Information
-
Patent Grant
-
6834666
-
Patent Number
6,834,666
-
Date Filed
Thursday, March 7, 200222 years ago
-
Date Issued
Tuesday, December 28, 200420 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Morgan, Lewis & Bockius LLP
-
CPC
-
US Classifications
Field of Search
US
- 137 269
- 137 461
- 137 517
- 137 561 R
- 137 56517
- 137 56518
- 137 861
- 137 883
- 251 1496
-
International Classifications
-
Abstract
The invention provides an apparatus for outputting compressed air in a compressor to a plurality of pneumatic tools at a plurality of pressures. The apparatus includes: an air tank storing compressed air compressed by the compressor at a high pressure; a pressure adjusting portion connected to said air tank and adjusting a pressure value of the compressed air in a region from the high pressure to zero; a pressure outputting portion connected to a secondary side of said pressure adjusting portion and outputting the adjusted compressed air to at least one of a first pneumatic tool driven at a first pressure and a second pneumatic tool driven at a second pressure. The first pressure is larger than the second pressure, and the adjusted compressed air is not output to the second pneumatic tool at the first pressure.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a compressed air outputting apparatus for outputting compressed air of a compressor supplying compressed air to a tool driven by compressed air.
More specifically, the present invention relates to an apparatus of outputting compressed air in a compressor for supplying a high pressure exclusive pneumatic tool driven in a high air pressure region and a low pressure exclusive pneumatic tool driven in a low pressure region, with compressed air at pressures suitable for the respective exclusive pneumatic tools.
2. Description of the Related Art
According to a general portable air compressor for supplying compressed air to a tool driven by compressed air, there is stored compressed air at pressure of, for example, 10 through 30 kg/cm
2
produced by a compressing portion thereof driven by a motor in a tank and the compressed air is adjusted to pressure used by the tool by a reducing valve attached to the tank and supplied to a side of the tool via connecting means of a quick coupling unit or the like.
As a compressed air tool, there are a generally known a low pressure tool used at pressure equal to or lower than 10 kg/cm
2
and a high pressure tool used at high pressure equal to or higher than 10 kg/cm
2
for, for example, downsizing the tool or making the tool carry out high function operation. In order to be able to use the low pressure tool and the high pressure tool by one compressor, there is known a constitution in which compressed air at high pressure equal to or higher than 30 kg/cm
2
is stored in a tank, the tank is attached with a reducing valve exclusively used for low pressure (normal pressure) and a reducing valve exclusively used for high pressure, the respective reducing valves are connected with sockets of coupling units exclusively used for the low pressure tool and exclusively used for the high pressure tool and the respective tools can be supplied with compressed air at respectively adjusted pressures. Further, in order to prevent the two kinds of tools from being supplied with compressed air at inappropriate pressure by erroneous connection, there are used fluid couplings which are not compatible to each other in connecting to the tank of the compressor, further, also with regard to the reducing valves attached to the tank of the compressor, there are used the reducing valves for high pressure and for low pressure having different maximum output pressures such that compressed air at high pressure cannot erroneously be supplied to the low pressure tool. Further, according to the reducing valve used exclusively for low pressure, the maximum output pressure is restricted such that an upper limit of a pressure range used in the low pressure tool is not exceeded thereby.
According to the above-described compressor, both of the high pressure tool and the low pressure tool can be used, further, respective pieces of the two tools can simultaneously be used, the two tools can be connected via the exclusive sockets which are not compatible to each other and therefore, erroneous connection is eliminated and a phenomenon such as destruction of the low pressure tool or a deterioration in the function of the high pressure tool can be prevented.
As mentioned above, as a compressed air tool, there are a generally known a low pressure pneumatic tool used at pressure equal to or lower than 10 kg/cm
2
and a high pressure pneumatic tool used at high pressure equal to or higher than 10 kg/cm
2
for, for example, downsizing the tool or making the tool carry out high function operation. According to the low pressure pneumatic tool and the high pressure pneumatic tool, there are used fluid coupling units which are not compatible to each other in connecting to a supply source of compressed air such that compressed air at inappropriate pressure is not supplied by erroneous connection.
For example, as shown by JP-A-4-298691, there is known a constitution in which in order that a low pressure tool and a high pressure tool can be used by one compressor, compressed air at high pressure equal to or higher than 30 kg/cm
2
is stored in a tank, the tank is attached with a reducing valve used exclusively for low pressure and a reducing valve used exclusively for high pressure, the respective reducing valves are connected with sockets of quick coupling units exclusive for a low pressure pneumatic tool and a high pressure pneumatic tool and compressed air at pressures adjusted by the respective reducing valves is supplied to the respective tools. In this case, according to the reducing valve used exclusively for low pressure, a maximum output pressure is restricted to prevent from exceeding an upper limit of a pressure range used in the low pressure pneumatic tool.
