This application claims the benefit of Taiwan application Serial No. 94101912, filed Jan. 21, 2005, the subject matter of which is incorporated herein by reference.
1. Field of the Invention
The invention relates in general to a computation apparatus and computation therefor, and more particularly to a computation apparatus and non-linear computations therefor.
2. Description of the Related Art
Liquid crystal displays (LCDs) have been commonly used because of the merit of being thin, light, and having low radiation. Although the LCDs with higher resolutions and display frequencies are being developed, the displays suffer from a bottleneck in responding to voltages applied between liquid crystal layer of the displays.
The response of the LC does not keep pace with the change in the input voltage applied. Referring to
When the overdrive voltages of V1′ and V2′ are employed for driving the LC, the corresponding overdrive gray-level values can be recorded and associated with respective previous gray-level values and current gray-level values to establish an overdrive lookup table. In the lookup table, the previous gray-level values and the current gray-level values are regarded as two kinds of index values, denoted by PF and CF, respectively, and are associated with the corresponding overdrive gray-level values, denoted by OD. An overdrive gray-level value OD can then be determined according to the overdrive lookup table. For example, the previous gray-level index values PF and the current gray-level index values CF for 256 gray-levels result in an overdrive lookup table having 256 by 256 pieces of data for overdrive gray-level values OD. Since such a lookup table has a large amount of data, an overdrive lookup table of a reduced amount of data, for example, 17 by 17, is then derived to reduce the size of an overdrive data generator that includes the overdrive lookup table.
With a reduced-sized overdrive lookup table, interpolation is additionally required for determining overdrive gray-level values that cannot be directly obtained from the lookup table.
In the third case shown in
However, the conventional interpolation obtains the overdrive gray-level value On by linear computations. Such interpolation requires a number of multiplication and addition operations, and the multipliers, notably, are complicated, time-consuming, and large-sized computation devices so that it is difficult to meet the requirement of high computation performance and compact size in implementation. Besides, the results of linear interpolation may not be the closest overdrive gray-level values as determined by experiments.
It is therefore an object of the invention to provide an apparatus for overdrive computation and a method therefor.
The invention achieves the above-identified object by providing an overdrive computation apparatus for generating a desired overdrive gray-level value. The apparatus includes a first addition/subtraction device, a priority encoder, a computation device, and a second addition/subtraction device. The first addition/subtraction device receives a first overdrive gray-level value OD1 and a second overdrive gray-level value OD2, and outputting a difference value indicating difference between the first overdrive gray-level value OD1 and the second overdrive gray-level value OD2. The first overdrive gray-level value OD1 is a corresponding value with respect to an ith first gray-level index value X(i) and a second gray-level index value Y1 in an overdrive lookup table. The second overdrive gray-level value OD2 is a corresponding value with respect to an (i+1)th first gray-level index value X(i+1) and the second gray-level index value Y1 in the overdrive lookup table. The priority encoder determines a decision signal according to the difference value. The computation device receives first gray-level data, determines a first computation according to the decision signal, and performs the first computation on the first gray-level data to output operated gray-level data. The first gray-level data indicates a value lying between the ith first gray-level index value X(i) and the (i+1)th first gray-level index value X(i+1). The second addition/subtraction device receives the operated gray-level data and the first overdrive gray-level value OD1 so as to produce the desired overdrive gray-level value.
The invention achieves another object by providing a computation apparatus including a determining device, a first computation device, and a second computation device. The determining device produces a first decision signal according to a difference between a first gray-level value and a second gray-level value. The first computation device, coupled to the determining device, performs a computation on a third gray-level value according to the decision signal to produce an operated third gray-level value. The second computation device, coupled to the first computation device, produces a desired gray-level value according to the first gray-level value and the operated third gray-level value.
The invention achieves another object by providing a method of generating a desired overdrive gray-level value. The method includes the following steps. First, a difference value between a first overdrive gray-level value OD1 and a second overdrive gray-level value OD2 is determined. The first overdrive gray-level value OD1 is a corresponding value with respect to an ith first gray-level index value (gray-level index value) X(i) and a second gray-level index value Y1 in an overdrive lookup table, and the second overdrive gray-level value OD2 is a corresponding value with respect to an (i+1)th first gray-level index value X(i+1) and the second gray-level index value Y1 in the overdrive lookup table. Next, a decision signal is generated according to the difference value. According to the decision signal, a first computation is determined and the first computation is performed on first gray-level data to output operated gray-level data, wherein the first gray-level data indicates a value lying between the ith first gray-level index value X(i) and the (i+1)th first gray-level index value X(i+1). Finally, the desired overdrive gray-level value is produced according to the operated gray-level data and the first overdrive gray-level value OD1.
