This application claims priority to Chinese Patent Application Ser. CN2022111198097 filed 14 Sep. 2022.
The present disclosure relates to an apparatus for preventing and controlling secondary generation of hydrates in a wellbore during depressurization exploitation of offshore natural gas hydrates and a prevention and control method.
Natural gas hydrates are ice-like cage compounds that are formed when water molecules and hydrocarbon gas molecules are combined at certain low-temperature and high-pressure conditions, which serve as new clean and efficient energy with huge reserves. According to incomplete statistics, organic carbon reserves in the natural gas hydrates are twice as large as the total reserves of fossil energy, such as oil gases, around the world. The natural gas hydrates are typically present in submarine sediments of the deep sea which is more than 300 m in depth, terrestrial permafrost regions, and other low-temperature and high-pressure regions. Vast deep sea regions are ideal environments for the stable existence of the natural gas hydrates, which contain more than 95% of the total reserve of natural gas hydrates, and thus, it is an important direction for energy development in the future.
In the existing exploitation methods (depressurization method, heat injection method, chemical agent injection method, CO2 displacement method, solid fluidization method, and the like) of the natural gas hydrates, the depressurization method has the advantages of high gas recovery rate, easiness in operation, low costs, and the like, which is deemed as a preferred method for most possibly achieving the commercial exploitation of the natural gas hydrates in the future. During the depressurization exploitation of offshore natural gas hydrates, as seawater temperature will drop with an increase in the water depth (temperature may be as low as 2 to 4° C. at 1500 m beneath the seawater), temperature and pressure conditions for the secondary generation of the hydrates are easily satisfied in exploitation wellbores, which will pose the serious secondary generation risk of hydrates. Once the secondary generation risk of the hydrates is found in the exploitation wellbores, part of generated hydrates will be deposited onto pipe walls to form hydrate deposition layers, resulting in shrinking fluid flow channels, and even obstructing flow in severe cases, which, in turn, causes the safety problems of the flow. In 2017, during the pilot depressurization exploitation of offshore natural gas hydrates, carried out for the second time in Japan, the pilot exploitation process was interrupted twice due to the secondary hydrate generation and obstruction problems in exploitation pipe columns, and the hydrates were removed from the obstructed pipe columns for 31.25 h and 13.5 h, respectively, which severely affected the pilot exploitation schedule. Not only will the secondary generation of the hydrates in the exploitation wellbores of the offshore natural gas hydrates affect the pilot exploitation schedule, but it may affect the subsequent continuous depressurization. The fact that the bottom hole pressure in the pilot exploitation process for the second time in Japan was not reduced to the expected value may also be associated with the secondary generation, and in severe cases, safety accidents of pilot exploitation may even be caused. Currently, the injection of excessive thermodynamic inhibitors, as a major means of preventing and controlling the flow obstacle of the hydrates in deep water wellbores, is used to completely prevent hydrate generation throughout the wellbores. However, the method has defects of large using amounts (10% to 60%) of inhibitors, large storage area, high costs, and high requirements on injection equipment, and especially, the defects become more prominent when the water yield is high, and even the problems that the inhibitors cannot be injected and the like may be encountered, resulting in the failure in the prevention and control scheme for the secondary generation of the hydrates.
In conclusion, a method for preventing and controlling secondary generation of hydrates in depressurization exploitation of offshore natural gas hydrates economically and efficiently has not been found yet. This is a key difficulty that restricts the safe and efficient exploitation of offshore natural gas hydrates. Therefore, the present disclosure is proposed.
Aiming at defects in the prior art, and especially for problems of large consumption of an inhibitor and poor prevention and control effects of the existing method for preventing and controlling secondary generation of natural gas hydrates, the present disclosure provides an apparatus for preventing and controlling secondary generation of hydrates during depressurization exploitation of offshore natural gas hydrates. Based on the characteristics of different exploitation pipe columns, a combination of inhibitor injection, pipe column heating, the additional arrangement of an electric submersible pump, and other means has been developed to prevent and control the secondary generation of the hydrates during depressurization exploitation of offshore natural gas hydrates. This approach effectively improves the efficacy and economic benefits of the prevention and control of the secondary generation of the hydrates during depressurization exploitation of the offshore natural gas hydrates, providing a guarantee for achieving the flowing safety of offshore natural gas hydrates in the depressurization exploitation process.
A technical solution of the present disclosure is as follows:
The apparatus for preventing and controlling the secondary generation of the hydrates in a depressurization exploitation wellbore of offshore natural gas hydrates includes a gas recovery pipe column, a water recovery pipe column, a gas-liquid mixed transportation pipe section, a data collecting and processing unit, and a reaction control apparatus, and tail ends of the gas recovery pipe column and the water recovery pipe column are connected with a top of the gas-liquid mixed transportation pipe section; the gas-liquid mixed transportation pipe section is positioned in hydrate reservoirs; and the gas recovery pipe column and the water recovery pipe column recover gases and water decomposed by the natural gas hydrates in the reservoirs respectively;
the data collecting and processing unit includes a first data monitoring point, a second data monitoring point, a third data monitoring point, and a computer terminal; the first data monitoring point is positioned on a top of the gas recovery pipe column, and collects a temperature, pressure and gas flow of the top of the gas recovery pipe column; the second data monitoring point is positioned on a top of the water recovery pipe column, and collects a temperature, pressure and gas flow of the top of the water recovery pipe column; the third data monitoring point is positioned on a tail end of the gas-liquid mixed transportation pipe section, and collects a temperature and pressure of a well bottom; and the computer terminal receives and processes temperature, pressure, and flow data collected from the first data monitoring point, the second data monitoring point, and the third data monitoring point; and
the reaction control apparatus includes a signal actuator, a hydrate inhibitor storage tank, a hydrate inhibitor injection pump, a first inhibitor injection point, a second inhibitor injection point, a third inhibitor injection point, a first electric submersible pump, a second electric submersible pump, and a heater; one end of the signal actuator is connected with the computer terminal, and the other end of the signal actuator is connected with the hydrate inhibitor injection pump; the hydrate inhibitor injection pump is respectively connected with the first inhibitor injection point, the second inhibitor injection point, and the third inhibitor injection point via injection pipelines, and a control valve is arranged on each of the injection pipelines; the first inhibitor injection point is positioned on the top of the gas recovery pipe column, the second inhibitor injection point is positioned at a bottom of the gas recovery pipe column, and the third inhibitor injection point is positioned on the tail end of the gas-liquid mixed transportation pipe section; the first electric submersible pump is positioned at a bottom of the water recovery pipe column, and the second electric submersible pump is positioned in the middle of the water recovery pipe column; and the heater is positioned at the bottom of the gas recovery pipe column.