According to the above-described compressor, both of the high pressure pneumatic tool and the low pressure pneumatic tool can be used. Further, respective pieces of the two tools can simultaneously be used, and the two tools can be connected via the exclusive sockets which are not compatible to each other. Therefore, erroneous connection is eliminated and a phenomenon such as destruction of the low pressure tool or a deterioration in the function of the high pressure tool can be prevented.
However, in order to use two pieces of either of the low pressure tool or the high pressure tool by the above-described compressor, it is necessary to newly install a unit of the exclusive reducing valve and the exclusive socket, or attach a plurality of pieces of sockets in parallel to the low pressure reducing valve or the high pressure reducing valve. In the former case, when respective two pieces of the high pressure tools and the low pressure tools are simultaneously used, it is necessary to install a total of four pieces of the reducing valves of respective two pieces of the high pressure reducing valves and the low pressure reducing valves. Further, in the latter case, although there may be provided two pieces, in total, of a single piece of the reducing valve, pressure supplied to the two tools used at low pressure or high pressure stays the same. Accordingly, when operation is carried out at pressures different for the respective tools, for example, when operation capable of being carried out at low pressure such as building an inner wall by one piece of a nailing machine and operation needing comparatively large striking force for an operated body of a pillar, a foundation or the like by other nailing machine, even the same low pressure tool cannot be used by setting adjusted pressure suitable for respective operation.
Further, according to an apparatus shown in JP-A-4-298691, the similar problem arises. That is, according to the apparatus of outputting compressed air of a compressor, in order to simultaneously use two pieces of either of the low pressure pneumatic tools or the high pressure pneumatic tools, it is necessary to newly install respectively exclusive units of reducing valves and sockets, or attach a plurality of pieces of sockets in parallel to the low pressure reducing valve or the high pressure reducing valve. That is, when two pieces of the high pressure tools are simultaneously used, two pieces of sockets for high pressure are needed. When two pieces of low pressure tools are used, two pieces of sockets for low pressure are needed. In consideration of using respective two pieces of the low pressure tools and the high pressure tools, it is necessary to install a total of four pieces of sockets and these must be arranged along an outer face of the compressor and therefore, there is constituted a factor of hampering to downsize formation of the compressor. Further, there are used sockets used respectively exclusively for high pressure and low pressure, which are not compatible to each other and outlooks of which are formed substantially in the same shape. Therefore, when a plug attached to a hose connected to the side of the tool is connected, the plug may be operated to connect to a wrong socket. Since the sockets are not compatible to each other, compressed air is not connected to the wrong one, however, operation in connection is made troublesome.
SUMMARY OF THE INVENTION
Accordingly, it is an object of the invention to provide an apparatus of outputting compressed air of a compressor capable of simultaneously using each piece of a high pressure tool and a low pressure tool and capable of simultaneously using two pieces of the low pressure tool or the high pressure tool while reducing a number of attached reducing valves.
Further, it is another object of the invention to provide an apparatus of outputting compressed air of a compressor capable of simultaneously using single pieces of tools of high pressure and low pressure and simultaneously using two pieces of low pressure tools or high pressure tools. Further, resolving trouble of connecting operation with no necessity of ascertaining a socket to be connected when a plug on a side of a tool is connected by reducing a number of sockets for outputting compressed air.
In order to resolve the above-described problem, according to the invention, there is provided an apparatus of outputting compressed air of a compressor characterized in including an air tank for storing compressed air at a high pressure, a reducing valve attached to the tank and capable of arbitrarily adjusting a pressure value in a region from a high pressure to a low pressure, a socket used exclusively for the high pressure connected to a secondary side of the reducing valve, a socket used exclusively for the low pressure connected to the secondary side of the reducing valve via an opening/closing valve, and an opening/closing valve control apparatus for controlling to close the opening/closing valve when a secondary side adjusting pressure of the reducing valve exceeds a predetermined pressure value.
Further, it is preferable that the air tank is installed with a plurality of units each having the reducing valve, the sockets exclusively used for the high pressure and the low pressure, and the opening/closing valve control apparatus.
According to the invention, there may be constructed a constitution of an apparatus of outputting compressed air of a compressor, wherein a reducing valve capable of arbitrarily adjusting a pressure value at a region from a high pressure to a low pressure is attached to an air tank for storing compressed air at a high pressure, plugs of a low pressure tool and a high pressure tool are made to be able to be mounted to a socket connected to a secondary side of the reducing valve, the socket is installed with an opening/closing valve for opening and closing a path communicated to a side of the plug in accordance with a pressure of the compressed air supplied from the air tank and the opening/closing valve is made to operate to close when the pressure exceeds a limit pressure of using the low pressure tool.