The invention achieves another object by providing a computation method including the following steps. A first decision signal is produced according to a difference value between a first gray-level value and a second gray-level value. A computation is the performed on a third gray-level value according to the decision signal to produce an operated third gray-level value. Next, a desired gray-level value is produced according to the first gray-level value and the operated third gray-level value.
Other objects, features, and advantages of the invention will become apparent from the following detailed description of the preferred but non-limiting embodiments. The following description is made with reference to the accompanying drawings.
For example, in the above-mentioned first case where the previous gray-level index values PF in an overdrive lookup table, such as the one shown in
Similarly, in the above second case where the current gray-level index values CF in the overdrive lookup table contain no item matching current gray-level data CD, the current gray-level index values CF1 and CF2 that come closest to the current gray-level data CD are determined, where the value of the current gray-level data CD lies between the current gray-level index values CF1 and CF2. The overdrive gray-level value OD1 is a corresponding value with respect to the current gray-level index value CF1 and the previous gray-level index value PF while the overdrive gray-level value OD2 is a corresponding value with respect to the current gray-level index value CF2 and the previous gray-level index value PF.
Next, in the above third case, both previous gray-level data PD and current gray-level data CD have no corresponding items found in the previous gray-level index values PF and the current gray-level index values CF in the overdrive lookup table. The overdrive gray-level values OD1 and OD2 cannot be determined by a lookup in the overdrive lookup table. In this case, a desired overdrive gray-level value OD′ can be found by first determining the overdrive gray-level values OD1 and OD2 in the way as in the first and the second cases. The desired overdrive gray-level value OD′ can then be determined according to the overdrive gray-level values OD1 and OD2.
The following provides various embodiments according to the invention, which use different computations according to the magnitude of the difference value S1 between the overdrive gray-level values OD1 and OD2.
In this embodiment, the difference value S1 may lie in different interval, and the relationship between the interval where S1 lies and the overdrive gray-level value OD′ is expressed by:
when S1>64, OD′=OD1±{D[3:0]<<2};
when 64>S1>32, OD′=OD1±{D[3:0]<<2};
when 32>S1>16, OD′=OD1±{D[3:0]<<1};
when 16>S1>8, OD′=OD1±{D[3:0]};
when 8>S1>0, OD′=OD1±{D[3:0]>>1}; and
when S1=0, OD′=OD1,where D[3:0] indicates the last four least significant bits (LSBs) of the gray-level data D. During the computation for obtaining the operated gray-level data D′, D[3:0] is shifted one or more bits to the left or right and then made to be positive or negative according to the interval where the difference value S1 lies, and the computation of D[3:0] is added to the overdrive gray-level value OD1. For instance, if gray-level data D is previous gray-level data indicating a value of 180. Correspondingly, previous gray-level index values PF1 and PF2 are 176 and 192, respectively, and the current gray-level data and the corresponding current gray-level index value CF are both 80. Therefore, the corresponding overdrive gray-level values OD1 and OD2 are 28 and 16 respectively. After that, the difference value S1 between the corresponding overdrive gray-level values OD1 and OD2 is determined to be 12 and lies between 8 and 16, resulting in D′=D[3: 0]. The decimal number 180 is 10110100b in binary form. D[3:0]=0100b=4 (in decimal) and OD′=OD1±{D[3:0]}=OD1±4=28±4, where a determination has to be made as to whether a positive or negative sign is taken, according to the difference value S1. Since S1=+12 and OD′ needs to lie between 28 and 16, OD′=28−4=24. By contrast, the overdrive gray-level value is 25 according to the conventional overdrive computation.
If the gray-level data D is the current gray-level data having a value of 70, the corresponding current gray-level index values CF1 and CF2 are 64 and 80 respectively. If the previous gray-level data is 176, the corresponding previous gray-level index value is also 176. Thus, the overdrive gray-level values OD1 and OD2 are 24 and 48 respectively. The difference value S1 is 24. The current gray-level data is 70 in decimal and is 01000110b in binary form such that {D[3:0]<<1}=1100b=12, and OD′=OD1±{D[3:0]<<1}=OD1±12=24±12. Since S1=−24 and OD′ needs to lie between 24 and 48, OD′=24+12=36.