Preferably, a joint of the water recovery pipe column and the gas-liquid mixed transportation pipe section and a joint of the gas recovery pipe column and the gas-liquid mixed transportation pipe section are provided with a casing pipe, the first electric submersible pump is positioned in the casing pipe, and a blowout preventer is arranged on a tail end of the gas recovery pipe column.
Preferably, a water storage pipe section is arranged in the middle of the water recovery pipe column, the middle of the water recovery pipe column is divided into a first half and a second half of the water recovery pipe column, a tail end of the first half of the water recovery pipe column and a top of the second half of the water recovery pipe column are positioned in the water storage pipe section, and the second electric submersible pump is positioned on the tail end of the first half of the water recovery pipe column.
A prevention and control method of the apparatus for preventing and controlling secondary generation of hydrates in wellbore during depressurization exploitation of offshore natural gas hydrates includes the following steps:
The three data collection points are installed on the top of the gas recovery pipe column, the top of the water recovery pipe column, and the tail end of the gas-liquid mixed transportation pipe section, which collect temperature, pressure and flow data at different positions; the different data collection points are connected with the computer terminal, and the collected data is transmitted to the computer terminal in real time; the computer terminal performs analysis and processing on the data collected from the different data collection points, sends instructions to the signal actuator to control inhibitor injection rates of different hydrate inhibitor injection points, and to control power of the heater in the gas recovery pipe column and power of the different electric submersible pumps in the water recovery pipe column to prevent and control the secondary generation of the hydrates in the gas recovery pipe column and the water recovery pipe column.
According to the present disclosure, preferably, the prevention and control method of the apparatus for preventing and controlling secondary generation of hydrates in a wellbore during depressurization exploitation of offshore natural gas hydrates includes the following steps:
(1) Real-Time Monitoring of Data at Different Positions
temperature, pressure and flow data is monitored at different positions via the first data monitoring point on the top of the gas recovery pipe column, the second data monitoring point on the top of the water recovery pipe column, and the third data monitoring point on the tail end of the gas-liquid mixed transportation pipe section, and the collected data is transmitted to the computer terminal in real time;
(2) Analysis of a Secondary Generation Risk of Hydrates Throughout Wellbore
the temperature and pressure distributions throughout the wellbore are obtained by the computer terminal via calculation according to the received temperature, pressure and flow data at different positions; the computer terminal judges whether the secondary generation of the hydrates happens at different positions in combination with the phase equilibrium calculation result of the natural gas hydrates, and the secondary generation risk of the hydrates throughout the wellbore is analyzed based on the judgment result, which provides a foundation for the prevention and control of the secondary generation of the hydrates in different pipe columns;
(3) Prevention and Control Reaction of Secondary Generation of Hydrates in Different Pipe Columns
according to the secondary generation risk of the hydrates in different pipe columns obtained by calculation, the computer terminal sends prevention and control instructions for the secondary generation of the hydrates, and corresponding measures of preventing and controlling the secondary generation of the hydrates are taken for different pipe columns; inhibitor injection is used as the measure for preventing and controlling the secondary generation of the hydrates at the gas-liquid mixed transportation pipe section, the collaborative prevention and control of the inhibitor injection+the heating of the pipe column bottom is used as the prevention and control measure for the secondary generation of hydrates in the gas recovery pipe column, and the collaborative prevention and control of depressurization by double pumps+inhibitor is used as at the prevention and control measure for secondary generation of the hydrates in the water recovery pipe column. These approaches may ensure multiphase flow safety in the exploitation wellbore for offshore natural gas hydrates.
