The present invention relates to a processing apparatus for processing sheets carried out of an image formation apparatus such as a copier and printer, and particularly, to improvements in a sheet processing apparatus for enabling stable sheet transport to be performed in transporting sheets to different trays.
Generally, a processing apparatus is widely known which collates sheets carried out of an image formation apparatus to bind. Further, an apparatus is also known which receives sheets in trays indifferent positions to perform end-face stitching for binding an end face of the sheet and saddle stitching processing for binding substantially the center in the sheet transport direction. Further, in the processing, it is also shown to cause a preceding sheet to wait and stay inside the apparatus without halting transport of a subsequent sheet as possible, so as to transport to the tray with the subsequent sheet.
For example, Japanese Patent Gazette No. 5248785 shows a straight path for guiding a sheet fed from an image formation apparatus to a first tray and a branch path branched off from the path to guide a sheet to a second tray. In the first tray is arranged an end-face stitching unit for performing binding on end faces of sheets, and in the second tray is arranged a saddle stitching unit for binding the middle portion in the transport direction of sheets.
Then, in the Japanese Patent Gazette No. 5248785, it is shown to perform the so-called wait transport where a subsequent sheet is once switchback-transported to the branch path to wait in order to ensure time for binding processing and the like in the first tray, and is transported with the following sheet. Further, to receive a sheet in the second tray, the sheet is once transported to the first tray side, is then switchback-transported to the branch path, and is transported via the branch path. Thus, by using the branch path branched off from the transport path as both the wait path and the carry-in path to the second tray, the paths are made compact, and it is possible to perform processing without halting a subsequent sheet.
As described above, the first tray and second tray are disposed in different positions to apply end-face stitching and saddle stitching to received sheets respectively, and generally, end-face stitching is to bind faces in the end portion of sheets, is thereby used heavily in sheets with relatively short lengths e.g. sheets of B5-size, A4-size and letter size, and is further required to perform processing at high velocity. On the other hand, saddle stitching for binding the middle portion in the transport direction of sheets is used heavily in sheets with relatively long lengths e.g. sheets of B4-size, legal size and A3-size. Thus, since the sheets are long, the time required for the processing is allowed to be relatively long, and has a moderate tendency.
Therefore, in the apparatus shown in the above-mentioned Japanese Patent Gazette No. 5248785, in the case of switching back sheets, which are to store in the first tray and perform end-face stitching, to once wait in the branch path, short sheets are not so long in the distance of switchback. Therefore, even when the sheets are transported at high velocity, bending and fluctuations of sheets do not occur so much in switchback transport, and deterioration of alignment characteristics, sheet jams and the like due thereto do not occur so much either. On the other hand, when the processing is performed at the same velocity in switching back sheets to store in the second tray and perform saddle stitching, since a relatively long distance undergoes switchback, bending and fluttering of sheets occurs, and there is a case where alignment characteristics deteriorate and/or a sheet jam occurs in collecting.
It is an object of the present invention to provide an apparatus for reducing bending and fluttering of a sheet also in transporting a relatively long sheet in switchback-transporting to carry in a different tray, and further preventing alignment characteristics from deteriorating with few occurrences of the sheet jam.
In order to attain the object, according to the disclosure of the present invention, a sheet processing apparatus is provided with a transport path for receiving a sheet to transport the sheet to a first tray, a branch path branched off from the transport path to transport a sheet to a second tray, a first transport roller positioned in the transport path on the downstream side of a branch position of the transport path and the branch path to be able to transport a sheet in a direction of one of both the first tray and the branch path, a second transport roller positioned on the branch path to be able to transport a sheet in a direction of one of both the second tray and the transport path, and a control section for recognizing a transport length of the sheet transported by the first transport roller and the second transport roller, and controlling the first transport roller and the second transport roller, where the control section performs wait transport or first transport for switchback-transporting a sheet to cause the sheet to once wait in the branch path after the sheet transported in the transport path passes through the branch position, and transporting the sheet to the first tray together with a subsequent sheet, and second tray transport or second transport for switchback-transporting a sheet to transport to the second tray via the branch path after the sheet transported in the transport path passes through the branch position, and changes a transport velocity of the switchback-transporting corresponding to the transport length of the sheet.
