The solar industry is growing world-wide and, as a result, more-efficient structures are desirable for mounting photovoltaic modules to a structure, such as a roof of a home or other building. Whereas many different structures are known, there is a desire to reduce the complexity of such structures, and improve the efficiency of such structures.
Therefore, there is a need for an improved apparatus for mounting photovoltaic modules.
The bracket 100 defines slots 112A and 112B on opposing sides of the bracket 100 in a lower portion 110A of the bracket 100. Slots 112A and 112B extend along an entire longitudinal length L of the bracket 100, as can be seen at least in
The bracket 100 includes a first ledge 120 on a first side 110C of the bracket 100 and a second ledge 122 on a second, opposing side 110D of the bracket 100. The opposing sides extend along the longitudinal length of the bracket 100 and between the lower portion 110A and an upper portion 110B of the bracket 100. The bracket 100 defines a cavity 130 between the upper portion 110B of the bracket 100 and the lower portion 110A of the bracket 100 and includes an extension member 140 on the upper portion 110B of the bracket 100. The extension member 140 defines a cavity 142 within the extension member 140.
As mentioned above, the apparatus 10 also includes a clamp 200 that is securable onto the bracket 100 and on the upper portion 110B of the bracket 100. The clamp 200 includes two opposing legs 210, 212 where the extension member 140 of the bracket 100 is disposed between the two opposing legs 210, 212 of the clamp 200 when the clamp 200 is secured to the bracket 100. A plurality of attachment mechanisms 300, as can be seen in
The clamp 200 also includes a first wing 220 on a first side 200A of the clamp 200 and a second wing 222 on a second side 200B of the clamp 200. As will be further discussed below, the wings 220, 222 cooperate with the ledges 120, 122 of the bracket 100, respectively, to secure multiple photovoltaic modules in the apparatus 10. Clamp 200 also extends along the entire longitudinal length L of the bracket 100, as can be seen in
The apparatus 10 also includes a footer 400, as mentioned above. The footer 400 is variably positionable on the bracket 100 along either slot 112A or 112B, as can be further seen in
Thus, as discussed above, the footer 400 is variably positionable on the bracket 100 along the slot 112A via the securement mechanism 410 that is disposed through the footer 400 and is received in the slot 112A. By loosening the nut on the bolt, while the nut remains in slot 112A, the footer and securement mechanism may be moved and positioned anywhere along the longitudinal length of the bracket, and then tightened to secure the footer 400 on the bracket 100 at a desired positioned. This provides a benefit since, as will be further discussed later in this specification, the footer is not constrained to a single position on the bracket, but rather, it can be variably positioned on the bracket such that it can be co-located at the position of a roof structure, e.g., a rafter, to which the footer is to be mounted.
Further included in apparatus 10 are first bonding clip 500 and second bonding clip 510. First bonding clip 500, and first and second bonding clips 500, 510, can be seen in
As can be seen at least in
As can be seen at least in
The securement mechanisms 300 are threaded into respective apertures in clamp 200 and extension member 140 of bracket 100 to lower the clamp 200 with respect to bracket 100, and thus, clamp the photovoltaic modules 1, 2 between the first ledge 120 of bracket 100 and first wing 220 of clamp 200. Securement mechanisms 300 also electrically bond the clamp 200 to the bracket 100.
As can be understood when considering
As can also be understood particularly when considering
As such, the apparatus can be disposed between 4 photovoltaic modules of an array of photovoltaic modules to mount the 4 photovoltaic modules to a roof structure. Thus, respective corners of the 4 photovoltaic modules are secured in the apparatus 10. If the apparatus 10 is used on the edge of the array, only 2 photovoltaic modules are mounted in the apparatus on one side of the apparatus.
As can be seen, the apparatus 10A of
As discussed above, the apparatus 10A includes the same elements as apparatus 10. Thus, apparatus 10A includes a bracket 100, a clamp 200, and a footer 400 (not shown in
The bracket 100 defines slots 112A and 112B on opposing sides of the bracket 100 in a lower portion 110A of the bracket 100. Slots 112A and 112B extend along an entire longitudinal length L of the bracket 100.