According to the present disclosure, preferably, in step (2), as a significant temperature gradient exists in a stratum/seawater outside the exploitation wellbore for the offshore natural gas hydrates, a temperature difference exists between the fluid in the pipe columns and external environment. Furthermore, given differences in structures of pipe columns at different positions, distinct heat transfer processes are formed between the fluid flow in the exploitation wellbore and the external environment: {circle around (1)} well section below mud line-gas-liquid mixed transportation pipe section: heat transfer between the fluid in the gas-liquid mixed transportation pipe section and the external stratum; {circle around (2)} well section above mud line-gas recovery pipe column: heat transfer between the fluid in the gas recovery pipe column and external seawater; {circle around (3)} well section above mud line-water recovery pipe column: heat transfer between the fluid in the water recovery pipe column and the external seawater; the mud line is a seabed (i.e., a boundary of the seawater and a shallow layer of the seabed); and according to the characteristic of pipe columns for depressurization exploitation of offshore natural gas hydrates and in consideration of the influence of hydrate phase changes on temperature changes, the temperature distribution of the exploitation wellbore is calculated by the following formula based on the principle of conservation of energy:
where, Cpm is a specific heat of a mixed fluid at constant pressure, J/(kg·° C.); Tf is a fluid temperature, ° C.; H is a specific enthalpy of the mixed fluid, J/kg; ΔH is a molar enthalpy of formation of the hydrates, J/mol; Mh is a molar molecular mass of the hydrates, kg/mol; ρm is a density of the mixed fluid, kg/m3; vm is a flow velocity of the mixed fluid, m/s; Qst indicates a heat exchange rate between the fluid in the pipe columns and ambient environment, J/(m·s); s is a position, m; Ate is a net sectional area of the pipe column, m2; Rhf is a generation rate of the hydrates, kg/(m·s); Rhi is a decomposition rate of the hydrates, kg/(m·s); and θ is an angle of inclination, °.
Due to the differences in structures of the exploitation pipe column at different well depths, the calculation of Qst will vary with different well depth positions;
Well Section Above Mud Line-Gas Recovery Pipe Column:
Well Section Above Mud Line-Water Recovery Pipe Column:
Well Section Below Mud Line-Gas-Liquid Mixed Transportation Pipe Section:
where, rtgo, rtwo, and rto are outer diameters of the gas recovery pipe column, the water recovery pipe column, and the gas-liquid mixed transportation pipe section, respectively, m; Tsea is a seawater temperature, ° C.; Utgo, Utwo, and Uto are overall coefficients of heat transfer based on outer surfaces of the gas recovery pipe column, the water recovery pipe column, and the gas-liquid mixed transportation pipe section as reference surfaces, respectively, W/(m2·K); Hd is a well depth, m; Hsea is a water depth, m; Tei is an environment temperature, ° C.; rtgi, rtwi, and rti are inner diameters of the gas recovery pipe column, the water recovery pipe column, and the gas-liquid mixed transportation pipe section, respectively, m; ke is a stratum heat conductivity coefficient, W/(m·K); and TD is a dimensionless temperature.
According to the present disclosure, preferably, in step (2), the fluid in the hydrate exploitation pipe column is primarily affected by forces of gravity, pressure difference, and frictional resistance during the flowing process. According to the principle of conservation of momentum and in consideration of factors, such as changes in gas volume fraction and changes in gas-water volume fraction distribution arising from gas expansion, a calculation formula of pressure field distribution in the pilot exploitation pipe column of the hydrates is as follows:
where, Pf is a fluid pressure in the pilot exploitation pipe column, Pa; α is an angle of inclination, rad; and Fr is a frictional pressure drop, Pa.
According to the present disclosure, preferably, in step (2), phase equilibrium temperature and pressure conditions of the natural gas hydrates are calculated by the following formula:
where, ΔTd is a temperature at which a decline in a hydrate equilibrium is caused by a hydrate inhibitor, K, which may be calculated by the following formula:
where, Pe is a phase equilibrium pressure of hydrates, Pa; x is a molar fraction of the hydrate inhibitor in a water phase, which is dimensionless; xr is a reference molar fraction of the hydrate inhibitor in the water phase, which is dimensionless; and ΔTd,r is a temperature at which the decline in the hydrate equilibrium is caused under the molar fraction of the inhibitor as xr, K.
Preferably, in step (2), the secondary generation risk of the hydrates in different pipe columns is determined by comparing the temperature of the pipe columns with the phase equilibrium temperature of the natural gas hydrates; a natural gas hydrate phase equilibrium temperature-pressure curve under the condition of the produced fluid component is converted into a temperature-depth curve by taking into account a temperature and pressure distribution curve of the wellbore and a hydrate phase equilibrium curve, for which coordinate conversion is performed; and when the temperature on the wellbore temperature curve at a certain depth is lower than that on the hydrate phase equilibrium curve, the fluid temperature in the wellbore at the depth satisfies the secondary generation condition of the hydrates, that is, there is the secondary generation risk of the hydrates. A discriminant formula of the secondary generation of the hydrates is as follows:
Pe>Pf or Te<Tf (9)
where, Te is a phase equilibrium temperature of the hydrates, ° C.
