Apparatus for preventing or minimizing decompression illness in a scuba diver

Information

  • Patent Grant
  • 6755192
  • Patent Number
    6,755,192
  • Date Filed
    Friday, July 12, 2002
    22 years ago
  • Date Issued
    Tuesday, June 29, 2004
    20 years ago
  • Inventors
  • Examiners
    • Bennett; Henry
    • Flynn; Amanda
    Agents
    • Rothwell, Figg, Ernst & Manbeck, P.C.
Abstract
An apparatus for preventing or minimizing decompression illness in a scuba diver, consisting of a first safety bar, at least one first cable attached to the first safety bar, and an oxygen delivery system. The first cable supports the first safety bar at a predetermined depth. The oxygen delivery system consists of an oxygen tank, an oxygen delivery line, a manifold attached to the oxygen delivery line, and a plurality of regulators attached to the manifold. When the oxygen delivery system will be used by only one scuba diver, the oxygen delivery line can be connected directly to a single regulator without the manifold. The first cable and oxygen tank are attached to a float, which is either secured to a boat or platform via a tether line or anchored to the sea floor. In an alternative embodiment, the first cable is attached directly to a boat or platform, and an oxygen supply is provided on the boat or platform. In another alternative embodiment, the apparatus further includes a second safety bar connected to the first safety bar by at least one second cable, which supports the second safety bar at a predetermined depth below the depth of the first safety bar.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates generally to diving safety devices, and in particular, to an apparatus for preventing or minimizing decompression illness in a scuba diver.




2. Background and Related Art




Scuba divers are at risk for developing medical problems referred to as decompression illness (commonly known as the “Bends”), which is due to the formation of nitrogen bubbles in the tissues of the body. When these nitrogen bubbles form in the nervous system, problems such as numbness, weakness, paralysis, stroke and even death can result. Various theories exist to explain nitrogen bubble formation and elimination and these theories form the basis of diving decompression tables and algorithms used in dive computers. Several factors such as dive depth and duration are associated with increased nitrogen loading to the body and thus increased risk of decompression illness. Bubble formation can be minimized and bubble elimination can be optimized by slowing the ascent rate during decompression to allow nitrogen gas to be eliminated without forming clinically important tissue bubbles. Recommended ascent rates range from 30 to 60 feet per minute or even slower. Another method of minimizing nitrogen bubble formation and optimizing nitrogen bubble elimination includes the step of stopping at various depths prior to reaching the surface. Yet another effective strategy includes breathing 100% oxygen during a decompression stop, which minimizes nitrogen absorption, enhances nitrogen elimination and shortens the required decompression time.




Several devices for simplifying the ascent process exist in the art. One such device is disclosed in Shieh, U.S. Pat. No. 5,839,931. Shieh discloses a safety stop anchor including a buoy distantly connected to a scuba diver via a fixing rope. Before the scuba diver returns to the surface, the buoy helps the scuba diver to easily and relaxedly stay at the required safety decompression stop or stops to avoid nitrogen bubble formation. A buoyancy control valve is provided on the buoy so that heavy loads can be provided with neutral buoyancy and can therefore be more easily carried underwater and to the water surface. Thus, the apparatus of Shieh remains continuously connected to the scuba diver. Additionally, the apparatus does not provide for an alternative oxygen supply to further reduce nitrogen absorption.




Another prior art device is disclosed in Maffatone, U.S. Pat. No. 5,328,298. Maffatone discloses an ascent/decompression device for use in diving with an inflatable lift bag, which includes a pack for securing the ascent/decompression device on a diving harness worn by a scuba diver; a reel mounted for rotation to the pack and having a decompression line wound thereabout, the decompression line being connected to the lift bag; and a cable for securing the apparatus to a ship wreck on the sea floor. The apparatus utilizes an elaborate system to allow the scuba diver to follow the cable to the surface and then recover the cable once the scuba diver reaches the surface. As with the Shieh device, the Maffatone apparatus remains continuously connected to the scuba diver and does not provide for an alternative oxygen supply.




There continues to exist a need for an apparatus for preventing or minimizing decompression illness in a scuba diver that overcomes the shortcomings of the prior art.




