The present invention relates to an apparatus for processing a lens, used for processing the peripheral portion of a lens, such as a spectacle lens, to provide a prescribed shape so that the lens can be fitted into a lens frame of a spectacle frame.
In the art of making lenses, when a lens, such as a spectacle lens, is processed so that the lens may be fitted into a lens frame of a spectacle frame, the peripheral face of an uncut lens is ground by a grinder, or cut by a cutter. In this manner, peripheral portion of the uncut lens is formed into a prescribed shape in accordance with data corresponding to the shape of the lens frame of the spectacle frame.
Prior art examples of the known processing apparatus for this purpose include, as disclosed in Japanese Patent Application Laid-Open No. 2001-18154, apparatuses in which, after the peripheral portion of a lens is processed by the flat grinding or the beveled grinding using a rotating tool (a grinder), which is freely rotated to grind the peripheral portion of a lens. The prior art apparatuses also conduct chamfering and grooving as steps in the finishing of the peripheral portion of the lens by using a grinder for chamfering and a grinder for grooving, which are coaxially disposed.
In Japanese Patent Application Laid-Open No. 2001-87922, an apparatus for chamfering and grooving the peripheral portion of a lens using a single ball end mill is disclosed.
However, as shown in
In the example described in
The present invention has been made to overcome the above problems with the prior art lens processing apparatuses. One object of the present invention is to provide an apparatus for processing a lens that can achieve chamfering and grooving of a lens, in particular a lens having a small diameter, by using a simple mechanism that can achieve a desired chamfering in a short time.
The present invention provides an apparatus for processing a lens which comprises a finishing unit for chamfering and grooving a peripheral portion of a spectacle lens, the apparatus comprising: a holding shaft supporting the lens, a lens-holding unit that rotates the holding shaft and displaces the lens towards the finishing unit based on data describing a shape of a lens frame and a rotation angle of the holding shaft, and a means for positioning in an axial direction that displaces the lens in an axial direction of the holding shaft; wherein the finishing unit comprises a rotating tool for chamfering and a rotating tool for grooving that are disposed at positions separated by a prescribed distance along the holding shaft, and a single means for driving which is connected with the rotating tool for chamfering and the rotating tool for grooving, one of the rotating tool for chamfering and the rotating tool for grooving is selected in accordance with a displacement in the axial direction of the means for positioning in an axial direction, a prescribed position for processing or a prescribed processing amount is set in accordance with the displacement in the axial direction, and the finishing of the peripheral portion of the lens is conducted by using the rotating tool for grooving and the rotating tool for chamfering successively.
The present invention also provides an apparatus for processing a lens which comprises a rotating tool for chamfering used for chamfering a peripheral portion of a spectacle lens, the apparatus comprising: a holding shaft supporting the lens, a lens-holding unit which rotates the holding shaft and displaces the lens towards the finishing unit based on data describing a shape of a lens frame and a rotation angle of the holding shaft, and a means for positioning in an axial direction that displaces the lens in an axial direction of the holding shaft; wherein the rotating tool for chamfering includes a rotating tool having a hemispherical shape, a chamfering angle or a chamfering amount is set in accordance with a displacement in the axial direction of the means for positioning in an axial direction and a displacement of the lens-holding unit, and the chamfering angle or the chamfering amount can be changed in accordance with the relative position between the rotating tool having the hemispherical shape and the peripheral portion of the lens.
In the present invention, one of the rotating tool for chamfering and the rotating tool for grooving is selected by displacement of the lens-holding unit in the axial direction of the holding shaft and the lens-holding unit and the means for positioning in the axial direction are displaced towards the selected tool based on the data describing the shape of the lens frame. Therefore, the prescribed chamfering and the prescribed grooving of the peripheral portion of the lens can be conducted independently. Since the rotating tool for chamfering and the rotating tool for grooving are disposed independently at positions separated by a prescribed distance, interference of the rotating tool for grooving with the lens-holding shaft during the chamfering is prevented and the chamfering and the grooving can be reliably achieved even when the lens has a small diameter.
In the present invention, the rotating tool having the hemispherical shape and the lens are relatively displaced in the radial direction and in the axial direction by using the lens-holding unit and the means for positioning in the axial direction so that lens processing can be conducted at both a desired chamfering angle and a desired chamfering amount using a single tool. Therefore, by using the apparatus for lens processing in accordance with the present invention, the time required for lens processing can be decreased while the chamfering is conducted for various shapes.
In accordance with yet another embodiment, there is provided an apparatus for processing a lens. The apparatus comprises a finishing unit for chamfering and grooving a peripheral portion of a spectacle lens. A holding shaft is arranged to support the lens. A lens-holding unit is connected to rotate the holding shaft and displace the lens towards the finishing unit based on data describing a shape of a lens frame and a rotation angle of the holding shaft. A positioning device is connected to displace the lens in an axial direction of the holding shaft. The finishing unit further comprises a rotating tool for chamfering and a rotating tool for grooving, both tools being disposed at positions separated by a prescribed distance along the holding shaft, and a drive connected to drive the rotating tool for chamfering and the rotating tool for grooving, wherein one of the rotating tool for chamfering and the rotating tool for grooving is selected for finish processing in accordance with a displacement in the axial direction of the positioning device in an axial direction, and a prescribed position for processing, or a prescribed processing amount, set in accordance with displacement in the axial direction.