Further, in order to resolve the problem in the above-described conventional technology, according to the invention, there is provided an apparatus of outputting compressed air of a compressor which is a compressor driven at compressed air pressures of a high pressure and a low pressure for supplying compressed air to respective compressed air tools of a high pressure and a low pressure respectively attached with exclusive plugs, the compressor characterized in including respective reducing valves used exclusively for the high pressure and used exclusively for the low pressure attached to an air tank stored with compressed air at a high pressure and a socket connected to secondary sides of the reducing valves for forming ports of outputting compressed air to the compressed air tools wherein the socket includes respective ports of the high pressure and the low pressure connected to the secondary sides of the two reducing valves and a plug receiving portion capable of mounting both of the respective exclusive plugs of the low pressure and the high pressure attached to the tools and the respective ports are selectively conducted to the respective exclusive plugs in a state of mounting the respective exclusive plugs to the plug receiving portion of the socket.
Further, according to the invention, the inside of the socket is arranged with a switch valve member operated by mounting the respective exclusive plugs and the switch valve selects to connect the ports of the high pressure and the low pressure communicated to the secondary sides of the respective reducing valves to a side of the plug receiving portion by making strokes of operating to move the switch valve member differ from each other by mounting the respective exclusive plugs.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a block diagram showing an outline of an apparatus of outputting compressed air of a compressor.
FIG. 2
is a view for explaining a mode of opening an opening/closing valve of the compressed air outputting apparatus.
FIG. 3
is a block diagram showing an outline of another example of an apparatus of outputting compressed air of a compressor.
FIG. 4
is an outline view of another example of an apparatus of outputting compressed air of a compressor.
FIGS.
5
(
a
) and
5
(
b
) are explanatory views of operational modes when a high pressure tool and a low pressure tool are connected respectively, and FIG.
5
(
c
) is an explanatory view of an operational mode when the low pressure tool is connected.
FIG. 6
is a conceptual view showing a system of a compressed air tool by a compressed air outputting apparatus according to the invention.
FIG. 7
is a side view showing an example of a plug used in the compressed air outputting apparatus according to the invention.
FIG. 8
is a sectional view showing a socket of a compressed air outputting apparatus according to a second embodiment of the invention.
FIG. 9
is a sectional view the same as
FIG. 8
in a state of mounting a low pressure plug.
FIG. 10
is a sectional view the same as
FIG. 8
in a state of mounting a high pressure plug.
FIG. 11
is a sectional view showing a socket of a compressed air outputting apparatus according to a third embodiment of the invention.
FIG. 12
is a sectional view the same as
FIG. 11
in a state of mounting a low pressure plug.
FIG. 13
is a sectional view the same as
FIG. 11
in a state of mounting a high pressure plug.
FIG. 14
is a sectional view showing a socket of a compressed air outputting apparatus according to a fourth embodiment of the invention.
FIG. 15
is a sectional view the same as
FIG. 14
in a state of mounting a low pressure plug.
FIG. 16
is a sectional view the same as
FIG. 14
in a state of mounting a high pressure plug.
FIG. 17
is a sectional view showing a socket of a compressed air outputting apparatus according to a fifth embodiment of the invention.
FIG. 18
is a sectional view the same as
FIG. 17
in a state of mounting a low pressure plug.
FIG. 19
is a sectional view the same as
FIG. 17
in a state of mounting a high pressure plug.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1
shows an outline of an apparatus of outputting compressed air of a compressor and the compressed air outputting apparatus, according to the first embodiment of the invention, is constituted by an air tank
102
connected to a compressor
101
for storing compressed air at high pressure, a reducing valve
103
attached to the air tank
102
, a socket
104
a
exclusively used for high pressure connected to a secondary side of the reducing valve
103
, a socket
104
b
exclusively used for low pressure (normal pressure) connected to the secondary side of the reducing valve
103
via an opening/closing valve
105
and an opening/closing valve control apparatus
106
for controlling to open or close the opening/closing valve
105
.
The tank
102
is stored with compressed air at high pressure, for example, exceeding 30 kg/cm
2
produced by the high pressure compressor
101
, the reducing valve
103
is attached to the tank
102
and is of a type by which a secondary side pressure value can arbitrarily be adjusted in a range of 130 through 0 kg/cm
2
and compressed air adjusted in a total region of the pressure range from low pressure to high pressure, can be output to the secondary side after the pressure has been reduced.
The socket
104
a
used exclusively for high pressure and the socket
104
b
used exclusively for low pressure are formed in shapes which are not compatible to each other to prevent from being connected erroneously to a high pressure tool
107
a
and a low pressure tool
107
b
, respectively.
Next, the opening/closing valve
105
connected to the secondary side of the reducing valve
103
is a 3-ports electromagnetic valve. There is provided a pressure sensor
108
for detecting secondary side adjusted pressure of the reducing valve
103
between the reducing valve
103
and the electromagnetic valve
105
. Further, the opening/closing valve
105
is constituted to connect compressed air at secondary side pressure of the reducing valve
103
to the socket
104
b
used exclusively for low pressure or cut the compressed air therefrom.
The opening/closing valve control apparatus
106
is an electromagnetic valve drive circuit for controlling to open or close the opening/closing valve
105
by a detected value of the pressure sensor
108
for detecting the secondary side pressure and is operated to close the opening/closing valve
105
by the sensor
108
as shown by
FIG. 2
when the secondary side pressure of the reducing valve
103
exceeds a predetermined pressure value in the range of low pressure, for example, 10 kg/cm
2
.