The bracket 100 includes a first ledge 120 on a first side 110C of the bracket 100 and a second ledge 122 on a second, opposing side 110D of the bracket 100. The bracket 100 defines a cavity 130 between the upper portion 110B of the bracket 100 and the lower portion 110A of the bracket 100 and includes an extension member 140 on the upper portion 110B of the bracket 100. The extension member 140 defines a cavity 142 within the extension member 140.
The clamp 200 includes two opposing legs 210, 212 where the extension member 140 of the bracket 100 is disposed between the two opposing legs 210, 212 of the clamp 200 when the clamp 200 is secured to the bracket 100. An attachment mechanism 300 secures the clamp 200 to the bracket 100 on the upper portion 110B of the bracket 100.
The clamp 200 also includes a first wing 220 on a first side 200A of the clamp 200 and a second wing 222 on a second side 200B of the clamp 200.
As can be further seen in
As can be seen in
As shown in
As shown in
An attachment device 625, which may be a screw with a pointed end, is disposed through an aperture in trim mounting bracket 620 and within slot 112A to engage with bracket 100 internal to the slot 112A. The screw cuts into the bracket 100 to electrically bond the trim mounting bracket 620 to the bracket 100.
The trim 610 is mounted in the trim mounting bracket 620 by placing a lower portion 612 of the trim 610 in the trim mounting structure 622 and by placing an upper portion 614 of the trim 610 in the trim mounting structure 621. Thus, the trim 610 can be snapped into the trim mounting bracket 620 and no attachment holes are required in the trim 610, thus aesthetically enhancing the trim.
An attachment device 626, which may also be a screw with a pointed end, is disposed through an aperture in trim mounting bracket 620 and in engagement with the upper portion 614 of trim 610 that is disposed within trim mounting structure 621. The screw cuts into the trim 610 to electrically bond the trim 610 to the trim mounting bracket 620, and thus the bracket 100.
A lowest-most portion 600A of the trim assembly 600 extends below a lowest-most portion 100E of the bracket 100. As such, the trim assembly provides for a fire protection mechanism since the flow of air under the mounting apparatus 10, 10A, and thus under the photovoltaic modules that are mounted on the mounting apparatus 10, 10A, is restricted by the trim assembly 600 which extends below the bracket 100.
A longitudinal length of the trim 610 is much longer than the longitudinal length A of the apparatus 10. As such, a single trim 610 can extend across numerous apparatuses 10, 10A, and thus, be mounted across numerous adjacently mounted apparatuses. Further, the trim is East-West adjustable in the trim mounting bracket 620 depending upon the area it is to cover and can be cut to size depending upon the area to be covered. Also, due to the curved form of the trim 610, adjacent trims 610 may overlap each other in a nestable/telescoping manner when installed, or during storage and shipping of the trims. The nestable/telescoping feature allows one size trim to fit a variety of photovoltaic module lengths regardless of portrait or landscape module orientation, without the need for cutting the trim to length; only positioning is required.
Further, the East-West adjustability of the trim mounting bracket 620 on the apparatuses and the E-W adjustability of the trim 610 within the trim mounting bracket 620 are also benefits. Further yet, the trim 610 helps to provide alignment of a plurality of apparatuses 10, 10A that may be installed in a line, e.g., during installation of a first row of photovoltaic modules in an array.
Additionally, the apparatus 10 may also include a micro-inverter mounting bracket 700, where the micro-inverter mounting bracket 700 is mountable on the bracket 100. As can be seen in
The micro-inverter mounting bracket 700, like trim mounting bracket 620, is also mountable in the slot 112A of the bracket 100. The upright leg 701 of micro-inverter mounting bracket 700 has a micro-inverter mounting bracket mounting structure 711 at its lower end. This structure 711 is similar to structure 624 of trim mounting bracket 620 for mounting in slot 112A. As such, mounting structure 711 also includes two legs that both have an outwardly extending tab on the ends of the legs.
As can be seen in
An attachment device 720, which may be a screw with a pointed end, is disposed through an aperture in leg 701 of micro-inverter mounting bracket 700 and within slot 112A to engage with bracket 100 internal to the slot 112A. The screw cuts into the bracket 100 to electrically bond the micro-inverter mounting bracket 700 to the bracket 100.