This embodiment differs from the first one in operated gray-level data D′, wherein the operated gray-level data D′ and the overdrive gray-level value OD1 are added to determine a desired overdrive gray-level value OD′. In the second embodiment, the relationship between the interval where S1 lies and the overdrive gray-level value OD′ is expressed by:
when S1>64, OD′=OD1±{D[3:0]<<2};
when 64>S1>32, OD′=OD1±{D[3:0]<<1};
when 32>S1>16, OD′=OD1±{D[3:0]};
when 16>S1>8, OD′=OD1±{D[3:0]>>1};
when 8>S1>0, OD′=OD1±{D[3:0]>>1}; and
when S1=0, OD′=OD1.
For instance, if gray-level data D is previous gray-level data indicating a value of 52. Correspondingly, previous gray-level index values PF1 and PF2 are 48 and 64, respectively, and both the current gray-level data and the corresponding current gray-level index value CF are 80. The corresponding overdrive gray-level values OD1 and OD2 are then 96 and 84 respectively. After that, the difference value S1 between the corresponding overdrive gray-level values OD1 and OD2 is determined to be 12 and lies between 8 and 16, resulting in OD′=OD1±{D[3:0]>>1}. The binary form of decimal number 52 is 110100b. D[3:0]=0100b=4 (in decimal) and {D[3:0]>>1} indicates a value obtained by shifting D[3:0] one bit to the right, that is, dividing D[3:0] by 2, such that {D[3:0]>>1}=010b=2 (in decimal); and OD′=OD1±{D[3:0]>>1}=OD1±2=96±2. Next, a determination is made as to whether a positive or negative sign is taken in the above expression, according to the difference value S1. Since S1=+12 and OD′ needs to lie between 96 and 84, OD′=96−2=24.
If the gray-level data D is the current gray-level data having a value of 70, the corresponding current gray-level index values CF1 and CF2 are 64 and 80 respectively. The previous gray-level data is 48, the corresponding previous gray-level index value is also 48, and thus the overdrive gray-level values OD1 and OD2 are 72 and 96 respectively. The difference value S1 is 24. The current gray-level data indicating 70 in decimal is 01000110b in binary form such that D[3:0]=110b=6, and OD′=OD1±{D[3:0]}=OD1±6=72±6. Since S1=−24 and OD′ needs to lie between 72 and 96, OD′=72+6=78.
In the third embodiment, the relationship between the interval where S1 lies and the overdrive gray-level value OD′ is expressed by:
when S1>64, OD′=OD1±{D[3:0]<<2};
when 6422 S1>32, OD′=OD1±{(D[3:0]<<1)+(D[3:0]<<2)}/2;
when 32>S1>16, OD′=OD1±{D[3:0]+(D[3:0]<<1)}/2;
when 16>S1>8, OD′=OD1±{(D[3:0]>>1)+D[3:0]}/2;
when 8>S1>0, OD′=OD1±{D[3:0]>>1}; and
when S1=0, OD′=OD1.
In this embodiment, operated gray-level data D′ obtained by using the computations disclosed in the first and the second embodiments are averaged and then the averaged data and overdrive gray-level value OD1 are added together. The positive or negative sign in the expressions is determined in the way as in the above embodiments.
In the fourth embodiment, current gray-level data CD and previous gray-level data PD are first compared and the difference value S1 is examined in magnitude so as to determine a computation for calculating the desired result. If PD<=CD, the relationship between the interval where S1 lies and the overdrive gray-level value OD′ is expressed by:
when S1>64, OD′=OD1±{D[3:0]<<2};
when 64>S1>32, OD′=OD1±{D[3:0]<<1};
when 32>S1>16, OD′=OD1±{D[3:0]};
when 16>S1>8, OD′=OD1±{D[3:0]>>1};
when 8>S1>0, OD′=OD1±{D[3:0]>>1}; and
when S1=0, OD′=OD1.