According to the compressed air outputting apparatus having the above-described constitution, the reducing valve
103
reduces pressure of compressed air adjusted in the total region of the pressure range from low pressure to high pressure and outputs the compressed air to the secondary side, and the secondary side of the reducing valve
103
is attached with the socket
104
a
used exclusively for high pressure and the socket
104
b
used exclusively for low pressure. The socket
104
a
exclusively used for high pressure is connected with a plug
109
a
of the high pressure tool
107
a
, and the socket
104
b
used exclusively for low pressure is connected with a plug
109
b
of the low pressure tool
107
b
to thereby use the apparatus. Therefore, the apparatus can be used for low pressure and for high pressure.
Further, the plug
109
b
of the low pressure tool
107
b
can be supplied only with compressed air at limit pressure or lower via the opening/closing valve
105
by the opening/closing valve control apparatus
106
, and the low pressure tool
107
b
is not supplied with compressed air at proper pressure or higher. Therefore, destruction of the tool or a connection hose thereof can be prevented.
Next,
FIG. 3
shows an example of installing two pieces of units A and B each having the reducing valve
103
, the sockets
104
a
and
104
b
used exclusively for high pressure and low pressure and the opening/closing valve control apparatus
106
at the tank. In this case, each of the units A and B can be connected with one of the high pressure tool
107
a
or the low pressure tool
107
b
and therefore, single pieces of the pressure tool
107
a
and the low pressure tool
107
b
can simultaneously be used for the respective units A and B.
Further, when each of the units A and B is constituted to be able to connect the high pressure tool
107
a
and the low pressure tool
107
b
, respectively, two pieces of the low pressure tools or two pieces of the high pressure tools can simultaneously be used. Further, respective pressures used by two pieces of the low pressure tools or the high pressure tools can be adjusted and compressed air at pressure suitable for operating the tool can be output.
Further, according to the above-described constitution, only two of the common reducing valves are used for the expensive reducing valves and the compressor
101
having excellent way of use at low cost can be provided by only adding the simple opening/closing valve
105
and the control apparatus.
Next,
FIG. 4
shows another example of an apparatus of outputting compressed air of a compressor. According to this example, there is attached a socket
204
installed with the opening/closing valve
205
for opening and closing a path of compressed air in response to the secondary side pressure of the reducing valve
203
. Further, as shown by FIGS.
5
(
a
) and
5
(
b
), the socket
204
is formed to be able to be mounted with either of the plugs
209
a
and
209
b
of the high pressure tool
207
a
and the low pressure tool
207
b
and the opening/closing valve
205
is constituted to operate to close only when the opening/closing valve
205
is mounted with the plug
209
b
of the low pressure tool
207
b.
That is, in the drawings, the socket
204
is common to the plug
209
b
of the low pressure tool
207
b
and the plug
209
a
of the high pressure tool
207
a
, and a cut-off valve member
210
is slidably arranged at the inside of the socket
204
. The cut-off valve member
210
is formed in a shape of a bottomed cylinder and is opened to an opening side of the socket
204
. An opening portion
211
is formed to penetrate a side face of a closing side of the cut-off valve member
210
and the opening portion
211
is constituted to be able to be brought into contact with and separated from a seal portion
212
formed to project from an inner wall of the socket
204
when the opening portion
211
is slidingly moved. As mentioned later, by operating the cut-off valve member
210
, a path communicated to the side of the plug is opened and closed in accordance with pressure of compressed air supplied from the air tank
202
.
In contrast thereto, although shapes and dimensions of portions of the plug
209
b
of the low pressure tool
207
b
and the plug
209
a
of the high pressure tool
207
a
to be mounted to the socket
204
are constituted to be the same, positions and dimensions of portions thereof to be engaged with the cut-off valve member
210
are constituted to differ from each other. That is, as shown by FIG.
5
(
a
), a front end of the plug
209
b
of the low pressure tool
207
b
is formed to be larger than an inner diameter of the cut-off valve member
210
and in contrast thereto, as shown by FIG.
5
(
b
), a front end of the plug
209
a
of the high pressure tool
207
a
is formed to be smaller than the inner diameter of the cut-off valve member
210
. Further, the cut-off valve member
210
is urged to normally move to a movement end of the opening side of the socket
204
by a spring
213
.
Further, the inside of the socket
204
is arranged with the opening/closing valve
205
in a ring-like shape urged by spring force. The opening/closing valve
205
is formed with pressure receiving faces a and b for receiving compressed air supplied into the socket
204
from the compressor
201
via the reducing valve
203
, and the opening/closing valve
205
is moved against the spring force of the spring
213
by operating air at predetermined pressure or higher on the pressure receiving faces a and b. At this occasion, the opening/closing valve
205
is arranged engageably to the seal portion
212
provided at a surrounding of a front end portion of the cut-off valve member
210
.
