The invention relates to an apparatus in accordance with the preamble of claim 1.
Two-stage converters for low-frequency square-wave operation of a high-pressure discharge lamp are known.
The flyback converter has found widespread use as a DC voltage converter for low input voltages UE (for example at an input voltage of 12 V as in motor vehicles).
The object of the invention is to provide a converter and an operating apparatus for a discharge lamp with a simplified design.
This object is achieved according to the invention by the features of claim 1. Particularly advantageous embodiments of the invention are described in the dependent claims.
The above design of the converter described in accordance with the prior art can be substantially simplified if a step-up DC voltage converter with selectable polarity is used. The inverter in accordance with the prior art can be dispensed with if low-frequency switching-over of the polarity of the output voltage of the DC voltage converter is used. If one considers DC voltage converters with an inductive storage element, as disclosed, for example, on page 145 of the book by Erickson, Robert W. and Maksimović, Dragan “Fundamentals of power electronics” 2nd edition, Kluwer Academic Publishers, Boulder, Colo., USA, 2002, the current-fed full-bridge and the inverse Watkins-Johnson converter meet these requirements. In both cases, in addition to the level of the output voltage, its polarity can also be changed by the duty factor. The inverse Watkins-Johnson converter is in this case preferred to the current-fed full-bridge since it manages with fewer semiconductor switches. In comparison with the above design, illustrated in
A ballast comprising an inverse Watkins-Johnson converter including an ignition unit is shown in
If, by way of simplification, a very large output capacitor C1 is used as the basis, its voltage in the steady state, under the assumption of ideal switches and a no-losses, fixedly coupled transformer with a turns ratio ü of
is given by
was used for illustrative purposes.
Owing to the pole in ε(D) and the demand for alternately providing a positive and negative output voltage, a linear controller for controlling the lamp current or the lamp power is not possible for pulse width modulation. A controller structure comprising two independent “controllers”, in each case followed by a limiter, which establishes the maximum or minimum duty factor and therefore prevents operation very close to the pole, would be conceivable. Depending on the desired polarity of the output voltage, one of the two output signals of the limiters is used for driving the switches S1 and S2.
If the duty factor D is selected in such a way that a positive voltage UC1 results, while the switch S2 is closed the main inductance of the transformer TW is magnetized by a positive current IS2 provided by the output capacitor C1. Then, when the switch S1 is closed, it is demagnetized again by the current IS1, which is likewise flowing in the positive counting direction, with the energy being transmitted from the input to the output of the converter. If the converter produces a negative output voltage, when the switch S1 is conducting, magnetization of the main inductance takes place by means of a positive switch current since the voltage applied via the winding n1 results as the sum of the absolute values of UE and UC1. In contrast to the case with a positive output voltage, only a fraction of the energy stored in the transformer TW now originates from the output capacitor C1. The stored energy is then transmitted to the output when the switch S2 is closed and when IS2>0.
Given the above preconditions, when the switch S1 is closed the voltage loading US2 of the switch S2 is given by
and, after a switching operation, the voltage loading US1, of the switch S1 is given by
U
S1
=U
E−(1+ü)UC1.
The highest voltage loading occurs if an interruption in the supply voltage occurs shortly before the lamp is ignited, i.e. the converter off-load voltage UW,0 is present at the converter output (in order to give: UC1=UW,0 or UC1=−UW,0).
If the turns ratio were selected as one, which represents the best case with respect to switch voltage loadings, a blocking voltage at the level of twice the converter off-load voltage occurs when the input voltage is disregarded. This scenario requires comparatively high blocking voltages, which represents a drawback of the attractiveness of this concept. If it is assumed that such an operating state will occur comparatively rarely, switches with a low blocking voltage and corresponding protective circuits can be used. For example, zener diodes, Transil diodes or suppressor diodes could be used in parallel with the switches S1, S2, which possibly result in discharging of the output capacitor.
Furthermore, a turns ratio of ü=1 has the advantage that such a transformer TW allows for the best magnetic coupling between n1 and n2, and therefore particularly few losses occur as a result of primary-side and secondary-side stray inductances.
Particularly low primary-side and secondary-side stray inductances can be achieved by a double-wound winding design of the transformer TW. For this purpose, 5 identical windings are applied to the core, for example, using corresponding winding technology. Then, for example 2 of the 5 windings are interconnected so as to form the total winding n1 and the remaining 3 are interconnected so as to form the total winding n2, as a result of which winding transformation ratios of 2/3 (exclusively series circuits comprising the individual windings) or of two (n1 comprises a series circuit of individual windings, whereas n2 comprises a parallel circuit of the individual windings) or of 1/3 (n1 comprises a parallel circuit of the individual windings, whereas n2 comprises a series circuit of individual windings) can be realized.
If the ignition unit is not taken into consideration and the lamp is modeled by means of a nonreactive resistor RLa, the current iS1 through the switch S1, changes during the period DT of the switch S1 between
linearly over time. In this case, T denotes the duration of a complete switching cycle. The current iS2 through the switch S2 moves in similar fashion from
i
S2(DT)=üiS1(DT)
to
i
S2(T)=üiS1(0)
If it is assumed that both switches only conduct current uni-directionally, the demand for precisely complementary driving of the two switches S1, S2 by means of in each case one diode D1 and D2, respectively, in series with the switch S1 and S2, respectively, as illustrated in
The use of the diodes D1, D2 simplifies the driving considerably: if a positive output voltage is intended to be provided, S1 should be permanently switched on and the associated drive signal should have a constant value and S2 is supplied a drive signal which changes over time, for example is pulse-width-modulated. The reverse is true in the case of a negative output voltage. In this case, S2 can remain permanently closed, and S1 is supplied a drive signal which changes correspondingly over time, with the result that only S1 implements switching operations. In order to produce an output current with alternating polarity, as is the case, for example, for operating discharge lamps designed for AC voltage, the system is periodically switched over between these two drive modes.
Since the converter is not capable of providing a positive output voltage which is less than the input voltage (cf.
TIP in
The duty factor D transmitted to the switches S1, S2 of the inverse Watkins-Johnson converter is limited to values with a sufficient distance from the pole of the voltage transformation ratio ε(D) in order to avoid a steady-state operation in the region of the pole of the voltage transformation ratio ε(D).
In accordance with the preferred exemplary embodiment of the invention, the abovementioned lamp La is a mercury-free metal-halide high-pressure discharge lamp for use in a motor vehicle headlamp. In accordance with this exemplary embodiment, the abovementioned variables have the following values:
input voltage UE=12 V
the transformer TW has a double-wound winding design with a turns ratio of ü=1
output capacitor capacitance C1=1 μF
inductance Lnl of the winding n1: Ln1=100 μH
inductance LIP,s of the secondary winding of the ignition transformer TIP is 500 μH,
switching frequency f of the switches S1, S2: f=100 kHz.
Number | Date | Country | Kind |
---|---|---|---|
102005052554.7 | Nov 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2006/067783 | 10/26/2006 | WO | 00 | 5/2/2008 |