In a still further embodiment, the lens-holding unit is displaced freely in a vertical direction, the finishing unit is disposed at a position vertically above the holding shaft, and the positioning device is connected to position the lens relative to the rotating tool for chamfering and the rotating tool for grooving based on a first position in the axial direction determined in accordance with a rotating angle measured in advance based on data describing a shape of a lens frame.
In yet another embodiment, a first distance from the holding shaft to the rotating tool for grooving is set to be longer than a second distance from the holding shaft to the rotating tool for chamfering.
In another embodiment, the rotating tool for chamfering and the rotating tool for grooving are each disposed on a respective shaft standing in a direction perpendicular to the holding shaft.
In a still further embodiment, the rotating tool for chamfering includes a rotating tool having a hemispherical shape.
In another embodiment, the finishing unit is displacable between a first position for processing where the rotating tool for chamfering and the rotating tool for grooving face towards the holding shaft and a prescribed waiting position that is separated from the first position where the rotating tool for chamfering and the rotating tool for grooving face towards the holding shaft.
In yet another embodiment there is provided an apparatus for processing a lens comprising a rotating tool for chamfering a peripheral portion of a spectacle lens. In this embodiment, a holding shaft disposed to support the lens. A lens-holding unit is disposed to rotate the holding shaft and displace the lens towards the finishing unit based on data describing a shape of a lens frame and a rotation angle of the holding shaft. A positioning device is connected to displace the lens in an axial direction of the holding shaft. The rotating tool for chamfering includes a rotating tool having a hemispherical shape, wherein a chamfering angle, or a chamfering amount, is set in accordance with a displacement in the axial direction of positioning device in an axial direction and a displacement of the lens-holding unit.
In another embodiment, the rotating tool for chamfering is disposed in a direction perpendicular to the holding shaft and is fixed at a prescribed position during lens processing.
In yet another embodiment, the rotating tool for chamfering is displaced between a first position for processing where the rotating tool for chamfering faces towards the holding shaft and a prescribed waiting position that is separated from the first position where the rotating tool for chamfering faces towards the holding shaft.
In a still further embodiment, the drive includes a single motor, and the rotating tool for chamfering and the rotating tool for grooving are simultaneously driven by the single motor, and a transmission is provided connected to the single motor so that the single motor drives both the rotating tool for chamfering and the rotating tool for grooving.
Further objects, features and advantages of the present invention will become apparent from the Detailed Description of Illustrative Embodiments, which follows, when considered together with the attached Figures.
An embodiment of the present invention will be described in the following with reference to the Figures, wherein like parts are represented by like character references.
In
At the front center of the lens processing apparatus 10, a door 14 is disposed, which can be opened or closed as desired, and is used for inserting or taking out a lens.
After the interior construction of the lens processing apparatus 10 is generally described, various members and portions will be described in detail.
General Outline of the Interior Construction of the Lens Processing Apparatus
In
The direction from the right to the left in
The lens unit 4 includes a lens-holding shaft 41, which is divided into two portions 41R, 41L and selectively holds the center of the lens 1 between the two portions. The lens holding shaft 41 is disposed in a manner so that the lens-holding shaft can be rotated freely. The lens-holding shaft 41 is placed on the vertical line of the main rotating tool 50, which is a grinder or a cutter that is supported by a shaft on a base plate 15. The lens-holding shaft 41 and the main shaft 51 of the main rotating tool 50 are arranged parallel to each other along the X-axis. The lens 1 is held by the lens-holding shaft 41 in a manner so that the face of the lens 1 is placed along a plane perpendicular to the axial line of the lens holding shaft 41.
A measuring unit 6, comprising styluses 60 and 61 for measuring positions on the concave face 1b and the convex face 1a, respectively, of the lens 1, is fixed on the vertical line of the lens-holding shaft 41.
The styluses 60 and 61 can be displaced in a direction parallel to the lens-holding shaft 41. To measure the position of the lens 1 after processing is complete, the styluses 60 and 61 are brought into contact with both faces of the lens 1 when the lens unit 4 is in an elevated condition. The lens unit 4 is elevated or lowered in accordance with the data describing the shape of the lens frame while the lens-holding shaft 41 is rotated.
For processing the lens 1, starting from the condition shown in
By elevating or lowering the lens unit 4, based on the data describing the shape of the lens frame that is used to determine corresponding rotation angles for the lens-holding shaft 41, the grinding to the processing depth, in accordance with the rotation angle of the lens 1, is conducted in a continuous manner. During processing, the force pressing the lens 1 against the main rotating tool 50 is called the “processing pressure” and is provided by the weight of the lens unit 4 itself. Adjustment of the processing pressure is required depending upon the material of the lens, and such adjustment is conducted by supporting a portion of the weight of the lens unit 4 by a unit 8 for controlling the processing pressure that is disposed at a position above the lens unit 4.
