The present invention relates to an apparatus for positioning anchor bolts or reinforcing tendons used in mine and wall support systems, and more particularly an apparatus which is operable to urge the reinforcing tendon into a drill hole formed in a rock face to a seated position where it may be secured in place by mechanical couplers, resins and/or grouts.
In concrete wall, mine roof and rock wall support systems (hereinafter collectively referred to as mine roof support systems), it is known to stabilize ground forces by first embedding longitudinally elongated reinforcing tendons in bore or drill holes drilled into the rock complex, and then tightening a nut against the wall or rock face to compress and consolidate rock forces.
To form drill holes, pneumatically operated boring tools, such as a hand-held or ground supported stoper or jackleg is used. The boring tools are provided with a reciprocally movable air-leg, to which is coupled a drill steel or rod. The reciprocal movement of the air-leg is used to drive the drill steel into the rock face to a desired depth preferably selected at between about 6 and 12 feet. Typically, anchor or reinforcing tendons consist of a six or twelve foot long steel rebar, a cone bolt or a cable or strand bolt which is provided with a series of bosses or bulges along its length. To permit the tightening of the nut used to provide rock compression, the outermost end of the tendon which protrudes from the rock face is threaded or otherwise adapted to receive the tensioning nut or other fastener which may be tightened against the rock face. The reinforcing tendons are fixedly retained in the drill hole by either mechanical couplers which are activatable to frictionally engage the sides of the drill hole, or through adhesion by the use of mixed grouts or resins.
Where grout or resins are used to adhere tensioning members in place, typically a number of two-part resin or grout (hereinafter collectively referred to as resin) cartridges are pre-inserted into the bore hole immediately ahead of the reinforcing tendon. The tendon is then inserted into the drill hole with a sufficient force to rupture or pierce the resin cartridges. Once properly seated, the tendon is thereafter spun or rotated about its longitudinal axis to assist in the mixing of the resin to ensure more complete setting.
The applicant has appreciated that the length of conventional reinforcing tendons used in mine roof support systems, and the requirement of seating the tendon into elongate drill holes against the resistive forces of both multiple unruptured resin/grout cartridges, and the viscous forces of the released resin, makes the manual insertion of the tendon in the bore hole both difficult and time consuming. Furthermore, if the tendon is not fully seated in the bore hole and spun before the anchoring resin sets, the tendon may not be positioned at a sufficient depth in the rock complex to provide reliable consolidating forces. This in turn may result in either the failure of the anchor tendon, or in a worst case scenario rock wall failure.
In an effort to overcome the difficulties associated with manual positioning of reinforcing tendons, mechanical devices have been proposed for pushing reinforcing tendons into drill holes formed in rock complexes. Conventional tendon pushing apparatus typically include a pair of power driven counter rotating drive wheels. The drive wheels are positioned a distance apart so as to frictionally engage opposing sides of a tendon moved therebetween. In this manner, the rotation of the wheels drives the tendon in forward movement into the drill hole. The requirement of providing a separate apparatus, however, to position reinforcing tendons has not achieved widespread acceptance in the mining industry, as a result of the increased costs and inconvenience associated with providing and transporting separate drilling and positioning tools to a mine work site.
In addition, in underground mining operations dust, dirt and mining debris frequently results in the jamming of the drive wheels often binding the reinforcing tendon therein, and necessitating frequent repair and/or replacement.
To at least partially overcome some of the disadvantages associated with prior art wall and mine roof support systems, the present invention provides an apparatus and method for the simplified positioning or insertion of reinforcing tendons within drill holes formed in a rock complex.
Another object of the invention is to provide a tendon positioning apparatus which is adapted for use in either conventional concrete wall, rock wall or mine roof support systems, and which enables a single user to quickly and easily achieve full seating of a reinforcing tendon at the desired location relative to the rock face.
Another object of the invention is to provide an apparatus for use in pushing or slidably urging a reinforcing tendon forwardly into a bore or drill hole formed in a rock face, and which is operable to rapidly seat the tendon prior to the setting of any adhesive resins used in the securement of the tendon relative to the drill hole.
Another object of the invention is to provide a simplified apparatus for use in positioning conventional six or twelve foot long mine roof reinforcing tendons such as a rebar, cone bolts, strand cables, or bulged cable bolts into drill holes and which has a simplified construction which minimizes the possibility of apparatus failure or that the tendon may become jammed therein as a result of clogging by debris.
Another object of the invention is to provide a modified rock boring tool such as a stoper or jackleg which has a tendon pusher or positioning tool permanently or detachably coupled thereto, and whereby the boring tool may be activated by a user to both form a desired drill hole and thereafter position a reinforcing tendon therein without the use of a separate pushing tool.