Preferably, in step (3), different prevention and control measures of the secondary generation of the hydrates are taken for different pipe columns in the wellbore; at the gas-liquid mixed transportation pipe section, when the processing result from the computer terminal indicates that the secondary generation risk of the hydrates is found in a horizontal pipe section of the gas-liquid mixed transportation pipe section at the well bottom, the concentration of the hydrate inhibitor as required for preventing and controlling the secondary generation of the hydrates is obtained via calculation according to the prevention and control requirement for the secondary generation of the hydrates, which may be determined according to formulas (6), (7) and (8); the higher the concentration of the hydrate inhibitor, the higher the temperature and the lower the pressure at which the hydrate phase equilibrium is achieved are perceived to be; the concentration of the inhibitor is designed to make the phase equilibrium temperature of the hydrates higher than a fluid temperature or make the phase equilibrium pressure thereof lower than a fluid pressure, thereby avoiding the secondary generation of the hydrates in the wellbore; as an injection rate is associated with the concentration, the inhibitor injection rate is obtained by multiplying the amount of recovered water by the concentration; and then, the inhibitor injection instructions are sent to the third inhibitor injection point on the tail end of the horizontal pipe section, and the control valve on the injection pipeline is opened, thereby effectively preventing and controlling the secondary generation of the hydrates in the gas-liquid mixed transportation pipe section;
for the water recovery pipe column, when the processing result from the computer terminal indicates that there is the secondary generation risk of the hydrates in the water recovery pipe column, it is required to take into account the concentration of the hydrate inhibitor which has possibly been present in an aqueous solution, and the concentration of the hydrate inhibitor in the water recovery pipe column is the same as that of the hydrate inhibitor at the gas-liquid mixed transportation pipe section; water in the water recovery pipe column is pumped from the gas-liquid mixed transportation pipe section; if the hydrate inhibitor is not injected into the third inhibitor injection point, the concentration of the existing hydrate inhibitor in the water recovery pipe column is 0; if the hydrate inhibitor is injected into the third inhibitor injection point, the concentration of the existing hydrate inhibitor in the water recovery pipe column is the concentration of the hydrate inhibitor at the gas-liquid mixed transportation pipe section; if the hydrate inhibitor is not injected into the third inhibitor injection point, the computer terminal controls, based on the processing result, the operating power of the first electric submersible pump and the operating power of the second electric submersible pump on the water recovery pipe column to reduce the pressure throughout the water recovery pipe column until the pressure in the pipe column drops to below the phase equilibrium pressure of the hydrates, thereby preventing and controlling the secondary generation of the hydrates therein. Meanwhile, the output power of the first electric submersible pump and the output power of the second electric submersible pump are maintained at a consistent level, which ensures that the liquid level in the second electric submersible pump module stays above the second electric submersible pump to ensure the safety of the fluid flow in the water recovery pipe column; if it is unable to make the pressure of the water recovery pipe column drop to below the phase equilibrium pressure of the hydrates, the hydrate inhibitor needs to be injected into the third inhibitor injection point, and if the hydrate inhibitor has been injected into the third inhibitor injection point, the concentration of the inhibitor in the water recovery pipe column is the same as that of the inhibitor at the gas-liquid mixed transportation pipe section, based on which the operating power of the first electric submersible pump and the operating power of the second electric submersible pump on the water recovery pipe column are controlled to reduce the pressure throughout the water recovery pipe column, making the pressure in the pipe column drop to below the phase equilibrium pressure of the hydrates; meanwhile, the output power of the first electric submersible pump and the output power of the second electric submersible pump are maintained at a consistent level, so that the liquid level in the second electric submersible pump module is stably maintained above the second electric submersible pump; and if it is unable to meet the prevention and control requirement of the hydrates by the depressurization of the electric submersible pumps and the existing inhibitor concentration, a certain concentration of hydrate inhibitor continues to be injected into the third inhibitor injection point to avoid the generation of the hydrate; and
for the gas recovery pipe column, when the processing result from the computer terminal indicates that there is the secondary generation risk of the hydrates in the gas recovery pipe column, the computer terminal sends the heating instructions to the heater at the bottom of the gas recovery pipe column to elevate gas temperature in the gas recovery pipe column. After heating, the concentration of the hydrate inhibitor required for preventing and controlling the secondary generation of the hydrates is calculated according to the prevention and control requirement for the secondary generation of the hydrates, and the secondary generation of the hydrates is determined according to formulas (6), (7) and (8); the inhibitor injection instructions are then sent to the first inhibitor injection point and the second inhibitor injection point, and the control valve on the injection pipeline is opened; the injection flow rate of the first inhibitor injection point is independent of that of the second inhibitor injection point, the latter is used specifically to prevent the secondary generation of the hydrates in the gas recovery pipe column. The former, however, is used to stabilize the concentration of the inhibitor and avoid the generation risk of the hydrates arising from throttling and temperature drops of the produced fluid that flows into the platform pipeline; and a heating temperature is encouraged to be at the highest level possible, but an ideal state of being above the phase equilibrium temperature of the hydrates after heating is impossible to achieve for the heating apparatus on site. As such, the secondary generation risk of the hydrates is prevented in the gas recovery pipe column by combining heating and inhibitor injection, that is, heating is performed, and then, the concentration of the injected inhibitor and the injection rate are determined based on the temperature after heating, thereby achieving the prevention and control of the secondary generation risk of the hydrates in the gas recovery pipe column.
All aspects not fully described in the present disclosure shall be referenced to the prior art.
The present disclosure has beneficial effects that
In the drawings, 1: computer terminal; 2: signal actuator; 3: hydrate inhibitor storage tank; 4: hydrate inhibitor injection pump; 5: control valve 1; 6: control valve 2; 7: control valve 3; 8: first data monitoring point; 9: first inhibitor injection point; 10: gas recovery pipe column; 11: heater; 12: blowout preventer; 13: second inhibitor injection point; 14: second data monitoring point; 15: water recovery pipe column; 16: second electric submersible pump module; 17: first electric submersible pump; 18: casing pipe; 19: gas-liquid mixed transportation pipe section; 20: third inhibitor injection point; 21: third data monitoring point; 22: second electric submersible pump; 23: water storage pipe section; 24: second half of water recovery pipe column; 25: first half of water recovery pipe column; 26: sea level; 27: seawater; 28: shallow seabed; and 29: hydrate reservoir.
The present disclosure will be further explained with reference to embodiments and drawings, but the embodiments of the present disclosure are not limited thereto.