According to the above-described constitution, as shown by FIGS.
5
(
a
) and
5
(
b
), the low pressure plug
209
b
and the high pressure plug
209
a
can be connected to the socket
204
, and the socket
204
is opened by the connection. Therefore, the compressed air can be output from the opening portion
211
of the cut-off valve member
210
to the respective plug by passing through the socket
204
from the reducing valve
203
. Further, since the front end of the plug
209
b
for low pressure is larger than the inner diameter of the cut-off valve member
210
, the front end of the plug
209
b
presses the cut-off valve member
210
while being engaged with a rear end of the cut-off valve member
210
. However, the front end of the plug
209
a
for high pressure presses the cut-off valve member
210
in a state of being brought into the inner side of the cut-off valve member
210
. Therefore, an amount of pressing the cut-off valve member
210
when connected to the socket
204
is larger in the case of the plug
207
b
for low pressure than in the case of the plug
207
a
for high pressure.
Meanwhile, in connecting low pressure plug
209
b
, when air pressure of compressed air from the reducing valve
203
becomes equal to or higher than predetermined pressure (limit pressure in using low pressure tool), since an area of the pressure receiving face a of the opening/closing valve
205
is larger than an area of the pressure receiving face b, as shown by FIG.
5
(
c
), the opening portion
211
is operated against the spring force of the spring
214
and is engaged with the seal portion provided at the surrounding of the front end portion of the cut-off valve member
210
. Therefore, flow of air to the side of the plug
209
b
is closed. Therefore, pressure equal to or higher than the limit pressure is not supplied to the tool for low pressure.
In contrast thereto, even when the high pressure plug
209
a
is mounted, the opening/closing valve
205
is moved against the spring force in response to high supply pressure; however, the amount of moving the cut-off valve member
210
in this case is small, and the cut-off valve member
210
is not engaged. Therefore, the path of compressed air is not closed, and compressed air flows in the high pressure tool in the total region from low pressure to high pressure.
According to the above-described constitution, by a constitution in which the sensor for detecting pressure, an electromagnetic valve or the like is not used, compressed air at the limit pressure or higher can be made to stop supplying to the tool for low pressure. Further, by the constitution, the socket
204
can be constructed by a structure common to high pressure and to low pressure, cost can be reduced by reducing a number of the sockets
204
installed to the compressor
201
, and trouble of selecting the socket
204
in mounting the plug can be resolved.
Further, when the compressed air outputting apparatus having the above-described constitution is added with a sensor for detecting pressure and a control apparatus for operating the opening/closing valve
105
as shown by
FIG. 1
, pressure of driving the low pressure tool can be changed by changing the detected pressure of the sensor.
Hereinafter, other embodiments of the invention are described in detail.
FIG. 6
is a view conceptually showing a system of a pneumatic nailing machine as another example of a compressor and a compressed air tool embodying a compressed air outputting apparatus according to the invention. A tank
301
is stored with compressed air at high pressure exceeding 30 kg/cm
2
produced by a high pressure compressing portion, not illustrated. As reducing valves connected to the tank
301
, the tank
301
is connected with a high pressure reducing valve
302
used exclusively for high pressure having a secondary side pressure value adjustable in a range of 30 through 0 kg/cm
2
and a low pressure reducing valve
303
used exclusively for low pressure having maximum pressure of 10 kg/cm
2
respectively via tank sides
302
a
and
303
a
thereof. The respective reducing valves
302
and
303
used exclusively for low pressure and high pressure adjust to reduce pressure of compressed air arbitrarily adjusted to respective pressure ranges and output the compressed air to secondary sides
302
b
and
303
b
thereof.
A socket
304
forming ports of outputting compressed air are formed with ports
304
a
and
304
b
connected to the secondary sides
302
b
and
303
b
(adjusted pressure air) of the respective reducing valves
302
and
303
. A plug receiving portion of the socket
304
is constituted to be able to receive and mount both of respective plugs used exclusively for high pressure and used exclusively for low pressure. As shown by
FIG. 7
, plugs
307
and
308
used exclusively for high pressure and low pressure attached to respective nailing machines
305
and
306
of high pressure and low pressure, are constituted such that outer diameter shape of portions thereof mounted to the socket
304
are formed to be the same, lengths of front end portions projected in a front end direction are formed to differ, and lengths thereof projecting into the socket
304
differ from each other by an L dimension in a state of being mounted to the socket
304
. Compressed air of the secondary sides
302
b
and
303
b
of the respective reducing valves
302
and
303
are selectively connected to the plugs
307
and
308
in accordance with the respective exclusive plugs
307
and
308
mounted to the plug receiving portion.
An explanation will be given of a constitution of a socket
310
according to a second embodiment of the invention in reference to FIG.
8
through FIG.