Another object of the invention is to provide a simplified method and system for the installation and placement of reinforcing tendons in a rock complex by a single user, and without the necessity of purchasing and/or positioning separate boring and tendon pushing tools at an individual work site.
A further object of the invention is to provide an apparatus for use in sliding a reinforcing tendon forwardly to a seated position within a drill hole formed in a rock face, and which has a simplified construction enabling the apparatus to be quickly and economically manufactured and/or repaired.
In a simplified construction, the present invention provides a reinforcing tendon positioning apparatus for use in mine roof support systems and which is operable to slidably urge or otherwise pushing a desired reinforcing tendon into a drill hole formed into a wall or rock complex. The positioning apparatus includes a body portion having a bore which is elongated in a generally axial direction extending therethrough. The bore has an overall dimension selected to allow at least limited sliding movement of a selected tendon through the body, from an infeed end opening, along the bore, and then outwardly therefrom via an outfeed opening. At least a part of the sidewall surface bore tapers inwardly from the outfeed end of the body towards the infeed end, to provide the bore with relatively larger and smaller diameter sections.
A wedge member is provided at least partially in the bore and movable axially therein relative to the tapered surface. The wedge member may for example consist of a movable metal, ball, a metal or steel cylinder, an elliptical member, or other suitably shaped wedging element which has a profile chosen so as to be selectively frictionally engageable with part of the tendon located within the bore. Movement of the wedge member relative to the body towards the outfeed end results in its repositioning in a comparably larger diameter portion of the bore where it is sufficiently disengaged from the tendon to enable the tendon to move relative thereto. In particular, in such a location, the tendon is not held by frictional engagement with the wedge member and/or the remainder of the bore. This results in the tendon being “unlocked” from the wedge member and the tendon to be moved along the bore and out from the outfeed end relative to the body. As the tendon moves through the outfeed end, its contact with the wedge member tends to urge the wedge member further towards the larger diameter portion of the bore
As the wedge member moves axially closer to the infeed end of the body, the smaller bore diameter results in the wedge member moving into mechanical frictional contact with both the tapering bore sidewall and the part of the tendon. The tapering sidewall thus forces the wedge member into engagement against the tendon. Any further movement of the tendon outwardly through the infeed end relative to the body results in the wedge member being drawn still closer towards the infeed end and further into the smaller diameter section. This effectively increases the frictional force applied to the tendon by the wedge member to a point to restrict further relative movement of the tendon relative to the body.
In use of the apparatus, the outfeed opening is preferably oriented forwardly, proximatemost to the face of the rock complex, with the tendon slid forwardly therethrough into a drill hole. It is to be appreciated in an alternate configuration, where for example a tendon is to be extracted from a bore hole, the apparatus could be used in a reverse orientation with the outfeed opening provided remote from the rock face.
The applicant has appreciated that reciprocal movement of the positioning apparatus with its bore axis generally aligned with a drill hole axis may be used to slidably urge a tendon forwardly through the apparatus, and into the drill hole against the resistive forces of adhesive cartridges and/or the viscosity of any resin released therefrom.
Although not essential, most preferably the tendon positioning tool is provided as part of a stoper, jackleg or other rock boring tool having a reciprocally movable portion such as an air-leg which is used to reciprocally support a drill steel. In a simplified construction, the tendon positioning tool is temporarily, or more preferably, permanently provided directly on the air-leg, such that the bore axis of the positioning tool is generally aligned with the axial length of the drill steel. Following the formation of the drill hole, the activation of the reactivation boring tool thus may be used to again reciprocally move the positioning tool together with the air-leg, to urge a reinforcing tendon into the drill hole.
Accordingly, in one aspect the present invention resides in a tendon positioning apparatus for urging a reinforcing tendon forwardly into a bore hole formed in a rock face, the apparatus comprising,
a body having a rearward infeed end and a forward outfeed end positionable proximate to said rock face, an axially extending bore extending through the body from the infeed end to the outfeed end, the bore being generally frustoconically shaped and tapering inwardly from an enlarged diameter portion spaced towards the outfeed end to a reduced diameter portion spaced towards the infeed end, the reduced diameter portion being sized to permit sliding movement of the tendon therethrough,
a wedge member disposed at least partially in said bore and movable in an axial direction relative to said body between an engaging position, wherein said wedge member is spaced towards the reduced diameter portion to be frictionally engageable with a tendon therein, such that engagement between the tendon and the bore and/or the wedge member restricts axial movement of the tendon rearwardly relative the infeed end, and an uncoupled position, wherein said wedge member is moved towards the enlarged diameter portion to permit forward sliding of the tendon relative to the outfeed end of the body.