An apparatus for preventing and controlling secondary generation of hydrates in a wellbore during depressurization exploitation of offshore natural gas hydrates includes a gas recovery pipe column, a water recovery pipe column, a gas-liquid mixed transportation pipe section, a data collecting and processing unit, and a reaction control apparatus, and tail ends of the gas recovery pipe column and the water recovery pipe column are connected with a top of the gas-liquid mixed transportation pipe section; the gas-liquid mixed transportation pipe section is positioned in hydrate reservoirs; and the gas recovery pipe column and the water recovery pipe column recover gases and water decomposed by the natural gas hydrates in the reservoirs respectively;
the data collecting and processing unit includes a first data monitoring point, a second data monitoring point, a third data monitoring point, and a computer terminal; the first data monitoring point is positioned on a top of the gas recovery pipe column, and collects a temperature, pressure and gas flow of the top of the gas recovery pipe column; the second data monitoring point is positioned on a top of the water recovery pipe column, and collects a temperature, pressure and gas flow of the top of the water recovery pipe column; the third data monitoring point is positioned on a tail end of the gas-liquid mixed transportation pipe section, and collects a temperature and pressure of a well bottom; and the computer terminal receives and processes temperature, pressure, and flow data collected from the first data monitoring point, the second data monitoring point, and the third data monitoring point;
the reaction control apparatus includes a signal actuator, a hydrate inhibitor storage tank, a hydrate inhibitor injection pump, a first inhibitor injection point, a second inhibitor injection point, a third inhibitor injection point, a first electric submersible pump, a second electric submersible pump, and a heater; one end of the signal actuator is connected with the computer terminal, and the other end of the signal actuator is connected with the hydrate inhibitor injection pump; the hydrate inhibitor injection pump is respectively connected with the first inhibitor injection point, the second inhibitor injection point, and the third inhibitor injection point via injection pipelines, and a control valve is arranged on each of the injection pipelines; the first inhibitor injection point is positioned on the top of the gas recovery pipe column, the second inhibitor injection point is positioned at a bottom of the gas recovery pipe column, and the third inhibitor injection point is positioned on the tail end of the gas-liquid mixed transportation pipe section; the first electric submersible pump is positioned at a bottom of the water recovery pipe column, and the second electric submersible pump is positioned in the middle of the water recovery pipe column; and the heater is positioned at the bottom of the gas recovery pipe column.
According to a prevention and control method of the apparatus for preventing and controlling secondary generation of hydrates during depressurization exploitation of offshore natural gas hydrates, three data collection points are installed on the top of the gas recovery pipe column, the top of the water recovery pipe column, and the tail end of the gas-liquid mixed transportation pipe section, which collect temperature, pressure and flow data at different positions; the different data collection points are connected with the computer terminal, and the collected data is transmitted to the computer terminal in real time; the computer terminal performs analysis and processing on the data collected from the different data collection points, and sends instructions to the signal actuator to control inhibitor injection rates of different hydrate inhibitor injection points, and to control power of the heater in the gas recovery pipe column and power of the different electric submersible pumps in the water recovery pipe column to prevent and control the secondary generation of the hydrates in the gas recovery pipe column and the water recovery pipe column.
An apparatus for preventing and controlling secondary generation of hydrates in a wellbore during depressurization exploitation of offshore natural gas hydrates is different from Embodiment 1 in that a joint of the water recovery pipe column and the gas-liquid mixed transportation pipe section and a joint of the gas recovery pipe column and the gas-liquid mixed transportation pipe section are provided with a casing pipe, the first electric submersible pump is positioned in the casing pipe, and a blowout preventer is arranged on a tail end of the gas recovery pipe column.
An apparatus for preventing and controlling secondary generation of hydrates in a wellbore during depressurization exploitation of offshore natural gas hydrates is different from Embodiment 1 in that a water storage pipe section is arranged in the middle of the water recovery pipe column, as shown in
A prevention and control method of the apparatus for preventing and controlling secondary generation of hydrates in a wellbore during depressurization exploitation of offshore natural gas hydrates as described in Embodiment 1 includes the following steps:
(1) Real-Time Monitoring of Data at Different Positions
temperature, pressure and flow data is monitored at different positions via the first data monitoring point on the top of the gas recovery pipe column, the second data monitoring point on the top of the water recovery pipe column, and the third data monitoring point on the tail end of the gas-liquid mixed transportation pipe section, and the collected data is transmitted to the computer terminal in real time;
(2) Analysis of Secondary Generation Risk of Hydrates Throughout Wellbore
the temperature and pressure distributions throughout the wellbore are obtained by the computer terminal via calculation according to the received temperature, pressure and flow data at different positions; the computer terminal judges whether the secondary generation of the hydrates happens at different positions in combination with the phase equilibrium calculation result of the natural gas hydrates, and the secondary generation risk of the hydrates throughout the wellbore is analyzed based on the judgment result, which provides a foundation for the prevention and control of the secondary generation of the hydrates in different pipe columns;
as a significant temperature gradient exists in a stratum/seawater outside the exploitation wellbore for the offshore natural gas hydrates, a temperature difference exists between the fluid in the pipe columns and external environment. Furthermore, given differences in structures of pipe columns at different positions, distinct heat transfer processes are formed between the fluid flow in the exploitation wellbore and the external environment: {circle around (1)} well section below mud line-gas-liquid mixed transportation pipe section: heat transfer between the fluid in the gas-liquid mixed transportation pipe section and the external stratum; {circle around (2)} well section above mud line-gas recovery pipe column: heat transfer between the fluid in the gas recovery pipe column and external seawater; {circle around (3)} well section above mud line-water recovery pipe column: heat transfer between the fluid in the water recovery pipe column and the external seawater; the mud line is a seabed (i.e., a boundary of the seawater and a shallow layer of the seabed); and according to characteristic of pipe columns for depressurization exploitation of offshore natural gas hydrates and in consideration of the influence of hydrate phase changes on temperature changes, the temperature distribution of the exploitation wellbore is calculated by the following formula based on the principle of conservation of energy:
where, Cpm is a specific heat of a mixed fluid at constant pressure, J/(kg·° C.); Tf is a fluid temperature, ° C.; H is a specific enthalpy of the mixed fluid, J/kg; ΔH is a molar enthalpy of formation of the hydrates, J/mol; Mh is a molar molecular mass of the hydrates, kg/mol; ρm is a density of the mixed fluid, kg/m3; vm is a flow velocity of the mixed fluid, m/s; Qst indicates a heat exchange rate between the fluid in the pipe columns and ambient environment, J/(m·s); s is a position, m; Ate is a net sectional area of the pipe column, m2; Rhf is a generation rate of the hydrates, kg/(m·s); Rhi is a decomposition rate of the hydrates, kg/(m·s); and θ is an angle of inclination, °.