The position of contact between the lens 1 and the main rotating tool 50 is changed by displacing the base unit 2 in the direction of the X-axis as evident from FIG. 2. By displacing base unit 2 in the direction of the X-axis, a selection between the flat grinding and the beveled grinding can be made depending upon whether one of grinders 50a, 50b or one of grinders 50c, 50d is in contact with lens 1. Likewise, switching between the rough grinding and the finishing grinding can also be made depending upon whether one of grinders 50a, 50c or one of grinders 50b, 50d is in contact with the lens 1.
A finishing unit 7 (also referred to as “a means for finishing”) comprises a rotating tool 70 for chamfering and a rotating tool 71 for grooving. Finishing unit 7 can be displaced in the direction of the Y-axis (i.e., in the inner direction of the apparatus) and is disposed at a position above the lens unit 4. When the finishing unit 7 is at the advanced position as shown in
Various portions of the inner construction of the lens processing apparatus 10 will be described in more detail as follows.
The Main Shaft Unit
In
The main shaft 51, as shown in
At the end portion of the main shaft 51, a main rotating tool 50 for mechanically processing the lens 1 is attached. The main rotating tool 50 is placed at the central portion of the apparatus 10 in the direction of the X-axis as shown in FIG. 2 and at the front side of the apparatus 10 (i.e., at the lower left side in FIG. 4). The base end portion of the main shaft 51 (located at the right side in
As shown in
The Base Unit
A base unit 2 for driving the lens unit 4 in the direction of the X-axis is disposed at a position posterior to the main shaft 51 in
As shown in
The base 20 is disposed on guide members 21 and 22, which are fixed on the base plate 15 and oriented along the direction of the X-axis in a manner such that the base 20 can be freely displaced along the X-axis. Therefore, the base 20 can be freely displaced in the direction of the X-axis.
As shown in
One end of the inner screw 23 and the X-axis motor 25 are connected to each other via a gear and a cogged belt 26, and the base 20 is positioned in the direction of the X-axis in accordance with the rotation angle of the X-axis motor 25.
The Elevating and Lowering Unit
As shown in
As shown in
The elevating and lowering unit 3, as shown in
In the elevating and lowering unit 3, the screw 31 is rotated by driving the Z-axis motor 33 so that the positioning member 34, having an outer screw 35 engaged with the screw 31, is driven in the direction of the Z-axis. The outer screw 35 is displaced in the direction of the Z-axis because the rotating movement in the circumferential direction is restricted by a mechanism at the lens unit 4, as is discussed later.
As shown in
At the upper end of the hole portion 40A, a ceiling portion 400 connected to the frame 40 is disposed. As shown in
In
As evident from
When the stopper 36 does not contact the ceiling portion 400, the lens 1 supported by the lens unit 4 is brought into contact with the main rotating tool 50, as shown in
At a position below the ceiling portion 400 and facing the gap, a hole portion 421 is provided in frame 40. A sensor arm 300 for detecting completion of the processing on the lens unit 4, in the vertical direction, is also provided. The sensor arm 300 may be referred to as the “means for amplifying a relative displacement.” An end of the sensor arm 300 is inserted into the hole portion 421 and is disposed along the Y-axis, as shown in
The sensor arm 300, as shown in
A bending portion 303, located at the middle of the sensor arm 300 having the shape of an inverse L, is supported by a shaft 420 disposed by the ceiling portion 400 of the lens unit 4 in a manner so that the bending portion 303 can freely swing around the shaft 420. Therefore, the sensor arm 300 can swing around the X-axis.
Between the arm 302 extending in the direction of the Z-axis and the ceiling portion 400, a spring 310 is disposed, which pushes or biases the arm 301 that extends in the direction of the Y-axis to rotate towards the lower direction in
Since the arm 301 inserted into the hole portion 421 and crosses the hole portion 40A in the direction of the Y-axis, arm 301 is constructed to include a penetrating portion through which the screw 31 inserts. Furthermore, arm 301 is connected so that the lower face of the arm 301 faces towards the inner periphery of the hole portion 40A so that the lower face of the arm 301 can be brought into contact with, or separated, from the upper end face 34A of the positioning member 34.
Since the sensor arm 300 is pushed in the counter-clockwise direction, as evident in
On the other hand, as shown in
A bracket 422 protruding along the lower portion (i.e., arm 302) of the sensor arm 300 is disposed at the frame 40. At a prescribed position of the bracket 422, which can face to the lower end of the arm 302 that swings around the X-axis, a sensor 320 is disposed at a position located approximately below the shaft 420. Sensor 320 is for detecting completion of the processing (also referred to as a “means for detection”) by detecting the approach of the free end portion of the arm 302 swinging around the X-axis. The “free end portion” of sensor 320 is defined to be the end portion of the sensor arm 300 that is detected by the sensor 320 for detecting completion of the processing. In the present embodiment, the “free end portion” corresponds to the end portion of the arm 302.