10
. The inside of the socket
310
is provided with a cut-off valve
311
for cutting off air supplied from the reducing valves
302
and
303
in a state in which the plug is not mounted, and an end portion
312
of the cut-off valve
311
is arranged to be opposed to a plug mounting portion
313
. Other end side of the cut-off valve
311
is integrally formed with a hollow valve member
314
constituting a switch valve, and the hollow valve member
314
is slidably arranged at the inside of a valve cylinder
315
in a cylindrical shape forming the socket
310
. The valve cylinder
315
is formed with a high pressure port
316
and a low pressure port
317
connected to the secondary sides
302
a
and
303
a
of the two reducing valves
302
and
303
and a plurality of O-rings
318
a
,
318
b
,
318
c
,
318
d
and
318
e
formed at an outer periphery of the hollow valve member
314
, selectively communicate the respective ports
316
and
317
to a side of the plug.
In a normal state in which the plug is not mounted, as shown by
FIG. 8
, the hollow valve member
314
is arranged to a state in which both of the two ports
316
and
317
are cut off by a spring
319
operated to an end of the hollow valve member. When the low pressure plug
308
is mounted to the socket
310
, as shown by
FIG. 9
, the end portion
312
of the cut-off valve
311
is pressed to move by the front end of the low pressure plug
308
and opens the cut-off valve
311
to thereby communicate the inside of the socket
310
and the side of the low pressure plug
308
. At the same time, the hollow valve member
314
is moved by moving the cut-off valve
311
, the low pressure port
317
and the inside of the hollow valve member
314
are communicated via an opening
314
a
formed at the outer periphery of the valve member
314
, and the inside of the hollow valve member
314
and the inside of the socket
310
are communicated via an opening
314
b
formed at a vicinity of the end portion of the hollow valve member
314
. Thereby, the low pressure port
317
is connected to the side of the low pressure plug
308
and compressed air at pressure adjusted by the low pressure reducing valve
303
is supplied to the low pressure plug
308
.
As shown by
FIG. 10
, in the case of mounting the plug
307
used exclusively for high pressure to the socket
310
, since the length of projecting in the front end direction is set to be larger than that of the low pressure plug
308
, when the high pressure plug
307
is mounted, the cut-off valve
311
is moved by a larger amount. Accordingly, the opening
314
a
of the hollow valve member
314
communicates the high pressure port
316
, and the inside of the hollow valve member
314
and pressurized air adjusted by the high pressure reducing valve
302
is supplied to connect to the mounted high pressure plug
307
via the opening
314
b
formed at the hollow valve member
314
. Further, although in a procedure of mounting the high pressure plug
307
, the hollow valve member
314
is temporarily communicated to the low pressure port
317
, no problem is posed since compressed air at the low pressure is supplied to the high pressure pneumatic tool
305
.
Next, an explanation will be given of a third embodiment shown by FIG.
11
through
FIG. 13. A
socket
320
according to the embodiment is formed with a pilot valve
322
integrally formed with a cut-off valve
321
for cutting off air supplied from the reducing valve in a state in which neither of the plugs is mounted. Further, there is provided a switch valve
325
operated to switch to select a high pressure port
323
and a low pressure port
324
connected to the secondary sides of the two reducing valves
302
and
303
by air pressure supplied from the pilot valve
322
at the inside of the socket
320
. As shown by
FIG. 11
, in a normal state in which the plug is not mounted, the switch valve
325
is disposed at a position of communicating the low pressure port
324
to the inside of the socket by a spring
326
and is moved to a position at which the high pressure port
323
is connected to the inside of the socket
320
by pilot air supplied from the pilot valve
322
.
As shown by
FIG. 12
, by mounting the low pressure plug
308
to a plug mounting portion
327
of the socket
320
, the front end of the plug
308
presses an end portion
321
a
of the cut-off valve
321
to thereby open the cut-off valve
321
and communicates the inside of the socket
320
and the side of the plug
308
. When the low pressure plug
308
is mounted, the pilot valve
322
maintains a state the same as an initial state, and adjusted pressure of the low pressure reducing valve
303
supplied via the low pressure port
324
is supplied to the low pressure plug
308
.
As shown by
FIG. 13
, when the high pressure plug
307
having a long front end length is mounted to the plug mounting portion
327
of the socket
320
, the pilot valve
322
is operated to a position of connecting the side of the switch valve and the pilot valve
322
supplies pilot air to the switch valve. The switch valve
325
is operated to switch to a position of communicating the high pressure port
323
to the inside of the socket by pilot air pressure supplied from the pilot valve
322
to the switch valve
325
and pressure adjusted by the high pressure reducing valve
302
is supplied to the high pressure plug
307
.
Next, an explanation will be given of a fourth embodiment shown in FIG.
14
through FIG.