According to the above-mentioned disclosure, it is possible to provide a sheet processing apparatus for reducing bending and fluttering of a sheet also in transporting a relatively long sheet in switchback-transporting to carry in a different tray, and further preventing alignment characteristics from deteriorating with few occurrences of the sheet jam, and an image formation apparatus provided with the sheet processing apparatus.
The present invention will specifically be described below based on preferred Embodiments of the invention shown in drawings.
In addition, in the accompanying drawings, similar components through the entire Description are represented by adding the same reference numerals.
The image formation system shown in
The image formation apparatus A will be described according to
For example, in the image formation section 2 are disposed an electrostatic drum 4, and a printing head (laser light-emitting device) 5, development device 6, transfer charger 7 and fuser 8 disposed around the drum. The image formation section 2 forms an electrostatic latent image on the electrostatic drum 4 with the laser light-emitting device 5, adds toner to the image with the development device 6, transfers the image onto a sheet with the transfer charger 7, and fuses with the fuser 8 to form an image. The sheet with thus image formed is sequentially carried out from the main-body discharge outlet 3. “9” shown in the figure denotes a circulation path which is a path for two-side printing for reversing the side of the sheet with printing made on the frontside from the fuser 8 via a switchback path 10, and then feeding to the image formation section 2 again to print on the backside of the sheet. The sheet thus subjected to two-side printing is reversed in the switchback path 10, and then, is carried out from the main-body discharge outlet 3.
“11” shown in the figure denotes an image reading apparatus, and the apparatus scans an original document sheet set on platen 12 with a scan unit 13 to electrically read with a photoelectric converter not shown. For example, the image data is subjected to digital processing in an image processing section, and then, is transferred to a data storage section 14, and an image signal is sent to the laser light-emitting device 5. Further, “15” shown in the figure denotes an original document feeding apparatus, and the apparatus feeds original document sheets stored in an original document stacker 16 to the platen 12.
The image formation apparatus A with the above-mentioned configuration is provided with an image formation control section 200 shown in
Concurrently with the above-mentioned image formation conditions such as one-side/two-side printing, enlarged/reduced printing and monochrome/color printing, a sheet processing condition is also input and designated from the control panel 18. As the sheet processing condition, for example, a “print-out mode”, “end-face stitching mode”, “saddle stitching mode” or the like is set. In addition, these processing conditions will be described later.
In the sheet processing apparatus B, as shown in
From the carry-in entrance 30 of the sheet processing apparatus B, a transport path 42 is disposed which extends substantially linearly from a carry-in path 32 to a first processing tray exit 50. The carry-in path 32 is provided with a punch unit 31 to perform punch processing in the end face of a sheet and as necessary, the middle portion in the transport direction. Below the punch unit 31 across the carry-in path 32, a punch dust box 31b for collecting punch dust generated in the punch processing is provided in the apparatus frame 20 to be attachable/detachable.
On the downstream side of the punch unit 31, a carry-in roller 34 for transporting a sheet is disposed to transport the sheet at a high velocity. In the transport path 42 on the downstream side of the carry-in roller 34 are provided forward/backward rotation-capable transport rollers 44 that guide a sheet to a first processing tray 54 that is a first tray and the first sheet discharge tray 24 on the downstream side thereof. The rear of the transport roller 44 is a transport path exit 46 of the sheet.
On the downstream side of the transport path exit 46 are provided forward/backward rotation-capable exit rollers 48. The exit rollers 48 switches a sheet back to transport the sheet to the first processing tray 54, discharges to the first sheet discharge tray 24 straight, or discharges a bunch of sheets which are collected on the first processing tray 54 and subjected to end-face stitching processing to the first sheet discharge tray 24.
Further, the transport path 42 is branched, in a branch position 36, to an escape path 38 for guiding a sheet to the escape tray 22, and a branch path 70 for guiding a relatively long sheet to a stacker 84 (that is also a second processing tray) which is the second tray to perform saddle stitching processing and folding processing. In the branch position 36 is provided a switch gate 37 of the path to select transporting the sheet to the transport path 42 directly, transporting to the escape path 38, or switching back on the transport path 42 to guide to the branch path 70.