The sensor 320 for detecting completion of the processing is, for example, constructed to include a photosensor, such as a photointerruptor. As shown in
The elevating and lowering unit 3 supports the lens unit 4 in the elevating direction. After the lens unit 4 starts the processing of the lens 1, the processing depth, (also called the processing amount), is decided in accordance with the position of the elevating and lowering unit 3 in the direction of the Z-axis. In other words, movement of the lens unit 4 by the elevating and lowering unit 3 is the manner in which apparatus 10 directs the processing depth, whereas movement of the lens unit 4 from an initial lens processing position shown in
The Lens Unit
The lens unit 4 that is displaced by the elevating and lowering unit 3 in the direction of the Z-axis, as shown in
As shown in
Connected to the frame 40 of the lens unit 4, as shown in
As shown in
The shafts 41L and 41R are rotated by the motor 45 for driving the lens via cogged belts 47, 48 and 49. The cogged belts 47 and 48 are connected to each other through a rotatable shaft 430 so that the rotation angles of the shafts 41L and 41R are synchronized.
To achieve this synchronization, a gear 432 is engaged with the cogged belt 47 and is fixed to the shaft 41L and a gear 431 is engaged with the cogged belt 48 and is fixed to the shaft 41R. So that the shaft 41R can be axially displaced, relative to the arm 410, in the direction of the X-axis, the shaft 41R is arrested in the direction of rotation by the key 433 disposed between the shaft 41R and the inner periphery of the gear 431. Key 433 can be relatively displaced in the direction of the X-axis, and moves along with shaft 41R when displaced in the X-axis.
As shown in
In the chuck mechanism, as shown in
The position of rotation of the shaft 41R is decided by the motor 45 for driving the lens that is connected to the cogged belt 48. As for determining the position of the shaft 41R in the axial direction, as will be described later, gear 441 is rotated by the rotation of the motor 46 for the lens chuck, which causes the inner screw portion 443 of the driving member 461 engaged with the outer screw 442 to be displaced in the axial direction. Due to this axial displacement, the shaft 41R is pushed in the direction of the X-axis by the driving member 461 and the end portion of the shaft 41R is brought into contact with the lens 1 as shown in FIG. 6. The pressure with which the shaft 41R and the shaft 41L hold the lens 1 is called the “holding pressure,” and can be set at a desired value by the motor 46 for the lens chuck. In the present embodiment, the holding pressure for the lens 1 is set by the value of the electric current driving the motor 46 for the lens chuck. Therefore, control of the electric current controls the motor 46 thereby setting the value of the holding pressure.
In
On the other hand, the shaft 41R, disposed on the same axial line as that of the shaft 41L, moves in the direction of the X-axis and holds the lens at the tip. In other words, the shaft 41R moves towards the lens 1 by being driven by the motor 46 for the lens chuck and presses the lens 1 with a lens presser 142 disposed at the tip of shaft 41R. The lens 1 is pressed towards the lens-holding shaft 41L and held between the two shafts 41R, 41L by the holding pressure generated by motor 46. The lens presser 142 is made of a resin, such as rubber, having elasticity so as to prevent damage to the lens 1.
At the end face of the lens holder 16, which is formed into a concave shape, the convex face 1a of the lens 1 is coaxially adhered via a double faced adhesive pad 161 and the lens presser 142 presses the concave face 1b of the lens 1. The lens presser 142 is attached to the tip of the shaft 41R so as to hold the lens 1 in a manner whereby the lens presser can be swung in any desired direction and the concave face 1b of the lens 1 is still pressed with excellent balance without any adverse local concentration of pressure on the lens.
As evident from
To displace the shaft 41R in the direction of the X-axis and towards the left side of
When the motor 46 for the lens chuck is further rotated, even though the lens presser 142 is in contact with the concave face 1b of the lens, the force for pressing (i.e., the lens holding pressure) the lens 1 increases and the electric current consumed by the motor 46 for the lens chuck increases. The pressure of holding the lens (also referred to as the lens holding pressure) is set at a desired value by detecting the electric current consumed by the motor 46.
On the other hand, when the processing is completed, the motor 46 for the lens chuck is rotated in the reverse direction and the shaft 41R is driven to the right side in
Because the pushing shaft 41R of the lens-holding shaft 41 is displaceable in the axial direction of the X-axis, it is necessary to have a mechanism that can determine the position of the shaft 41R. When the shaft 41R moves towards the lens 1, as shown in
In
At the right end portion of the shaft 41R, a sensor rod 436 is disposed via a plate 437 so as to be parallel with the shaft 41R. Sensor rod 436 protrudes along side of the shaft 41R. At the end portion of the sensor rod 436, there is formed a detecting portion 437a, which can contact the limit switch 435 at the prescribed waiting position.
When the shaft 41R moves to the right side shown in the
To determine the processing depth in accordance with the rotation angle of the lens 1, the shaft 41L is constructed to penetrate the arm 411 and a slit plate 143 that is fixed at the end portion of the shaft 41L protrudes from the arm 411. By detecting the position of rotation of the slit plate 143 using a photosensor 145 (i.e., a lens position sensor; also referred to as a “means for detecting the angle”) fixed to the arm 411, the position (i.e., the rotation angle) of the lens 1 held by the lens-holding shaft 41L is detected (i.e., measured).
In the lens unit 4 having the construction described above, when the lens 1 is fixed at the receiver 141 of the lens holder, the motor 46 for the lens chuck is driven and the lens-holding shaft 41R is moved towards the left side of FIG. 7. The lens 1 is then held, or fixed under pressure, when the lens presser 142 presses against the lens 1.