16
. The inside of a socket
330
according to the embodiment is provided with a hollow valve member
332
integrally formed with a cut-off valve
331
operated by mounting the plug and the inside of a hollow portion of the hollow valve member
332
is normally communicated to a low pressure port
333
connected to the secondary side of the low pressure reducing valve
303
via an opening
332
a
formed at one end side of the valve member. O-rings
335
a
and
335
b
is arranged at an outer peripheral face of the hollow valve member
332
spaced apart from each other by an interval, and O-rings
335
a
and
335
b
open and close a high pressure port
334
connected to the secondary side of the high pressure reducing valve
302
and the inside of the socket
330
. The O-ring
335
b
maintains a state of cutting off the high pressure port
334
at a moving amount thereof at a normal occasion in which the plug is not mounted and when the low pressure plug
308
is mounted. When the high pressure plug
307
is mounted, the cut-off valve
331
is moved by a large amount to thereby move the hollow valve member
332
to thereby communicate the high pressure port
334
to the inside of the plug
330
.
At a position of the hollow valve member
332
proximate to the cut-off valve
331
, there is formed an opening
336
for communicating the inside of the hollow valve member
332
and the inside of the socket
330
at a position proximate to the cut-off valve
331
of the hollow valve member
332
. The opening
336
is mounted with a check valve
337
constituted by a ring-like elastic member permitting compressed air to flow from the inside of the hollow valve member
332
to the inside of the socket
330
.
As shown by
FIG. 15
, when the low pressure plug
308
is mounted to a plug mounting portion
338
, the cut-off valve
331
is pressed to move by the front end of the plug and communicates the inside of the socket
330
and the side of the low pressure plug
308
. The O-ring
335
b
maintains the state of closing the high pressure port
334
, and compressed air from the low pressure port
333
is supplied to the side of the low pressure plug
308
via the check valve
337
.
As shown by
FIG. 16
, in the case of mounting the high pressure plug
307
having the longer length of the front end portion to the plug mounting portion, an amount of moving the cut-off valve moved by the front end of the plug is larger. Accordingly, the O-ring
335
b
of the hollow valve member
332
opens the high pressure port
334
to the inside of the socket
330
. At this occasion, the check valve is closed by a pressure difference between low pressure at the inside of the hollow valve member
332
and high pressure at the inside of the socket
330
. Therefore, air is prevented from flowing from the high pressure port
334
to the side of the low pressure port
333
and pressure adjusted by the high pressure reducing valve
302
is supplied to the high pressure plug
307
via the high pressure port
334
.
Next, an explanation will be given of a fifth embodiment shown in
FIGS. 17 through 19
. According to the embodiment, there is arranged a cut-off valve member
342
in a shape of a hollow ring opposedly to a plug mounting portion
341
of a socket
340
, and by mounting the plug, a valve member
342
b
formed at one end side of the cut-off valve member
342
is separated from a valve seat to thereby make air flow to the side of the plug. According to the embodiment, the valve member is moved by engaging an opening portion
342
a
formed at one end side of the cut-off valve member
342
and the low pressure plug. In the case of the high pressure plug
307
, a small diameter portion at the front end of the high pressure plug
307
is contained at the inside of the hollow member and an enlarged diameter portion at a middle of the plug is engaged with an end face of the opening
342
a
to thereby move. Therefore, contrary to the above-described embodiment, in mounting the low pressure plug
308
, the cut-off valve member
342
is moved by a larger amount. At a rear side portion of the socket
340
, there are formed a low pressure port
343
connected to the low pressure reducing valve
303
and a high pressure port
344
connected to the high pressure reducing valve
302
. The low pressure port
343
is arranged with a check valve
345
for permitting flow of air from the low pressure cut-off valve
303
into the socket
340
and cutting flow of air from the inside of the socket
340
to the side of the reducing valve. The high pressure port
344
is formed coaxially with the cut-off valve member
342
and is arranged to cut-off the high pressure port
344
by moving the valve member
342
of the cut-off valve member
342
by mounting the low pressure plug
308
. At a normal occasion in which the plug is not mounted to the plug mounting portion
341
, the high pressure port
344
is communicated to the inside of the socket
340
, the inside of the socket
340
is filled with high pressure air and the check valve
345
arranged at the low pressure port
343
is closed by the high pressure air.
When the low pressure plug
308
is mounted to the socket
340
, an end face of the opening
342
a
of the cut-off valve member
342
is engaged with an end face of the low pressure plug
308
and moved by a large distance, the valve member of the cut-off valve member
342
cuts off the high pressure port
344
and the inside of the socket
340
. Then, when the high pressure air filled at the inside of the socket
340
is discharged to the side of the plug and the pressure is reduced, the check valve
345
installed at the low pressure port
343
is opened and adjusted pressure from the low pressure reducing valve
303
is communicated to the inside of the socket
340
via the low pressure port
343
. The adjusted pressure is supplied to the low pressure plug
308
via an inner portion of the cut-off valve member
342
formed to be hollow.
When the high pressure plug
307
is mounted, the small diameter portion at the front end of the plug is brought into the opening of the cut-off valve member
342
, the large diameter portion is engaged with the end face of the opening
342
a
and is moved by a small distance, and the valve member at a rear end of the cut-off valve member
342
does not reach a position of cutting off the high pressure port
344
. Accordingly, the high pressure air is successively introduced into the socket
340
and pressurized air adjusted by the high pressure reducing valve
302
is supplied to the high pressure plug
307
. At this occasion, the check valve
345
of the low pressure port
344
is cut off by the high pressure air at the inside of the socket, and the high pressure air does not flow back to the side of the reducing valve
303
via the low pressure port
343
.