In another aspect, the present invention resides in a rock boring tool for use with a drill steel for forming a drill hole in a rock face, the tool comprising a vertically elongated air-leg and a drive selectively operable to reciprocally move said air-leg in a vertical direction,
the air-leg including a nose portion positionable proximate to the rock face and having a socket configured for coupling the drill steel thereto, and
a tendon positioning assembly for urging a reinforcing tendon into the drill hole, the assembly comprising,
In a further aspect, the present invention resides in a tendon positioning apparatus for sliding a reinforcing tendon into a drill hole formed in a rock face, the apparatus comprising,
a body having a rearward infeed end opening and a forward outfeed end opening, a bore extending generally axially through the body from the infeed end opening to the outfeed end opening, the bore sized to permit limited sliding movement of the tendon therethrough and having at least one sidewall portion tapering inwardly from an enlarged diameter portion spaced closest the outfeed end towards a reduced diameter portion spaced towards the infeed end opening,
a wedge member disposed in said bore and movable in an axial direction relative to said body between an engaging position, wherein said wedge member is spaced towards the reduced diameter portion whereby frictional engagement between the tendon and at least one of the bore and the wedge member restricts axial sliding of the tendon rearwardly relative the infeed end opening, and an uncoupled position, wherein said wedge member is moved towards the enlarged diameter portion to permit relative sliding of the tendon forwardly from the outfeed end opening therepast.
Reference may now be had to the following detailed description taken together with the accompanying drawings in which:
The present invention relates to a stoper 10 for use in the installation of mine roof support systems. As will be described, the stoper 10 is operable by a single user to initially form a drill hole 12 in a rock roof complex 14, and thereafter position and seat a bulged cable bolt 16 in the drill hole 12 as a reinforcing tendon for use in compressing and consolidating rock forces. The stoper 10 is sized to be manually held by a single individual operator at an intended site of use. The stoper 10 includes an elongated pneumatically operable air-leg 18 which in use is positioned in a generally vertical orientation and then reciprocally moved in the forward and rearward directions of arrows 50a, 50b by way of drive 19 towards and away from the rock complex 14. The nose end 20 of the air-leg 18 is provided with a chuck 22 which is configured to matingly receive therein a longitudinally elongated drill steel 24. Although not essential, a removable steel sleeve 26 is preferably provided for selective positioning over the drill steel 24 in co-axial alignment with the longitudinal length of the drill axis AD-AD. The sleeve 26 is formed as a hollow tube which is adapted for sliding insertion over the drill steel 24 to protect it against accidental damage, while the stoper 10 is either transported and/or used for tendon positioning applications.
An outfeed opening 40 is formed in the body through the forwardmost end 39. Similarly, an infeed opening 42 is formed through the body 34 through the rearwardmost end 41. Each of the infeed opening 42 and outfeed opening 40 are open into the bore 36 and are sized to permit movement of the tendon 16 therethrough. The infeed opening 42 preferably has a diameter D1 (
In a simplified construction, the wedge ball 48 is preferably a spherical hardened steel ball. The ball 48 has a diameter d which most preferably is selected marginally greater than the diameter D1 of the infeed opening 42, minimizing the possibility that the ball 48 may accidentally drop from the body 34. Where the stoper 10 is used in the installation of bulged cable bolts 16 which are characterized by unbulged cable portions 54 having a diameter of between about 1 and 2 cm, and longitudinally spaced bulged portions 56, the diameter of the caming ball 48 is preferably selected at between about 1 and 5 cm, and more preferably about 4 cm.
A longitudinally extending throat opening 52 is formed through the sidewall of the body 34 from the infeed opening 42 to the outfeed opening 40, and opens into the bore 36. Although not essential, preferably the throat 52 is oriented with its longitudinal length substantially aligned with the axis AB-AB. The throat opening 52 has a lateral width W (
In the installation of a cable bolt 16, the sleeve 26 is initially removed from the stoper 10 to expose the drill steel 24. Thereafter, the stoper 10 is positioned in a vertical orientation at the desired location and the air-leg 18 activated to vertically move the drill steel 24 into the rock complex 14 to form the drill hole 12 to a desired depth of between about 6 and 12 feet. Following the formation of the drill hole 12, stoper 10 is moved away from the hole 12 by distance DB (
Following the formation of the guide bore 62, the sleeve 26 is repositioned over the drill steel 24, and a cable bolt 16 is inserted into the positioning tool 30. To insert the cable bolt 16 initially, the ball 48 is first moved axially in the bore 36 to a position immediately adjacent to the top cover plate 46. An unbulged portion 54 of the bolt 16 is then slid laterally through the throat opening 52 and into general alignment with the bore axis AB-AB. In the initial position, the bolt 16 is maintained in a position intermediate the ball 48 and the infeed opening 42 by the tapering sidewalls of the bore 36. Although not essential, most preferably the top cover plate 46 is configured such that spacing of the outfeed opening 40 and the notched opening 60 has a dimension which is greater than the diameter d of the caming ball 48 by an amount less than the minimum width of the cable bolt 16. With this configuration, the caming ball 48 may be readily removed from the tool body 34 for replacement and/or cleaning prior to the insertion of the cable bolt 16. Once, however, the cable bolt 16 is initially positioned within the bore 36, the added dimension of the cable bolt 16 effectively prevents accidental removal of the caming ball 48 during use of the tendon positioning tool 30.