As evident from
The position of the lens 1 for processing can be changed by changing the rotation angle of the motor 46 for driving the lens so that the peripheral portion of the lens can be processed to the desired processing depth.
The tool used for processing can be changed by changing the position of contact between the lens 1 and the main rotating tool 50 by adjusting the displacement of the base 20 in the direction of the X-axis. In other words, by moving base 20 in the direction of the X-axis, one of the grinders 50a, 50b, 50c, and 50d can be selected for use in processing.
The Finishing Unit
In
The finishing unit 7, as shown in
The rotating tools 70 and 71 stand in the direction of the Z-axis and are disposed at positions separated by the prescribed distance in the direction of the X-axis along the lens-holding shaft 41. Rotating tools 70 and 71 are each supported by a shaft on the base 74.
As shown in
At the right side of
To the stopping member 74a, through which penetrates the guide 701, a driving member 77 is fixed. Driving member 77 is engaged with the screw 75 at an outer screw formed at the inner periphery of the driving member. The base 74 is driven in the direction of the Y-axis when the driving member 77 is displaced in the direction of the Y-axis in accordance with the rotation of the screw 75.
The rotating tool 70 for chamfering the lens 1 is constructed to include a grinder (or a cutter) having the hemispherical shape with a radius R. The rotating tool 71 for chamfering, as shown in
The rotating tool 71 for grooving the lens 1 is constructed to include an end mill having a narrowed tip. This rotating tool 71, as shown in
These rotating tools may be placed so that the distance in the direction of the Z-axis from the base 74 to the tip of each tool is set at the same value. Alternatively, these rotating tools may be placed so that the distance in the direction of the Z-axis from the base 74 to the tip of the rotating tool for grooving 71 may be set shorter than the distance from the base 74 to the tip of the rotating tool 70 for chamfering so that the rotating tool 71 for grooving does not interfere with the lens-holding shaft 41 or the receiver 141 of the lens holder during the chamfering. In other words, the distance from the main shaft 51 to the tip of the rotating tool 71 for grooving may be set at the same value with, or longer than, the distance from the main shaft 51 to the tip of the rotating tool 70 for chamfering.
Since two belts 706, 716 are wound around the pulley 720 of the motor 72 for finishing, the belts 706 and 716 are disposed at offset positions in the direction of the Z-axis. As shown in
As shown in
When the finishing (i.e., the chamfering or the grooving) is conducted, as shown in
In this condition, wherein the measuring unit 6 is at the waiting position, the rotating tools 70 and 71 are advanced to positions between the styluses 60 and 61. This position, wherein the rotating tools 70 and 71 at the positions vertically above the lens-holding shaft 41, is called the “advanced position” (also referred to as the position for the processing) of the finishing unit 7.
The finishing is conducted while the base 74 is placed at the advanced position shown in FIG. 9. For example, when grooving is performed, the base unit 2 is displaced in the direction of the X-axis in accordance with the rotation angle of the lens-holding shaft 41 and the position of the lens 1 measured by the measuring unit 6 is determined as described above so that the axial line 71c of the rotating tool (i.e., the end mill) 71 faces towards the prescribed position of the peripheral portion 1c of the lens 1. As shown in
While the rotating tool 71 is rotated by driving the motor 72 for finishing and the lens 1 is rotated by driving the motor 45 for driving the lens, as shown in FIGS. 10(a) and 10(b), the lens unit 4 is elevated or lowered in the direction of the Z-axis in accordance with the rotation angle of the lens 1 and the base unit 2 is driven in the direction of the X-axis. A groove having the prescribed depth is formed along the peripheral portion 1c of the lens 1 by the rotating tool 71 that includes the end mill. Since the rotating tool 70 is connected to the motor 72 for finishing via the belt 706, the rotating tool 70 makes idle rotation without conducting any processing.
When the chamfering process follows the grooving process, and after the outer peripheral portion 1d of the lens 1 is displaced in the lower direction from the tip of the rotating tool 70 by the prescribed distance, the base unit 2 is driven in the direction of the X-axis and the lens unit 4 is displaced to the position where the outer peripheral portion 1d of the lens 1 can face towards the rotating tool 70 having the hemispherical shape.
When chamfering the convex face 1a, the base unit 2 is displaced in the direction of the X-axis so that the convex face 1a and the outer peripheral portion 1d are placed at a prescribed position directly below the side face of the rotating tool 70 having the hemispherical shape. As shown in
While the lens-holding shaft 41 is rotated by the motor 45 for driving the lens, the lens unit 4 is elevated or lowered and the base unit 2 is displaced in the direction of the X-axis based on the rotation angle of the lens-holding shaft 41 and based on the position of the peripheral portion 1c in accordance with the rotation angle, wherein the position of the peripheral portion is measured by the measuring unit 6 as described above. Thus, while lens-holding shaft 41 rotates, the lens unit 4 is elevated or lowered, and the base unit 2 is displaced along the X-axis, chamfering of the outer peripheral portion 1d of the convex face 1a of the lens 1 is conducted.