As described above, according to the invention, when exclusive plugs are installed for respective tools having different drive pressures used, since the socket is made to be able to mount any of the plugs, the plugs respectively used exclusively for high pressure and low pressure can be mounted to an opened socket without selecting the socket. Further, in the mounted state, the respective exclusive plugs are connected with compressed air at adjusted pressures respectively from the exclusive reducing valves. Therefore, compressed air at pressure different from pressure of driving the tool can be prevented from being supplied by erroneous connection or the like. Further, by arranging two of sockets commonly used to each of the reducing valves used exclusively for high pressure and low pressure, single pieces of the low pressure tool and the high pressure tool, or two pieces of the low pressure tools or the high pressure tools can simultaneously be used, and there can be provided a compressor providing a wide range of state of use by constituting of smaller numbers of reducing valves and sockets at low cost.
While only certain embodiments of the invention have been specifically described herein, it will be apparent that numerous modifications may be made thereto without departing from the spirit and scope of the invention.
Claims
- 1. An apparatus for outputting compressed air in a compressor to a plurality of pneumatic tools at a plurality of pressures, said apparatus comprising:an air tank storing compressed air compressed by the compressor at a high pressure; a pressure adjusting portion connected to said air tank and adjusting a pressure value of the compressed air in a region from the high pressure to zero, having a first side and a secondary side wherein the first side is connected to the air tank; a pressure outputting portion connected to the secondary side of said pressure adjusting portion and outputting the adjusted compressed air to at least one of a first pneumatic tool driven at a first pressure and a second pneumatic tool driven at a second pressure, wherein the first pressure is larger than the second pressure, and wherein the adjusted compressed air is not output to the second pneumatic tool at the first pressure.
- 2. The apparatus according to claim 1, further comprising:an opening/closing valve; and an opening/closing valve control apparatus, wherein said pressure adjusting portion comprises a reducing valve, and wherein said pressure outputting portion comprises: a first socket connected to said reducing valve for the first pressure; a second socket connected to said reducing valve for the second pressure via said opening/closing valve, and wherein said opening/closing valve control apparatus closes said opening/closing valve when the adjusted pressure exceeds a predetermined pressure value.
- 3. The apparatus according to claim 1, wherein a plurality of units comprising said pressure adjusting portion and said pressure outputting portion are connected to said air tank.
- 4. An apparatus for outputting compressed air in a compressor to a plurality of pneumatic tools at a plurality of pressures, said apparatus comprising:an air tank storing compressed air compressed by the compressor at a high pressure; a pressure adjusting portion connected to said air tank and adjusting a pressure value of the compressed air in a region from the high pressure to zero; and a pressure outputting portion connected to a secondary side of said pressure adjusting portion and outputting the adjusted compressed air to at least one of a first pneumatic tool driven at a first pressure and a second pneumatic tool driven at a second pressure, wherein the first pressure is larger than the second pressure, wherein the adjusted compressed air is not output to the second pneumatic tool at the first pressure, wherein said pressure outputting portion comprising a socket to which both a first plug for the first pneumatic tool and a second plug for the second pneumatic tool are connectable, wherein the adjusted compressed air is output to the first pneumatic tool at the first pressure when the first plug is connected to said socket, and wherein the adjusted compressed air is output to the second pneumatic tool at the second pressure when said second plug is connected to said socket.
- 5. The apparatus according to claim 4,wherein said pressure adjusting portion comprises a reducing valve, and wherein said socket comprises an opening/closing valve for opening and closing a path communicated to one of the first plug and the second plug in accordance with a pressure of the adjusted compressed air, and said opening/closing valve closes when the pressure of the adjusted compressed air exceeds a limit pressure for using the second pneumatic tool.
- 6. The apparatus according to claim 4,wherein said pressure adjusting portion comprises a first reducing valve and a second reducing valve, and wherein said first reducing valve and said second reducing valve is connected to said socket.
- 7. The apparatus according to claim 6,wherein said socket comprises a switch valve member provided inside thereof, and wherein said switch valve member is operated by mounting one of the first plug and the second plug, and said switch valve member selects to connect to one of the first pneumatic tool and the second pneumatic tool by making a stroke to move said switch valve member different in accordance with the mounted plug.
Priority Claims (2)
Number |
Date |
Country |
Kind |
P2001-063830 |
Mar 2001 |
JP |
|
P2001-063831 |
Mar 2001 |
JP |
|
US Referenced Citations (26)
Foreign Referenced Citations (4)
Number |
Date |
Country |
195 15 895 |
Oct 1996 |
DE |
2 625 545 |
Jul 1989 |
FR |
04298691 |
Oct 1992 |
JP |
4-298691 |
Oct 1992 |
JP |