SUMMARY OF THE INVENTION




The present invention is characterized in an apparatus for preventing or minimizing decompression illness in a scuba diver, consisting of a first safety bar, at least one first cable attached to the first safety bar, and an oxygen delivery system. The first cable supports the first safety bar at a predetermined depth. The oxygen delivery system consists of an oxygen tank, an oxygen delivery line, a manifold attached to the oxygen delivery line, and a plurality of regulators attached to the manifold. When the oxygen delivery system will be used by only one scuba diver, the oxygen delivery line can be connected directly to a single regulator without the manifold. The first cable and oxygen tank are attached to a float, which is either secured to a boat or platform via a tether line or anchored to the sea floor. In an alternative embodiment, the first cable is attached directly to a boat or platform, and an oxygen supply is provided on the boat or platform. In another alternative embodiment, the apparatus further includes a second safety bar connected to the first safety bar by at least one second cable, which supports the second safety bar at a predetermined depth below the depth of the first safety bar. In yet another alternative embodiment, the apparatus further includes a plurality of safety bars connected in series to the second safety bar by a plurality of cables, which support the plurality of safety bars at predetermined depths below the depth of the second safety bar.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view of the apparatus of the present invention.





FIG. 2

is a perspective view of the apparatus of the present invention in several alternative embodiments.





FIG. 3

is a perspective view of the apparatus of the present invention in yet another alternative embodiment.





FIG. 4

is composite drawing showing multiple views of the first stage connector.





FIG. 5

is a composite drawing showing multiple views of the second stage connector.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




An exemplary embodiment of an apparatus for preventing or minimizing decompression illness in a scuba diver is described herein.




Referring now in detail to the drawings wherein like parts are designated by like reference numerals throughout, there is in

FIG. 1

the apparatus


10


, referred to by its trademark SAFE-D-STOP, that includes a first safety bar


20


, at least one first cable


30


attached to first safety bar


20


, and an oxygen delivery system


40


.




Describing the SAFE-D-STOP


10


in more detail, first safety bar


20


is constructed from type


304


stainless steel ½ inch diameter hollow pipe, and can be made of various lengths to accommodate various numbers of divers. Pipe lengths of 2, 4, 6, and 8 feet are exemplary. As an alternative to hollow pipe, a platform or stand may be utilized.




At least one first cable


30


is connected to first safety bar


20


. As depicted in

FIG. 1

, two first cables


30


are attached on each end of float


50


and first safety bar


20


. Alternatively, different numbers of first cables


30


may be selected, depending on balance, weight, strength, stability, and other considerations. Preferably, first cable


30


is constructed from ¼ inch diameter polypropylene line. Alternatively, stainless steel chain line or any other suitable corrosion-resistant material may be selected. Color coding of first cable


30


and/or first safety bar


20


can be utilized to readily identify the depth of first safety bar


20


. Numbered placards could also be utilized to accomplish a similar result. Typically, the length of first cable


30


is chosen so that first safety bar


20


will be maintained at a depth of between 10 and 15 feet when SAFE-D-STOP


10


is in operation. Of course, different lengths of first cable


30


may be selected, depending on the circumstances of a specific dive profile.




Oxygen delivery system


40


is shown attached to float


50


. Oxygen delivery system


40


provides oxygen to a scuba diver or divers in order to facilitate nitrogen bubble elimination and thus further reduce the risk of decompression illness. By oxygen it is meant enriched air with an oxygen concentration anywhere from normal atmospheric air (approximately 21%) to 100%. A higher oxygen concentration, for example substantially 100%, is preferred, as the higher oxygen concentration facilitates faster nitrogen bubble elimination. Float


50


can be any device with enough buoyancy to support oxygen delivery system


40


and SAFE-D-STOP


10


, to include a cylindrical float (as shown) or a plurality of individual buoys. A hollow cylindrical float is preferred, as one end of it can be opened and SAFE-D-STOP


10


can be stored therein when the apparatus is not in use, thus providing for compact and portable storage.




Also as shown in

FIG. 1

, oxygen delivery system


40


includes oxygen tank


42


attached to float


50


, oxygen delivery line


44


attached to oxygen tank


42


, manifold


46


attached to oxygen delivery line


44


, and regulators


48


attached to manifold


46


. When only one scuba diver will use SAFE-D-STOP


10


, manifold


46


may be eliminated and a single regulator


48


can be attached directly to oxygen delivery line


44


(not illustrated).




Oxygen tank


42


is any suitable oxygen storage and delivery device. Oxygen delivery line


44


is preferably constructed from stainless steel, and is of a suitable length so as to maintain manifold


46


and regulators


48


at the level of first safety bar


20


. This allows the divers to switch from their own personal regulators to regulators


48


when they reach first safety bar


20


and begin breathing oxygen from oxygen tank


42


.




Manifold


46


was specially designed and manufactured for the purposes of this apparatus, and includes first stage connector


461


, shown in

FIG. 4

, and second stage connector


462


, shown in FIG.