When chamfering of the inner peripheral portion 1e of the concave face 1b of the lens 1 is conducted in succession following completion of chamfering of the outer peripheral portion 1d of the convex face 1a, the peripheral portion 1c of the lens 1 is displaced in the lower direction from the tip of the rotating tool 71 by the prescribed distance. Then, as shown in
When chamfering the inner peripheral portion 1e of the lens, the lens unit 4 is elevated based on the rotation angle of the lens-holding shaft 41 and the position of the peripheral portion 1c of the lens 1 measured by the measuring unit 6 described above. While the lens-holding shaft is rotated by the motor 45 for driving the lens, the lens unit 4 is elevated or lowered and the base unit 2 is displaced in the direction of the X-axis based on the rotation angle of the lens-holding shaft 41 and the position of the peripheral portion 1c in accordance with the rotation angle, wherein the position of the peripheral portion 1c is measured by the measuring unit 6 described above. Thus, while lens-holding shaft 41 rotates, the lens unit 4 is elevated or lowered, and the base unit 2 is displaced along the X-axis, chamfering of the inner peripheral portion 1e of the concave face 1b of the lens 1 is conducted.
When the finishing is completed, the base 74 is driven to the waiting position, the motor 72 for finishing is stopped and the lens unit 4 is moved to the prescribed position for attachment and detachment for the lens holder 16 from the receiver 141. Thus, the processing is completed.
The Control Unit
The lens processing apparatus 10 is constructed to include the various mechanisms (units) described above, and further has a control unit 9 (also referred to as the “central unit”) for controlling these various mechanisms as shown in FIG. 14.
As shown in
The control unit 9 also comprises a servomotor control portion 93 that positions the lens unit 4 in the directions of the X-axis and the Z-axis by driving the X-axis motor 25 of the base unit 2 and the Z-axis motor 42 of the elevating and lowering unit 3, respectively.
The motor 55 for driving the main rotating unit 50 and the motor 72 for finishing, which drives the rotating tools 70 and 71, are each connected to the I/O control portion 92 via driving portions 901 and 902, respectively, so that the condition of rotation, or the speed of rotation, is controlled in accordance with the direction (i.e., control signals) from the microprocessor 90.
The motor 46 for the lens chuck, which controls the holding pressure applied to the lens 1 by changing the position of the shaft 41R of the lens-holding shaft 41, is connected to the I/O control portion 92 via a driving portion 911 so as to control the holding pressure in accordance with the driving electric current.
The motor 45 for driving the lens is connected to the I/O control portion 92 via a driving portion 912 that controls the rotation angle of the lens-holding shaft 41, and therefore the rotation angle of the lens 1. The microprocessor 90 directs the processing position of the lens 1 based on the data describing the shape of the lens frame obtained from the apparatus 900 for measuring the shape of the frame. In addition to the lens frame shape data, microprocessor 90 also uses rotation angle data provided by the sensor 145 for detecting the position of the lens, which detects the rotation angle of the lens 1 to generate control signals for the Z-axis motor. Microprocessor 90 uses these control signals to drive the Z-axis motor 42 so that the processing depth, in accordance with the rotation angle based on the data describing the shape of the lens frame, is achieved.
When the prescribed processing depth is achieved, a sensor 320 for detecting completion of processing, which will be described later in detail, is switch to ON and the actual position of processing (i.e., the completed processing position) is fed back to the microprocessor 90.
The motor 73 for driving the finishing unit that drives the finishing unit 7 in the direction of the Y-axis is connected to the I/O control portion 92 via a driving portion 913, which controls the positioning.
Outputs from linear scales (not shown in the Figure) connected to the styluses 60 and 61 of the measuring unit 6 are also input into the microprocessor 90.
The operation portion 13, disposed on the front of the cover of the apparatus 10 for processing a lens, is connected to the I/O control portion 92 and transfers the direction data inputted by the operator (for example, the material of the lens 1 and whether the processing should be with or without the beveled processing or the grooving) to the microprocessor 90. Microprocessor 90 outputs the response to these operator inputted directions so that the information corresponding to the processing content is outputted to the display portion 12 via the driving portion 921.
By operating the control portion 9, data for flat grinding and data for beveled grinding that are used for flat grinding and for beveled grinding, respectively, are created by calculation from the data describing the shape of the lens frame. Furthermore, data for grooving and data for chamfering are created by calculation based on the positions of the entire peripheral portion (i.e., coordinates of apices in the section of the lens at the side of the convex face 1a and at the side of the concave face 1b) of the lens 1, wherein these positions of the entire peripheral portion are measured by the measuring unit 6 based on the data describing the shape of the lens frame.
During the processing of a lens, the servomotor control portion 93 drives the X-axis motor and the Z-axis motor in accordance with the lens processing data corresponding to the rotation angle of the lens 1, which is also the rotation angle of the lens-holding shaft 41. The rotation angle of the lens 1 is detected by the sensor 145 for detecting the position of the lens so that the lens 1 is displaced relative to the rotating tool 50 in accordance with the lens position data provided by the sensor 145. The processing is conducted in this manner.
Outline of the Processing
The lens processing procedures performed using the apparatus 10 for processing a lens will be described as follows. The outlined method includes both preparatory steps and lens processing steps.
