al. | May 2002 | B1 |
6431163 | Chipman | Aug 2002 | B1 |
6675793 | Saunders | Jan 2004 | B1 |
6745757 | Sims | Jun 2004 | B2 |
7264098 | McPherson | Sep 2007 | B2 |
7278216 | Grace | Oct 2007 | B2 |
7318430 | Leven | Jan 2008 | B2 |
7610686 | Summers et al. | Nov 2009 | B1 |
7987954 | McPherson | Aug 2011 | B2 |
8225778 | Walk et al. | Jul 2012 | B2 |
20100192932 | Brewster | Aug 2010 | A1 |
20100326415 | Walk et al. | Dec 2010 | A1 |
20110120440 | Stokes | May 2011 | A1 |
20120125310 | Khoshnood | May 2012 | A1 |
Number | Date | Country | |
---|---|---|---|
20150034063 A1 | Feb 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13604972 | Sep 2012 | US |
Child | 14519633 | US |