Flat leg 702 of micro-inverter mounting bracket 700 includes a flange 712 that receives within it an end of a mounting plate 801 that is associated with a micro-inverter 800. When the end of the mounting plate 801 is received within the flange 712, the plate 801 rests on flat leg 702. An attachment device 722, which may be a screw or a bolt, is disposed through respective apertures in flat leg 702 and plate 801 to mount the micro-inverter 800 on the bracket 100, and thus, apparatus 10. This structure also serves to keep the micro-inverter at a proper height location relative to the roof, the apparatus, and the photovoltaic module that the micro-inverter is associated with. The attachment device 722 also electrically bonds the mounting plate 801 of micro-inverter 800 to the micro-inverter mounting bracket 700.
Also similar to trim mounting bracket 620, micro-inverter mounting bracket 700 is East-West adjustable on bracket 100. Further, the micro-inverter mounting bracket 700 may be installed on either side of mounting bracket 100, i.e., either the North or South side.
The foregoing disclosure has been set forth merely to illustrate the invention and is not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
7260918 | Liebendorfer | Aug 2007 | B2 |
7434362 | Liebendorfer | Oct 2008 | B2 |
7592537 | West | Sep 2009 | B1 |
7956281 | O'Brien et al. | Jun 2011 | B2 |
8109048 | West et al. | Feb 2012 | B2 |
8128044 | Liebendorfer | Mar 2012 | B2 |
8375654 | West et al. | Feb 2013 | B1 |
8695290 | Kim | Apr 2014 | B1 |
8763968 | Liebendorfer | Jul 2014 | B2 |
8813441 | Rizzo | Aug 2014 | B2 |
20020078991 | Nagao et al. | Jun 2002 | A1 |
20030070368 | Shingleton | Apr 2003 | A1 |
20040163338 | Liebendorfer | Aug 2004 | A1 |
20080000173 | Lenox et al. | Jan 2008 | A1 |
20110000526 | West | Jan 2011 | A1 |
20110138585 | Kmita | Jun 2011 | A1 |
20110174947 | Wu | Jul 2011 | A1 |
20120080075 | Hardikar | Apr 2012 | A1 |
20120102853 | Rizzo | May 2012 | A1 |
20120255596 | Korman et al. | Oct 2012 | A1 |
20120301661 | West et al. | Nov 2012 | A1 |
20130140416 | West et al. | Jun 2013 | A1 |
20130255167 | Concho et al. | Oct 2013 | A1 |
20130291479 | Schaefer | Nov 2013 | A1 |
20140110543 | Aliabadi et al. | Apr 2014 | A1 |
20140168927 | Morris et al. | Jun 2014 | A1 |
20140239137 | Liebendorfer | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
2 972 574 | Sep 2012 | FR |
EP 2626651 | Aug 2013 | IT |
EP 2664727 | Nov 2013 | JP |
WO 2014004279 | Jan 2014 | WO |
Entry |
---|
“Quick Rack QMQR—EF—Enphase Mount Assembly”—Quick Mount PV, Walnut Creek, CA, (Four (4) pages), Sep. 2014. |
Backstrom et al., “Report of Experiments of Minimum Gap and Flashing for Rack Mounted Photovoltaic Modules Phase 4”, Project No.—11CA43479, File No. IN15911, UL LLC, Northbrook, IL, (Ten (10) pages), Mar. 29, 2012. |
Backstrom et al., “Effect of Rack Mounted Photovoltaic Modules on the Flammability of Roofing Assemblies—Demonstration of Mitigation Concepts”, Project No.—08CA39594 and 09CA40917, File No. IN15911 and R26475 Underwriters Laboratories Inc., Northbrook, IL, (Twenty Three (23) pages), Revised on Feb. 10, 2010. |
European Search Report issued in European counterpart application No. 15186614.2-1504 dated Feb. 26, 2016 (Eight (8) pages). |
Number | Date | Country | |
---|---|---|---|
20160111997 A1 | Apr 2016 | US |