First, the lens 1 is set into the lens-holding shaft 41. Next, the data describing the shape of the lens frame are read by the apparatus 900 for measuring the shape of the frame, which measures the shape of a lens frame that is outside of the apparatus 10. Subsequently, an operator uses the operation portion 13 to input the directions corresponding to the conditions of the lens processing, such as the material of the lens 1 and whether the processing should be with or without the beveled processing or the grooving. To begin the lens processing steps, the operator inputs the direction signal for starting the processing using the operation portion 13. Then, the steps of the lens processing are conducted.
When the start of lens processing is directed, the pressing shaft 41R of the lens-holding shaft 41 is displaced to the position for holding the lens shown in
To process the lens 1, the main rotating tool 50 is rotated by driving the motor 55. The lens unit 4 is lowered by driving the elevating and lowering unit 3 and the base unit 2 is displaced in the direction of the X-axis to the position where the peripheral portion 1c of the lens 1 is faced towards the rough grinder 50a for flat grinding of the main rotating tool 50. The processing depth is provided and set by the elevating and lowering unit 3 while the lens 1 is rotated by the motor 45 for driving the lens. Then, the rough grinding is conducted to achieve the processing depth calculated at every rotation angle of the lens-holding shaft 41.
When the sensor 320 for detecting completion of the processing, which is part of the above lens unit 4, gives the ON signal for the entire periphery of the lens, sensor 320 has detected that the grinding step has been completed.
Once the rough processing is completed, the lens unit 4 is temporarily elevated. The base unit 2 is moved in the direction of the X-axis to the position where the lens 1 faces towards the finishing grinder 50b for flat grinding of the main rotating tool 50. Then, the finishing grinding is conducted in the same manner as is conducted for the rough grinding step. When the sensor 320 for detecting completion of the processing of the lens unit 4 gives the ON signal for the entire periphery of the lens 1, the finishing processing on the entire peripheral portion of the lens 1 is completed.
When the grooving of the lens by the finishing unit 7 is necessary, the grooving is conducted by forming a groove at the peripheral portion 1c of the lens 1 by using the rotating tool 71 of the end mill as shown in FIG. 10. Then, the chamfering of both faces 1a, 1b of the peripheral portion of the lens 1 is conducted by successively bringing the peripheral portions 1d and 1e of the lens 1 at the side of the concave face 1a and the convex face 1b, respectively, into contact with the side of the rotating tool 70 having the hemispherical shape by driving the base unit 2 in the direction of the X-axis.
Once grooving and chamfering steps are completed, the pressing shaft 41R of the lens-holding shaft 41 is displaced to the position for releasing the lens shown in
Workings of the Apparatus in Accordance with the Present Invention
As described above, because the rotating tool 70 having the hemispherical shape for chamfering and the rotating tool 71 constructed to include the end mill for grooving are independently formed (i.e., are separate structures), and because each of these tools are disposed at positions separated by the prescribed distance along the lens-holding shaft 41, the rotating tool 71 for grooving does not interfere with the lens-holding shaft 41 or the receiver 141 of the lens holder during the chamfering step even when the lens 1 has a small diameter. Therefore, chamfering and grooving can be conducted accurately for a lens 1 having any size.
Because the rotating tool 70 for chamfering and the rotating tool 71 for grooving used in the finishing steps are fixed at the base 74 that is displaceable in the direction of the Y-axis, and because the positioning of the lens is conducted by the lens unit 4 that is displaceable in the vertical direction and in the direction of the main shaft 51, it is not necessary that lens positioning be controlled by the finishing unit. It is merely necessary that the finishing unit be accurately positioned between the advanced position shown in FIG. 9 and the retired position shown in FIG. 8. Therefore, the mechanism of the finishing unit can be simplified, thereby decreasing the cost of production. In addition, because the two rotating tools 70 and 71 are driven efficiently by a single motor 72, there is no need to provide a second motor to drive both tools. Thus, there is no need to increase the size of the apparatus which keeps the costs of production down.
Because the lens unit 4 is displaceable relative to the fixed rotating tools 70 and 71, and because the lens unit 4 can be positioned in the same manner for flat grinding or for beveled grinding in which the lens 1 is displaced relative to the main rotating tool 50, the main processing and the finishing processing, such as the chamfering and the grooving of the peripheral portion of the lens, can be conducted by a single positioning mechanism under a single control unit that directs positioning. Therefore, the complexity of the positioning mechanism and the control of the positioning mechanism can be minimized so as to keep the cost of production down.
The rotating tool 70 having the hemispherical shape is formed with a grinder or a cutter having diamond or the like and has the prescribed radius R as shown in FIG. 13(a). As shown in FIG. 13(b), when the lens 1, or the lens-holding shaft 41, is elevated from the lower position in the Figure, the angle of chamfering θ at the portion to be chamfered (in this case, the inner peripheral portion 1e) is decided in accordance with the processing depth Lx in the direction of the X-axis (i.e., the displacement in the direction of the axis of rotation of the lens 1) and the processing depth Lr in the direction of the Z-axis (i.e., the displacement in the radial direction of the lens 1).