Due to the differences in the structures of exploitation pipe columns at different well depths, the calculation of Qst will vary with different well depth positions;
Well Section Above Mud Line-Gas Recovery Pipe Column:
Well Section Above Mud Line-Water Recovery Pipe Column:
Well Section Below Mud Line-Gas-Liquid Mixed Transportation Pipe Section:
where, rtgo, rtwo and rto are outer diameters of the gas recovery pipe column, the water recovery pipe column, and the gas-liquid mixed transportation pipe section, respectively, m; Tsea is a seawater temperature, ° C.; Utgo, Utwo, and Uto are overall coefficients of heat transfer based on outer surfaces of the gas recovery pipe column, the water recovery pipe column, and the gas-liquid mixed transportation pipe section as reference surfaces, respectively, W/(m2·K); Hd is a well depth, m; Hsea is a water depth, m; Tei is an environment temperature, ° C.; rtgi, rtwi, and rti are inner diameters of the gas recovery pipe column, the water recovery pipe column, and the gas-liquid mixed transportation pipe section, respectively, m; ke is a stratum heat conductivity coefficient, W/(m·K); and TD is a dimensionless temperature.
According to the present disclosure, preferably, in step (2), the fluid in the hydrate exploitation pipe column is primarily affected by forces of gravity, pressure difference, and frictional resistance during the flowing process. According to the principle of conservation of momentum and in consideration of factors, such as changes in gas volume fraction and changes in gas-water volume fraction distribution arising from gas expansion, a calculation formula of pressure field distribution in the pilot exploitation pipe column of the hydrates is as follows:
where, Pf is a fluid pressure in the pilot exploitation pipe column, Pa; α is an angle of inclination, rad; and Fr is a frictional pressure drop, Pa.
According to the present disclosure, preferably, in step (2), phase equilibrium temperature and pressure conditions of the natural gas hydrates are calculated by the following formula:
where, ΔTd is a temperature at which a decline in a hydrate equilibrium is caused by a hydrate inhibitor, K, which may be calculated by the following formula:
where, Pe is a phase equilibrium pressure of hydrates, Pa; x is a molar fraction of the hydrate inhibitor in a water phase, which is dimensionless; xr is a reference molar fraction of the hydrate inhibitor in the water phase, which is dimensionless; and ΔTd,r is a temperature at which the decline in the hydrate equilibrium is caused under the molar fraction of the inhibitor as xr, K.
Preferably, in step (2), the secondary generation risk of the hydrates in different pipe columns is determined by comparing the temperature of the pipe columns with the phase equilibrium temperature of the natural gas hydrates; a natural gas hydrate phase equilibrium temperature-pressure curve under the condition of the produced fluid component is converted into a temperature-depth curve by taking into account a temperature and pressure distribution curve of the wellbore and a hydrate phase equilibrium curve, for which coordinate conversion is performed; and when the temperature on the wellbore temperature curve at a certain depth is lower than that on the hydrate phase equilibrium curve, the fluid temperature in the wellbore at the depth satisfies the secondary generation condition of the hydrates, that is, there is the secondary generation risk of the hydrates. A discriminant formula of the secondary generation of the hydrates is as follows:
Pe>Pf or Te<Tf (9)
where, Te is a phase equilibrium temperature of the hydrates, ° C.
Therefore, when the hydrate phase equilibrium curve is on the right side of the wellbore temperature curve, an area where the hydrate phase equilibrium curve intersects with the wellbore temperature curve is a secondary generation zone of the hydrates, as shown in
(3) Prevention and Control Reaction of Secondary Generation of Hydrates in Different Pipe Columns
According to the secondary generation risk of the hydrates in different pipe columns obtained by calculation, the computer terminal sends prevention and control instructions for the secondary generation of the hydrates, and corresponding measures of preventing and controlling the secondary generation of the hydrates are taken for different pipe columns; inhibitor injection is used as the measure for preventing and controlling the secondary generation of the hydrates at the gas-liquid mixed transportation pipe section, the collaborative prevention and control of the inhibitor injection+the heating of the pipe column bottom is used as the measure for preventing and controlling the secondary generation of the hydrates in the gas recovery pipe column, and the collaborative prevention and control of depressurization by double pumps+inhibitor is used as at the measure for preventing and controlling the secondary generation of the hydrates in the water recovery pipe column. These approaches may ensure the multiphase flow safety in the exploitation wellbore for the offshore natural gas hydrates.