In addition, the escape path 38 is provided with escape rollers 39 that transport a sheet, and escape exit roller 40 that discharges the sheet to the escape tray 22.
In addition, the first processing tray 54 is provided below the transport path exit 46 of the transport path 42, and on the lower end side thereof, an end-face stitching section 60 is positioned to bind end faces of sheets temporarily collected on the first processing tray 54. The end-face stitching section 60 will be described later with reference to
On the other hand, a relatively long sheet is once transported in the transport path 42 in the direction of the first processing tray 54, is transported to the downstream side of the switch gate 37, is then switchback-transported at this time to transport to the branch path 70, and is collected in the stacker 84 (second tray) from a branch exit 76. In the stacker 84 is disposed a saddle stitching section 80 that binds the middle portion of collected sheets. As shown in
In the stacker 84 is positioned a stopper 85 for defining a carry-in position of a sheet. The stopper 85 shifts in the arrow direction shown in the figure, by driving a shift belt 88 provided in a tensioned state between an upper pulley 86 and a lower pulley 87 on the side of the stacker 84 by a stopper shift motor 85M. A position of the stopper 85 is halted in each of a position for enabling a rear end of a sheet to be changed by the change flapper 78 when the sheet is carried in the stacker 84, a position for performing saddle stitching substantially on the center in the transport direction of sheets with the saddle stitching unit 82, and a position for pushing the saddle-stitched position to a folding roller 92 pair with a reciprocating folding blade 94 to fold a bunch of sheets in two.
Further, in the upper and lower portions of the folding rollers 92 is provided a saddle stitching alignment plate 81 that presses opposite side edges of a sheet from the sheet width direction to perform alignment operation whenever the sheet is carried in the stacker 84.
In the saddle stitching section 80, for example, a staple is driven in a bunch of sheets by a driver inside the saddle stitching unit 82, and an anvil 83 is provided in a position opposite thereto to bend leg portions of the staple. The saddle stitching unit 82 is already known widely, and the description herein is omitted. In addition, as a binding means, not only the means for piercing a bunch of sheets with a staple to bind, a mechanism may be adopted where an adhesive is applied to the center in the transport direction of a sheet and sheets are bound to be a bunch.
The bunch of sheets bound by the saddle stitching unit 82 is folded in two by the folding rollers 92 and folding blade 94 for pushing the bunch of sheets into the rollers, and is discharged to the second sheet discharge tray 26 by the folding rollers 92 and bunch discharge roller 96 positioned on the downstream side of the roller 92. To the second sheet discharge tray 26 are attached a swingable press roller 102 with the rotatable roller provided in the front end to drop the folded bunch of sheets, which is subjected to the folding processing and discharged with the rear side as the front end side, into the second sheet discharge tray 26, and a press lever 104 that presses from above not to expand collected folded bunches of sheets. The press roller 102 and press lever 104 reduce decrease in collection characteristics due to the fact that the folded bunch of sheets is open.
Herein, with respect to the branch position 36 and end-face stitching section 60, further descriptions will be added with reference to
In this Embodiment, for example, as shown in
In the above-mentioned transport path 42, the transport rollers 44 which rotate forward/backward while mutually contacting and separating are disposed immediately before the transport path exit 46 that is the last end. In other words, the transport rollers 44 are capable of transporting the sheet to the first processing tray 54 side by one-direction rotation in a press-contact state, and of switchback-transporting in the opposite direction by the other rotation.
The switchback transport is performed by rotating the transport rollers 44 in the other direction, after a sheet sensor 42S disposed immediately after the switch gate 37 of the transport path 42 detects passage of the sheet rear end. In the other rotation, the switch gate 37 is shifted to the position (dashed-line position in
In addition, in the first processing tray exit 50 (exit of the first processing tray 54) on the downstream side of the transport roller 44, the exit rollers 48 are disposed which rotate forward/backward, while mutually contacting and separating. The exit rollers 48 are comprised of an exit upper roller 48a and an exit lower roller 48b, and by one-direction rotation in a mutually press-contact state, cooperate with the transport rollers 44 to transport the sheet to the first sheet discharge tray 24. Further, the exit rollers 48 are also used in cooperating with a shift of a reference surface 57 described later to discharge sheets collected in the first processing tray 54 as a bunch to the first sheet discharge tray 24.