5


. First stage connector


461


attaches to oxygen delivery line


44


. Second stage connector


462


attaches to first stage connector


461


, and includes several openings


463


designed to receive manifolds


48


. As shown, second stage connector


462


includes openings for multiple manifolds


48


, arranged in an octopus or hookah like setup, in order to accommodate multiple scuba divers. Second stage connector


462


can be constructed so as to include any number of openings


463


, to accommodate any number of divers. Regulators


48


are of standard design, which will be appreciated by those skilled in the art.




As discussed,

FIG. 1

depicts SAFE-D-STOP


10


attached to float


50


. In order to prevent significant drift of SAFE-D-STOP


10


due to wind or current, anchor


60


is provided. Anchor


60


is attached to anchor line


65


, which in turn is attached to first safety bar


20


. Alternatively, anchor line


65


could be attached directly to float


50


.





FIG. 2

depicts several alternative embodiments of the apparatus of the present invention. In a first alternative embodiment, one end of tether line


67


is attached to float


50


on SAFE-D-STOP


10


. The other end of tether line


67


is attached to a boat in order to prevent SAFE-D-STOP


10


from drifting away due to wind or current. Alternatively, the other end of tether line


67


can be attached to a platform, such as a diving platform.




In another alternative embodiment, at least one second cable


70


is attached to first safety bar


20


on one end and second safety bar


75


on the other end. Thus, at least one second cable


70


supports second safety bar


75


at a predetermined depth below first safety bar


20


. Second safety bar


75


and/or at least one second cable


70


can be color coded or numerically marked for easy identification of this deeper decompression stop. In yet another alternative embodiment, a plurality of cables


80


attach a plurality of safety bars


85


in series at predetermined depths below second safety bar


75


. Each plurality of safety bars


85


or plurality of cables


80


can be individually color-coded or numerically marked, so as to indicate their depth. This arrangement thus allows for several decompression stops, beginning at the deepest safety bar and ending at first safety bar


20


. In a preferred embodiment, three safety bars would be employed, and the lengths of cables


30


,


70


, and


80


would be selected so as to maintain safety bars


20


,


75


, and


85


at depths of 15, 30, and 40 feet, respectively.




As shown in another alternative embodiment in

FIG. 3

, at least one first cable


30


is attached to boat


90


, and oxygen delivery system


40


includes an oxygen supply


43


on boat


90


. This eliminates the need for float


50


and anchor


60


/anchor line


65


or tether line


67


, as described above and shown in

FIGS. 1 and 2

. Oxygen delivery line


44


would be of an appropriate length so as to allow manifold


46


and regulators


48


to supply oxygen to scuba divers at a depth approximately corresponding to first safety bar


20


, the advantage of which is discussed above. At least one first cable


30


could be attached in any suitable location on boat


90


. Alternatively, at least one first cable


30


can be attached to a platform, such as a diving platform (not illustrated). The oxygen supply


43


of oxygen delivery system


40


would be located on the platform.




The appropriate ends of the cables described above are preferably connected to their respective safety bars, floats, boats, and platforms with type


304


stainless steel clips. Other appropriate connection methods may be employed, as will be appreciated by one skilled in the art.




In an example of operation in a preferred embodiment, SAFE-D-STOP


10


is assembled on a dive boat and dropped into the water. For the purposes of this example, two scuba divers will be conducting a dive, and oxygen delivery system


40


includes oxygen tank


42


attached to float


50


, oxygen delivery line


44


, manifold


46


and two regulators


48


. Tether line


67


is attached to the dive boat on one end and SAFE-D-STOP


10


on the other end. The scuba divers conduct their dive, and when they are ready to surface they ascend to the first decompression stop at the deepest safety bar


85


at the 40-foot level. This safety bar is color coded or numerically marked so as to indicate its depth. After waiting a suitable time at this decompression stop, the scuba divers ascend to the next decompression stop at second safety bar


75


at the 30-foot level. This safety bar is also color coded or numerically marked to indicate its depth. After waiting another period of time at this decompression stop, the scuba divers ascend to the final decompression stop at first safety bar


20


at the 15-foot level, also color coded or numerically marked. At this point the scuba divers stop using their own regulators, which have been supplying air, and commence using regulators


48


, so as to receive oxygen from oxygen delivery system


40


. After waiting a predetermined time, the scuba divers ascend to the surface and complete their dive.