Different prevention and control measures for the secondary generation of the hydrates are taken for different pipe columns in the wellbore; at the gas-liquid mixed transportation pipe section, when the processing result from the computer terminal indicates that the secondary generation risk of the hydrates is found in a horizontal pipe section of the gas-liquid mixed transportation pipe section at the well bottom, the concentration of the hydrate inhibitor as required for preventing and controlling the secondary generation of the hydrates is obtained via calculation according to the prevention and control requirement for the secondary generation of the hydrates, which may be determined according to formulas (6), (7) and (8); the higher the concentration of the hydrate inhibitor, the higher the temperature and the lower the pressure at which a hydrate phase equilibrium is achieved are perceived to be; the concentration of the inhibitor is designed to make the temperature of the hydrate phase equilibrium higher than a fluid temperature or make the pressure thereof lower than a fluid pressure, thereby avoiding the secondary generation of the hydrates in the wellbore; as an injection rate is associated with the concentration, the inhibitor injection rate is obtained by multiplying the amount of recovered water by the concentration; and then, the inhibitor injection instructions are sent to the third inhibitor injection point on the tail end of the horizontal pipe section, and the control valve on the injection pipeline is opened, thereby effectively preventing and controlling the secondary generation of the hydrates in the gas-liquid mixed transportation pipe section;
for the water recovery pipe column, when the processing result from the computer terminal indicates that there is the secondary generation risk of the hydrates in the water recovery pipe column, it is required to take into account the concentration of the hydrate inhibitor which has possibly been present in an aqueous solution, and the concentration of the hydrate inhibitor in the water recovery pipe column is the same as that of the hydrate inhibitor at the gas-liquid mixed transportation pipe section; water in the water recovery pipe column is pumped from the gas-liquid mixed transportation pipe section; if the hydrate inhibitor is not injected into the third inhibitor injection point, the concentration of the existing hydrate inhibitor in the water recovery pipe column is 0; if the hydrate inhibitor is injected into the third inhibitor injection point, the concentration of the existing hydrate inhibitor in the water recovery pipe column is the concentration of the hydrate inhibitor at the gas-liquid mixed transportation pipe section; if the hydrate inhibitor is not injected into the third inhibitor injection point, the computer terminal controls, based on the processing result, the operating power of the first electric submersible pump and the operating power of the second electric submersible pump on the water recovery pipe column to reduce the pressure throughout the water recovery pipe column until the pressure in the pipe column drops to below the pressure of the hydrate phase equilibrium, thereby preventing and controlling the secondary generation of the hydrates therein. Meanwhile, the output power of the first electric submersible pump and the output power of the second electric submersible pump are maintained at a consistent level, which ensures that the liquid level in the second electric submersible pump module stays above the second electric submersible pump (the whole water recovery pipe column is filled with water, and the liquid level refers to a liquid level of the water storage pipe section, as shown in
if the inhibitor is not injected into the bottom (the third inhibitor injection point) of the gas-liquid mixed transportation pipe section, the concentration of the inhibitor in the water recovery pipe column is zero, as a result, if the prevention and control requirement of the hydrates may be met only by the depressurization by the electric submersible pumps, it is unnecessary to inject the hydrate inhibitor from the third inhibitor injection point, or else, it is critical to additionally inject a certain concentration of hydrate inhibitor into the third inhibitor injection point to avoid the generation of the hydrates; and if the inhibitor is injected into the bottom (the third inhibitor injection point) of the gas-liquid mixed transportation pipe section, the concentration of the inhibitor in the water recovery pipe column is consistent with that of the inhibitor at the gas-liquid mixed transportation pipe section. In this case, if the depressurization by the electric submersible pumps and the existing inhibitor concentration may meet the prevention and control requirement of the hydrates, it is unnecessary to inject the hydrate inhibitor into the third inhibitor injection point, or else, it is imperative to continue injecting a certain concentration of hydrate inhibitor into the third inhibitor injection point additionally to avoid the generation of the hydrates. The existing inhibitor concentration requires less depressurization as the inhibitor present in water maintains the higher pressure required for producing the hydrates. This makes the hydrates more difficult to generate.
For the gas recovery pipe column, when the processing result from the computer terminal indicates that there is the secondary generation risk of the hydrates in the gas recovery pipe column, the computer terminal sends the heating instructions to the heater at the bottom of the gas recovery pipe column to elevate gas temperature in the gas recovery pipe column, and after heating, the concentration of the hydrate inhibitor required for preventing and controlling the secondary generation of the hydrates is calculated according to the prevention and control requirement for the secondary generation of the hydrates, and the secondary generation of the hydrates is determined according to formulas (6), (7) and (8); the inhibitor injection instructions are sent to the first inhibitor injection point and the second inhibitor injection point, and the control valve on the injection pipeline is opened; the injection flow rate of the first inhibitor injection point is independent of that of the second inhibitor injection point; the latter is used specifically to prevent the secondary generation of the hydrates in the gas recovery pipe column. The former, however, is used to stabilize the concentration of the inhibitor and avoid the generation risk of the hydrates arising from throttling and temperature drops of the produced fluid that flows into the platform pipeline; and a heating temperature is encouraged to be at the highest level possible, but an ideal state of being above the phase equilibrium temperature of the hydrates after heating is impossible to achieve for the heating apparatus on site. As such, the secondary generation risk of the hydrates is prevented in the gas recovery pipe column by combining heating and inhibitor injection, that is, heating is performed, and then, the concentration of the injected inhibitor and the injection rate are determined based on the temperature after heating, thereby achieving the prevention and control of the secondary generation risk of the hydrates in the gas recovery pipe column.