Following the initial positioning of the cable bolt 16, a number of two-part resin cartridges 66a, 66b (
As shown best in
As the cable bolt 16 engages the resin cartridges 66a, 66b and/or resin released therefrom such that further manual insertion of the cable bolt 16 into the drill hole 12 becomes impractical, the stoper 10 is activated to reciprocally move the air-leg 18 in the vertical direction of arrows 50a, 50b. As shown best in
At the end of the forward stroke of the air-leg 18, the stoper 10 moves the air-leg 18 and tendon pusher 30 in return movement of arrow 50b, rearwardly away from the rock face 14a (
As the bulged portions 56 of the cable bolt 16 move through the body 34, a limited degree of flexure of the cable bolt 16 allows the deflection of part of the bulge portions 56 into the notched opening 60. In this position, the bulged portions 56 may pass without substantial interference from the outfeed end 40.
The stoper 10 is operated to cyclically repeat the forward and rearward movement of the tendon positioning tool 30 in the direction of arrows 50a, 50b until the cable bolt 16 is slidably moved to the desired seated position within the drill hole 12.
The applicant has appreciated that the simplified construction of the tendon positioning tool 30 enables the cable bolts 16 to be quickly and easily positioned, with minimal susceptibility of the tool 30 to clogging and failure as a result of the accumulation of dust, rock powder and other drilling debris thereon.
Although
In
A cylindrical wedge member 148 is provided which is repositionable relative to the body 34 between engaging and uncoupled positions in a similar manner to that previously described. In particular, as shown in
As shown in
Although the detailed description describes and illustrates the tendon positioning tool 30 as being used in a vertical orientation with a stoper 10, the invention is not so limited. It is to be appreciated that the tendon positioning tool 30 could be used in angled or horizontal orientations as well. In addition, the tool 30 could also be used with a variety of different rock boring tools, including without limitation jacklegs or other tools having pneumatically, hydraulically, and/or electronically reciprocally movable drive structures. In an alternate less preferred configuration, the tendon positioning tool 30 could be provided as a stand alone tool which is activatable for reciprocal movement.
While the detailed description of the invention describes the tool body 34 as being permanently secured to the air-leg 18 by weldments, the invention is not so limited. In an alternate construction, the body 34 and/or the entire tool 30 may be detachable from the stoper 10. It is to be appreciated that such a detachable construction could advantageously permit the substitution of different tool bodies 34 having different sized or tapered bores 36, or throat openings 52 as may be best suited for use with different types of reinforcing tendons depending on the rock complex geology and site of installation.
Although the detailed description describes the tendon pusher body 34 as including an axially extending throat opening 52, the invention is not so limited. It is to be appreciated that the throat opening 52 could be omitted in its entirety and the cable bolt 16 simply fed into the positioning tool 30 through the infeed opening 42.
While the detailed description describes the use of a ball 48 and/or cylinder 148 as being used to wedge and secure tendons in place during forward movement of the tool 30, the invention is not so limited. It is to be appreciated that numerous other constructions may be used as suitable wedging elements and which will now become readily apparent.
Although the detailed description describes and illustrates various preferred embodiments, the invention is not so limited. Many modifications and variations will now appear to persons skilled in the art. For a definition of the invention, reference may be had to the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2579385 | Feb 2007 | CA | national |
Number | Name | Date | Kind |
---|---|---|---|
1585668 | Hansen | May 1926 | A |
3259403 | Hjalsten et al. | Jul 1966 | A |
4420277 | Hibbard et al. | Dec 1983 | A |
5147145 | Facey et al. | Sep 1992 | A |
6698529 | Coombs et al. | Mar 2004 | B2 |
6793445 | Charlton et al. | Sep 2004 | B1 |
7066688 | Wallstein et al. | Jun 2006 | B2 |
7384216 | Wallstein et al. | Jun 2008 | B2 |
20070183850 | Hedrick | Aug 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20080205997 A1 | Aug 2008 | US |