Herein, collection of sheets in the first processing tray 54 will be described. For collection in the first processing tray 54, a sheet released from the transport rollers 44 is transported to the right side in
The sheet is fed to the reference surface 57 by the rotation of the exit rollers 48 and take-in roller whenever the sheet is released from the transport rollers 44 to stack on the first processing tray 54. Further, in accordance with the stacking operation, alignment plates 58 are brought into contact from opposite sides in the sheet width direction to align the sheet in the center in the width direction of the first processing tray 54. Such stacking and alignment is repeated up to the predetermined number of sheets as a bunch. When the predetermined number of sheets is collected, at this point, the end-face stitching unit 62 that shifts in the sheet width direction on the end face of the sheets on a shift bench 63 is shifted to a desired binding position. This shift is made by that a shift pin 62b of the end-face stitching unit 62 is fitted into a groove rail shown in the figure provided in the sheet width direction on the shift bench 63 and is guided.
The binding processing of the end-face stitching unit 62 is already publicly known, and the description is omitted. When the end-face stitching unit 62 is halted in a designated binding position, an end-face stitching motor 62M is driven to rotate and shift a driver not shown to drive a staple in a bunch of sheets, the driven staple is bent by an anvil, and the binding processing is performed. The binding processing is performed in the end face of the corner or a plurality of positions in the end face in the width direction of sheets.
In a bunch of sheets subjected to the binding processing in the end-face stitching unit 62, by a shift of a reference surface shift belt 64 looped between a right pulley 65 and a left pulley 66 under the first processing tray 54 in a counterclockwise direction as viewed in the figure, the reference surface 57 coupled to the reference surface shift belt 64 shifts in the left direction as viewed in the figure, and thereby pushes the binding end face side of the bunch of sheets toward the first sheet discharge tray 24. Together with the push, the exit rollers 48 disposed in the exit of the first processing tray 54 press the bound bunch of sheets from frontside and backside, and discharge the bound bunch of sheets to the first sheet discharge tray 24 by rotation in a clockwise direction.
The first sheet discharge tray 24 to collect a bunch of sheets will be described. As shown in
On the bottom side of the first sheet discharge tray 24 is provided an up-and-down motor 24M that moves the first sheet discharge tray 24 up and down, and the drive is conveyed to an up-and-down pinion 109. The up-and-down pinion 109 engages in an up-and-down rack 107 provided vertically on the opposite sides of a standing surface 28 of the apparatus frame 20 fixedly. Further, although not shown in the figure particularly, an up-and-down rail provided on the standing surface 28 of the first sheet discharge tray 24 is to guide vertically.
The position of the first sheet discharge tray 24 or the position of sheets collected on the first sheet discharge tray 24 is detected with a paper surface sensor 24S provided in the standing surface 28. Then, when the paper surface sensor 24S detects, the up-and-down motor 24M is driven, and the up-and-down pinion 109 rotates to move down. The state in
Referring to
First, drive of the transport rollers 44 comprised of the transport upper roller 44a and transport lower roller 44b is performed by a transport roller motor 44M. The transport roller motor 44M is comprised of a hybrid type stepping motor, and in the motor is disposed a speed detection sensor 44S that detects a rotation speed of the motor shaft. Drive of the transport roller motor 44M is transferred to an arm gear 126 via transmission gears 120, 122 and transmission belt 124. The drive from the arm gear 126 is transferred to an upper roller shaft 44uj of the transport upper roller 44a supported by a transport roller support arm 136 with a transmission belt 128.