Number | Date | Country | Kind |
---|---|---|---|
202211119809.7 | Sep 2022 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
3566970 | Crow | Mar 1971 | A |
4625803 | Walhaug | Dec 1986 | A |
4988389 | Adamache | Jan 1991 | A |
5076364 | Hale | Dec 1991 | A |
5224543 | Watkins | Jul 1993 | A |
5351756 | Minkkinen | Oct 1994 | A |
5447201 | Mohn | Sep 1995 | A |
5893416 | Read | Apr 1999 | A |
5937894 | Rojey | Aug 1999 | A |
6028233 | Colle | Feb 2000 | A |
6148913 | Collins | Nov 2000 | A |
7152681 | Olsen | Dec 2006 | B2 |
9002650 | Lievois | Apr 2015 | B2 |
10047303 | Rustad | Aug 2018 | B2 |
10315867 | Nguyen | Jun 2019 | B2 |
11274049 | Salu | Mar 2022 | B2 |
11585206 | Ansari | Feb 2023 | B2 |
11795807 | Frankland | Oct 2023 | B2 |
20030011386 | Xie | Jan 2003 | A1 |
20030145991 | Olsen | Aug 2003 | A1 |
20030155123 | Wat | Aug 2003 | A1 |
20040043501 | Means | Mar 2004 | A1 |
20040134662 | Chitwood | Jul 2004 | A1 |
20040168811 | Shaw | Sep 2004 | A1 |
20050139356 | Prukop | Jun 2005 | A1 |
20060165344 | Mendez | Jul 2006 | A1 |
20070045268 | Vinegar | Mar 2007 | A1 |
20070095537 | Vinegar | May 2007 | A1 |
20070163780 | Onodera | Jul 2007 | A1 |
20070284108 | Roes | Dec 2007 | A1 |
20070289740 | Thigpen | Dec 2007 | A1 |
20080257544 | Thigpen | Oct 2008 | A1 |
20080262735 | Thigpen | Oct 2008 | A1 |
20080262736 | Thigpen | Oct 2008 | A1 |
20080262737 | Thigpen | Oct 2008 | A1 |
20080314593 | Vinegar | Dec 2008 | A1 |
20090032303 | Johnson | Feb 2009 | A1 |
20090034368 | Johnson | Feb 2009 | A1 |
20090050326 | Grynning | Feb 2009 | A1 |
20090071652 | Vinegar | Mar 2009 | A1 |
20090103984 | Zarisfi | Apr 2009 | A1 |
20090294123 | Mescall | Dec 2009 | A1 |
20100018712 | Tian | Jan 2010 | A1 |
20100048963 | Jones | Feb 2010 | A1 |
20120097362 | Kanstad | Apr 2012 | A1 |
20120181041 | Willman | Jul 2012 | A1 |
20120261191 | Klomp | Oct 2012 | A1 |
20120273216 | Beynet | Nov 2012 | A1 |
20120318502 | Lievois | Dec 2012 | A1 |
20130092371 | Hartog | Apr 2013 | A1 |
20130319102 | Ringgenberg | Dec 2013 | A1 |
20140209465 | Whitney | Jul 2014 | A1 |
20150184490 | Kanstad | Jul 2015 | A1 |
20150368544 | Angman | Dec 2015 | A1 |
20160109874 | Holmes | Apr 2016 | A1 |
20160115395 | Rustad | Apr 2016 | A1 |
20160333669 | Mello | Nov 2016 | A1 |
20170066958 | Padilla-Acevedo | Mar 2017 | A1 |
20170089187 | Hytken | Mar 2017 | A1 |
20170115143 | Farkas | Apr 2017 | A1 |
20170122046 | Vavik | May 2017 | A1 |
20170138170 | Vavik | May 2017 | A1 |
20170145788 | Fouchard | May 2017 | A1 |
20170158976 | O'Rear | Jun 2017 | A1 |
20170198195 | Beuterbaugh | Jul 2017 | A1 |
20170335833 | Kanstad | Nov 2017 | A1 |
20170350213 | Vavik | Dec 2017 | A1 |
20180072599 | Padilla-Acevedo | Mar 2018 | A1 |
20180073320 | Holmes | Mar 2018 | A1 |
20180298748 | Rustad | Oct 2018 | A1 |
20180327294 | Mantri | Nov 2018 | A1 |
20180328541 | Lachance | Nov 2018 | A1 |
20180340115 | Fouchard | Nov 2018 | A1 |
20180363422 | Roberts, IV | Dec 2018 | A1 |
20190062213 | Lewis | Feb 2019 | A1 |
20190360314 | Liu | Nov 2019 | A1 |
20200263076 | Padilla-Acevedo | Aug 2020 | A1 |
20210062620 | Yan | Mar 2021 | A1 |
20210108488 | Hidaka | Apr 2021 | A1 |
20210115323 | Shumway | Apr 2021 | A1 |
20210222552 | Gao | Jul 2021 | A1 |
20210269344 | Al-Harbi | Sep 2021 | A1 |
20210348482 | Sugimoto | Nov 2021 | A1 |
20210403794 | Vo | Dec 2021 | A1 |
20220010654 | Aljeaban | Jan 2022 | A1 |
20220098970 | Deshmukh | Mar 2022 | A1 |
20220154889 | Otto | May 2022 | A1 |
20220298892 | Li | Sep 2022 | A1 |
20220341312 | Frankland | Oct 2022 | A1 |
20230235646 | Wang | Jul 2023 | A1 |
Number | Date | Country |
---|---|---|
106194165 | Dec 2016 | CN |
106322121 | Jan 2017 | CN |
106869871 | Jun 2017 | CN |
106869902 | Jun 2017 | CN |
111076094 | Apr 2020 | CN |
113216902 | Aug 2021 | CN |
2017089846 | Jun 2017 | WO |
Number | Date | Country | |
---|---|---|---|
20240084675 A1 | Mar 2024 | US |