1. Technical Field
The present invention relates to electromechanical manipulation of biological cells in general, and, in particular, to an apparatus for performing electrodistention on algae cells.
2. Description of Related Art
Present electromechanical manipulation of cells generally focuses on one single area of electroporation, which is the usage of an electric field to produce a small hole in a cell wall. The most common application of electroporation is to produce a cell wall hole that is capable of resealing after being used to introduce new material inside of the cell. In addition, multiple electric field pulses can be applied to allow the cell wall hole to remain open for assisting in the extraction of materials from the cell or to cause cell death.
Current researchers discover that electroporation is only one manifestation of a class of effects resulting from electromechanical manipulation of a cell wall. Researches also show that a cell membrane can be stretched in reaction to the interaction force between induced surface charges on a cell membrane and an applied electric field. This mechanical force arises primarily from interfacial charges and commensurate forces on the inner membrane interface. Thus, the point mechanical failure of a cell can be related to its elastic modulus. Under this model, the process of cell membrane disruption is not classical electroporation, but a different electromechanical effect. Using the best data available, the physics behind this electromechanical mechanism predict voltage levels and times that are consistent with experimental results.
The present disclosure provides a class of apparatuses for performing electrodistention on cells in order to enhance the extraction of materials from the inside of a cell wall. In accordance with a preferred embodiment of the present invention, an apparatus for performing electrodistention includes a high-voltage, low-current pulse generator constructed with highly reliable parts for industrial use. The apparatus is used for batch or continuous flow of cells in the appropriate growth medium. The apparatus design is determined by the electromechanics of the cell walls and the quantity and flow rate of the material being processed.
All features and advantages of the present invention will become apparent in the following detailed written description.
The invention itself, as well as a preferred mode of use, further objects, and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
Two apparatuses capable of performing electroporation in a commercial setting are explained. The first apparatus uses a Marx generator, but with a substantial change to its original waveform. The second apparatus does not use a Marx generator.
Referring now to the drawings, and in particular to
As an alternative embodiment, spark gaps 12a-12b of Marx generator 10 can be replaced by a set of semiconductor switches. The alternative embodiment requires the simultaneous design of test chambers and generators to produce an apparatus that can be achievable with commercially available semiconductor switches. The design process requires the development of response data using Marx generator 10 in
With reference now to
Referring now to
The desired response is impairment or destruction of the cell membrane as well as the cell wall. Without damage to the cell wall, it is difficult to extract lipid molecules that aggregate. Since a cell wall is porous to ions, it is virtually impossible to dielectrically punch a hole in the cell wall. This is to be contrasted with a cell membrane that has a very high resistivity. The underlying thesis for the present disclosure is that electric fields can be used to electromechanically distend a cell to the point that it also damages the cell wall.
Key factors in an efficient system are the minimization of the internal resistance and appropriately matching the impedance of the test system and the pulse generator. In addition, maintenance and life cycle costs are minimized if there are a minimum of components with significant aging issues.
With reference now to
Referring now to
The electromechanical manipulation of the cells in sugar cane has the potential to cut the residence time from 6 hours to one hour based on laboratory testing. The electric field is established at the appropriate magnitude and for the appropriate time between the side walls of the first chamber. A one meter wide tank will likely require 400-500 kV pulses.
As has been described, the present invention provides two apparatuses for performing electromechanical manipulations of cells. Such manipulation leads to tearing, stretching, and/or puncture of cells. An indicator of larger scale cell wall destruction has been recorded visually and inferred from the degree of lipid production. The time for the process is quite difficult to determine because the electric stress grows very rapidly, but it is believed to be between 50 and 200 us.
While the invention has been particularly shown and described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention.
The present application claims priority under 35 U.S.C. § 119(e)(1) to provisional application No. 60/976,036 filed on Sep. 28, 2007, the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60976036 | Sep 2007 | US |