Further, the transport upper roller 44a is attached to rotate on the shaft of the arm gear 126 so as to separate from and contact the fixed transport lower roller 44b. The separate/contact is performed by a transport roller shift arm 130 having a rear sector-shaped gear attached to the shaft of the arm gear 126 where a spring 134 to bias the transport upper roller 44a is attached to a shift arm point on the front side. In other words, by driving to rotate forward and backward the transport roller shift arm motor 130M engaging in the above-mentioned rear sector-shaped gear, the roller shifts in a release direction of the arrow O by rotation in one direction, and shifts in a press-contact direction of the arrow C for coming into press-contact with the transport lower roller 44b by rotation in the other direction. In addition, the transport roller shift arm motor 130M is also comprised of a stepping motor, and a transport roller shift arm sensor 130S detects a position of the transport roller shift arm 130.
Rotation drive of the transport lower roller 44b is performed by transferring drive of the transport roller motor 44M to a receive gear 142 provided individually in a transport lower roller shaft 44sj via the transmission gear 120 and transmission belt 138.
Further, the drive from the receive gear 142 rotates a gear 144 with a one-way clutch, the belt 146 with protrusions acting also as the transmission belt, and the take-in roller 56. The drive is transferred to the take-in roller 56 via the gear 144 with a one-way clutch, and therefore, even when the receive gear 142 rotates forward and backward as described previously, the roller 56 rotates only in the solid-line arrow direction in
Furthermore, the drive of the transport roller motor 44M is also transferred to a branch lower roller shaft 72sj of a branch lower roller 72b of the branch rollers 72 that transport the sheet in the branch path 70 via the transmission gear 120 and transmission belt 148.
By the configuration as described above, according to forward/backward rotation of the transport roller motor 44M, the transport rollers 44 and branch rollers 72 rotate in one direction of the solid-line arrow direction shown in the figure and in the other direction (switchback direction) of the dashed-line arrow direction, and the take-in roller rotates in the reference surface 57 direction of the solid-line arrow direction. Further, the transport roller motor 44M is capable of being set arbitrarily to be able to transport a sheet at a velocity of about 1100 mm/s in transporting a sheet to the first processing tray 54 side, and at the velocity of about 1100 mm/s or a velocity of about 600 mm/s lower than the velocity in switchback-transporting to the branch path 70 side. The velocity is a rotation set velocity from startup, the average velocity is lower than the set value, and in any case, the transport velocity is made variable corresponding to the transport direction and sheet length of the sheet, transport mode of wait transport or second tray transport and the like. The velocity setting will be described later.
Drive of the exit rollers 48 comprised of the exit upper roller 48a and exit lower roller 48b is performed by an exit roller motor 48M. The exit roller motor 48M is also comprised of a hybrid type stepping motor, and a speed detection sensor 48S that detects a rotation speed of the motor shaft is also disposed similarly. Drive of the exit roller motor 48M is transferred to an exit arm gear 156 via transmission gears 150, 152 and transmission belt 154. The drive from the exit arm gear 156 is transferred to an exit upper roller shaft of the exit upper roller 48a supported by an exit roller support arm 166 with a transmission belt 158.
The exit upper roller 48a is attached to rotate on the shaft of the exit arm gear 156 so as to separate from and contact the fixed exit lower roller 48b. The separate/contact is performed by an exit roller shift arm 160 having a rear sector-shaped gear attached to the shaft of the exit arm gear 156 where a spring 164 to bias the exit upper roller 48a is attached to a shift arm point on the front side. By driving to rotate forward and backward an exit roller shift arm motor 160M engaging in the above-mentioned rear sector-shaped gear, the roller shifts in a release direction of the arrow O by rotation in one direction, and shifts in a press-contact direction of the arrow C for coming into press-contact with the exit lower roller 48b by rotation in the other direction. In addition, the exit roller shift arm motor 160M is also comprised of a stepping motor, and an exit roller shift arm sensor 160S detects a position of the exit roller shift arm 160.
Further, rotation drive of the exit lower roller 48b is performed by transferring drive of the exit roller motor 48M to a receive gear 169 provided individually in an exit lower roller shaft 48sj via a transmission gear 150 and transmission belt 168.