If PD>CD, the relationship between the interval where S1 lies and the overdrive gray-level value OD′ is expressed by:
when S1>64, OD′=OD1±{D[3:0]<<2};
when 64>S1>32, OD′=OD1±{D[3:0]<<2};
when 32>S1>16, OD′=OD1±{D[3:0]<<1};
when 16>S1>8, OD′=OD1±{D[3:0]};
when 8>S1>0, OD′=OD1±{D[3:0]>>1}; and
when S1=0, OD′=OD1.
If the previous gray-level data PD is 180, the corresponding previous gray-level index values PF1 and PF2 are 176 and 192 respectively. If the current gray-level data CD is 80, the corresponding current gray-level index value CF is also 80. The gray-level data D is equal to the previous gray-level data PD. Since PD is greater in value than CD, that is 180>80, the above-defined expressions with respect to the condition PD>CD are applicable in this case. The overdrive gray-level values OD1 and OD2 are 28 and 16 respectively, and the difference value S1 is 12. Thus, OD′=OD1±D[3:0]=28±4=28−4=24, where the negative sign in this expression is determined according to the criteria in the first and the second embodiments.
If the current gray-level data CD indicates 70, the corresponding current gray-level index values CF1 and CF2 are 64 and 80 respectively. If the previous gray-level data PD indicates 48, the corresponding previous gray-level index value PF is also 48. The gray-level data D is equal to the current gray-level data CD in value. Since PD is smaller than CD in value, that is 48<70, the above-defined expressions with respect to the condition PD<=CD are applicable in this case. The overdrive gray-level values OD1 and OD2 are 72 and 96 respectively, and the difference value S1 is 24. Therefore, OD′=OD1±D[3:0]=72±6=72+6=78, where the positive sign in this expression is determined according to the criteria in the first and the second embodiments.
If the current gray-level data CD indicates 70 and the previous gray-level data PD indicates 180, the corresponding current gray-level index values CF1 and CF2 are 64 and 80 respectively and the previous gray-level index values PF1 and PF2 are 176 and 192 respectively. In this case, three computation steps are needed to produce the desired result. As an example, two overdrive gray-level values OD′ are determined by performing two computation steps: (1) taking CD as 70 and PD as 176 and (2) taking CD as 70 and PD as 192, respectively. The desired overdrive gray-level value OD′ with respect to CD of 70 and PD of 180 is then determined in the third step according to the two determined overdrive gray-level values OD′ in the above two steps. Alternatively, two overdrive gray-level values OD′ can be determined by performing two computation steps: (1) taking PD as 180 and CD as 64 and (2) taking PD as 180 and CD as 80. Since the detailed computation is similar to the above embodiments and thus will not be described for the sake of brevity.
Referring to
In the above embodiments of invention, the overdrive computation apparatus and the involved computation, which can be regarded as non-linear, are used for interpolation. In another embodiment, they can be used for implementation of extrapolation.
In the above embodiments, the overdrive computation apparatus and the involved computation achieve a simplified overdrive computation and a reduced chip area of circuitry implementing the computation apparatus, as compared with the conventional ones that rely on multipliers for interpolation. In comparison with the results obtained by experiments, the simplified computation produces desired results having less error than those obtained by the conventional interpolation. That is, the above embodiments according to invention can produce results for interpolation with better accuracy.
While the invention has been described by way of example and in terms of a preferred embodiment, it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Number | Date | Country | Kind |
---|---|---|---|
94101912 A | Jan 2005 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
7355580 | Shen et al. | Apr 2008 | B2 |
7405741 | Zhang et al. | Jul 2008 | B1 |
7532186 | Tsai et al. | May 2009 | B2 |
20040178984 | Park et al. | Sep 2004 | A1 |
20040246224 | Tsai et al. | Dec 2004 | A1 |
20050062703 | Lee et al. | Mar 2005 | A1 |
20050068343 | Pan et al. | Mar 2005 | A1 |
20050146495 | MacKinnon et al. | Jul 2005 | A1 |
20050184948 | Halfant | Aug 2005 | A1 |
20050219180 | Kubo et al. | Oct 2005 | A1 |
20050275646 | Pai et al. | Dec 2005 | A1 |
20060050038 | Cheon et al. | Mar 2006 | A1 |
20060152535 | Huang et al. | Jul 2006 | A1 |
20060209095 | Hsu | Sep 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20060164687 A1 | Jul 2006 | US |