The processing depth Lx is the distance in the direction of the X-axis from an apex C to an apex D. The apex C is the intersection of the line of the peripheral face 1c and the line of the concave face 1b in the section of the lens 1 before the processing at one rotation angle. The apex D is the intersection of the line of the outer peripheral face 1d and the line S chamfered from face 1e in the section of the lens 1 after the processing at the same rotation angle. The processing depth Lz is the distance in the direction of the Z-axis (i.e., in the radial direction of the lens) from the apex C to an apex E. The apex E is the intersection of the line of the concave face 1b and the line S chamfered from face 1e in the section of the lens 1 after the processing. The angle θ between the outer peripheral face 1d and the chamfered portion of face 1e can be set as desired in accordance with the ratio of Lx to Lz. The X- and Y-coordinates of the apex C change depending on the rotation angle of lens 1 (which is also the rotation angle of the lens-holding shaft 41). These coordinates are values obtained by the measurement performed in advance using the styluses 60 and 61 of the measuring unit 6 as described above to measure the side of the convex face 1a and the side of the concave face 1b.
The chamfered portion of face 1e has a concave shape as shown in
Therefore, for the control of positioning in accordance with the chamfering angle θ of the lens 1, as shown in FIG. 13(b), the ratio of the processing depths Lx to Lz is obtained when the chamfering angle θ is decided. Then, when either one of the two processing depths in the direction of the X-axis or in the direction of the Z-axis (i.e., in the radial direction) is decided, both of the distances Lx and Lz from the apex C can be determined before processing to the apices D and E, respectively. When circles having a radius R, which is the same as the radius R of the hemispherical shape of the rotating tool, are drawn at the centers placed at these apices D and E, the intersection of these circles gives the X- and Z-coordinates of the center of the sphere 70cr of the tool as shown in FIG. 13(b).
When the chamfering angle θ and the chamfering amount (i.e., the processing depth) are set as described above, the relative positions of the lens 1 and the rotating tool 70 having the hemispherical shape in accordance with the desired chamfering angle θ, and the desired processing depth (i.e., the position of the axial line of the lens-holding shaft 41c in the direction of the Z-axis (Δz) and the position of the apex C in the direction of the X-axis (Δx) in FIG. 13(A)) can be determined by calculating the coordinates (Xr, Zr) of the center of the sphere 70cr of the rotating tool 70 having the hemispherical shape from the coordinates of the apex C measured before processing at every rotation angle. When the rotating tool 70 for chamfering is kept rotating at the prescribed position (i.e., on the vertical line of the lens-holding shaft 41), and the lens unit 4 is elevated and lowered and, simultaneously, displaced in the direction of the X-axis by the displacement of the base unit 2 while the lens 1 is also rotated, the chamfering at the convex side and at the concave side of the lens 1 can be achieved to the desired chamfering angle θ. This allows the finishing unit 7 to chamfer to the desired chamfering depth using a simplified mechanism for the rotating tool. Moreover, since chamfering can be conducted in various manners using a single rotating tool having the hemispherical shape 70, exchange of tools is not necessary and the processing time is decreased.
As shown in
Since the radius R of the rotating tool 70 having the hemispherical shape is constructed independently of the rotating tool 71 for grooving, the width of the formed groove is not restricted, which is unlike in the conventional case wherein chamfering and grooving are conducted by using a single ball end mill. Therefore, the radius R can be set at the most suitable value for chamfering without worry about interference.
In the above embodiment, the present invention is applied to the apparatus 10 in which the processing of the lens 1 is conducted by displacing the lens-holding shaft 41 in the vertical direction. The present invention can also be applied to an apparatus having an arm which supports a lens-holding arm in a manner such that the lens-holding arm can be swung in a conventional manner. For example, when an arm and a positioning member for deciding the angle of the arm can be set in a manner such that the arm and the positioning member can be brought into contact with, or separated from, each other, the relative displacement between the arm and the positioning member is detected after being amplified by a sensor arm. In this case, the position of the contact between the arm and the positioning member is detected based on the relative displacement amplified by the sensor arm, so the same effect as that described for the above embodiment can be obtained. The present invention can be applied in the same manner to apparatuses in which a lens-holding shaft is displaced in the horizontal direction as well.
While the present invention has been described with reference to certain illustrative embodiments, one of ordinary skill in the art will recognize that additions, deletions, substitutions, modifications and improvements can be made while remaining within the spirit and scope of the present invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2002-105565 | Apr 2002 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5053971 | Wood et al. | Oct 1991 | A |
5363597 | Gottschald et al. | Nov 1994 | A |
5626511 | Kennedy et al. | May 1997 | A |
5803793 | Mizuno et al. | Sep 1998 | A |
6751522 | Okada et al. | Jun 2004 | B2 |
20020026262 | Takahiro et al. | Feb 2002 | A1 |
Number | Date | Country |
---|---|---|
1 238 733 | Sep 2002 | EP |
6047656 | Feb 1994 | JP |
2001018154 | Jan 2001 | JP |
2001087922 | Apr 2001 | JP |
2001 150314 | Jun 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20030220056 A1 | Nov 2003 | US |