As can be seen from the preceding description, the apparatus of the present invention incorporates current decompression theory, emphasizing the importance of staged decompression and the use of enriched air and/or pure oxygen for the breathing gas at the decompression stop to minimize nitrogen loading of tissue bubble formation and thereby preventing or minimizing decompression illness. The use of SAFE-D-STOP will thus improve diver safety. The apparatus is simple to use, sturdy, and inexpensive, and will become a standard component of scuba diving equipment for the individual scuba diver as well as dive groups and dive operators worldwide.




While the invention has been described in connection with what are presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims.



Claims
  • 1. An apparatus for preventing or minimizing decompression illness in a scuba diver who has been diving in a body of water, said apparatus comprising:a first safety bar; at least one first cable attached to said first safety bar, said at least one first cable supporting said first safety bar at a predetermined depth; and an oxygen delivery system for supplying oxygen-enriched air to the scuba diver, wherein said oxygen delivery system is separate from said scuba diver's personal air supply.
  • 2. The apparatus of claim 1, wherein said at least one first cable is attached to a float.
  • 3. The apparatus of claim 2, wherein said oxygen delivery system comprises:an oxygen tank attached to said float; an oxygen delivery line attached to said oxygen tank; and a regulator attached to said oxygen delivery line, said regulator allowing a scuba diver to consume oxygen from said oxygen delivery system.
  • 4. The apparatus of claim 2, wherein said oxygen delivery system comprises:an oxygen tank attached to said float; an oxygen delivery line attached to said oxygen tank; a manifold attached to said oxygen delivery line; and at least one regulator attached to said manifold, said at least one regulator allowing at least one scuba diver to consume oxygen from said oxygen delivery system.
  • 5. The apparatus of claim 2, further comprising an anchor affixed to said apparatus by an anchor line.
  • 6. The apparatus of claim 2, further comprising a tether line, wherein one end of said tether line is attached to said apparatus and the other end of said tether line is attached to a boat that is floating on the surface of said body of water.
  • 7. The apparatus of claim 2, further comprising a tether line, wherein one end of said tether line is attached to said apparatus and the other end of said tether line is attached to a platform.
  • 8. The apparatus of claim 1, wherein said at least one first cable is attached to a boat that is floating on the surface of said body of water.
  • 9. The apparatus of claim 8, wherein said oxygen delivery system comprises:an oxygen supply on said boat; an oxygen delivery line attached to said oxygen supply; and a regulator attached to said oxygen delivery line, said regulator allowing a scuba diver to consume oxygen from said oxygen supply.
  • 10. The apparatus of claim 8, wherein said oxygen delivery system comprises:an oxygen supply on said boat; an oxygen delivery line attached to said oxygen supply; a manifold attached to said oxygen delivery line; and at least one regulator attached to said manifold, said at least one regulator allowing at least one scuba diver to consume oxygen from said oxygen supply.
  • 11. The apparatus of claim 1, further comprising:a second safety bar; and at least one second cable; wherein one end of said at least one second cable is attached to said first safety bar and the other end of said at least one second cable is attached to said second safety bar, and wherein said at least one second cable supports said second safety bar at a predetermined depth below the depth of said first safety bar.
  • 12. The apparatus of claim 11, further comprising:a plurality of safety bars; and a plurality of cables attaching said plurality of safety bars to said second safety bar in series, said plurality of cables supporting said plurality of safety bars at predetermined depths below the depth of said second safety bar.
  • 13. The apparatus of claim 1, wherein said at least one first cable is attached to a platform that is floating on the surface of said body of water.
RELATED APPLICATION:

The present application claims priority from U.S. Provisional patent application Ser. No. 60/335,794, filed Dec. 5, 2001. The disclosure of the above-referenced provisional patent application is incorporated herein by reference in its entirety.

US Referenced Citations (16)
Number Name Date Kind
813431 Iwanami et al. Feb 1906 A
3040762 Spiotta Jun 1962 A
3832746 Korsgaard Sep 1974 A
3920011 Losee Nov 1975 A
4166462 Ellis Sep 1979 A
4919631 Stafford Apr 1990 A
4986267 Doss Jan 1991 A
5328298 Maffatone Jul 1994 A
5411018 Rinehart May 1995 A
5560738 Noel Oct 1996 A
5678542 Maffatone Oct 1997 A
5839931 Shieh Nov 1998 A
5906200 Kaburaki May 1999 A
5924521 Crockett Jul 1999 A
6227766 Cook May 2001 B1
6293733 Tezuka Sep 2001 B1
Foreign Referenced Citations (1)
Number Date Country
2627148 Aug 1989 FR
Provisional Applications (1)
Number Date Country
60/335794 Dec 2001 US