By the above-mentioned configuration, according to forward/backward rotation of the exit roller motor 48M, the exit rollers 48 rotate in one direction of the solid-line arrow direction shown in the figure and in the other direction of the dashed-line arrow direction (in the switchback direction to the reference surface 57 on the first processing tray 54 after the sheet is released from the transport rollers 44). Further, the exit roller motor 48M is capable of being set so as to transport a sheet at a velocity of about 1100 mm/s in the case of taking-transporting from the transport rollers 44, at a velocity of about 600 mm/s in the case of switchback transport in the taking reference surface direction, and at a velocity of about 300 mm/s in the case of discharging a bunch of sheets on the first processing tray 54 to the first sheet discharge tray 24 in cooperation with a shift of the reference surface 57. In other words, the exit roller motor 48M is allowed to set the velocity in the range of about 1100 mm/s to about 300 mm/s.
In addition, in this Embodiment, in transporting the sheet with the transport rollers 44 such as the time of switchback transport in the case of performing wait transport, since the drive motors are separate and conjunction is difficult, the exit upper roller 48a is positioned in a separate position where the roller is released from the exit lower roller 48b.
The mechanism of up-and-down of the first sheet discharge tray 24 has already been described in
In addition, when a bunch of sheets is discharged from the first processing tray 54, the up-and-down position of the first sheet discharge tray 24 is set so that the placement surface or the paper surface is positioned in 24Sm position with a distance L1+L2 shown in
Moreover, in the case where the sheet undergoing switchback transport by the transport rollers 44 is long or in the case of switchback transport to transport to the branch path for saddle stitching, in order to guide so as to suppress bending and fluttering of the sheet front end undergoing switchback transport, upward setting is also performed so that the placement surface or the paper surface is positioned in 24Sh position with the distance L1 to shorten the height difference range. This respect will be described later as Embodiment 3.
Herein, the wait transport will be described where the sheet undergoes switchback transport for end-face stitching and waits in the branch path 70 as described above. In the case of performing the binding processing with the end-face stitching unit 62 in the first processing tray 54, there is a need to prevent a next sheet from being carried in before end-face stitching processing of a preceding bunch of sheets is not completed, because the velocity at which the sheet with the image formed in the image formation apparatus A is carried in is fast, and the sheet interval is short. Therefore, a first sheet or sheets up to a second sheet transported to the transport path 42 via the carry-in path 32 are switchback-transported once on the transport path 42, and the switchback-transported sheets are made to stay and wait in the branch path 70. Then, the interval time between bunches of sheets is secured by feeding out the sheet (s) waiting in the branch path 70 to overlap the next second or third sheet to feed (which is disclosed in FIGS. 10A and 10B of the Patent Gazette No. 5248785 as Cited Document 1).
In addition, in the present invention, it is defined as “wait transport” that a sheet is switchback-transported from the transport path 42 to the branch path 70, and that one or more sheets are made to stay and wait in the branch path 70, and are fed and transported together with the next sheet of the waiting sheet. Sheets for end-face stitching to perform the wait transport are usually sheets with relatively short lengths in the transport direction e.g. sheets of each size of A4, B5 and letter. Accordingly, switchback transport for the wait transport of these sheets is performed without significantly protruding to the downstream side of the first processing tray 54, and the sheet is hardly bent at the time of this transport. Even when the sheet is bent slightly, the distance to the first processing tray 54 is relatively short, and therefore, the bending is easy to correct by alignment operation of the alignment plates 58.
Further, the completion of the end-face stitching processing includes not only that operation for discharging a bunch of sheets from the first processing tray 54 to the first sheet discharge tray 24 is completed, but also initial setting operation of the alignment plates 58 on the first processing tray 54, initial position return of the reference surface shift belt 64, and initial position setting of each mechanism to receive the next sheet.
Described next is the case of performing saddle stitching with the saddle stitching unit 82 and transporting the sheets to the stacker 84 that is the second processing tray so as to perform folding processing with the folding rollers 92 and folding blade 94 and make the folded bunch of sheets. To transport to the stacker 84, the sheet transported to the transport path 42 via the carry-in path 32 is once switchback-transported on the transport path 42, and the switchback-transported sheet is transported from the branch path 70 to the stacker 84.
Herein, it is defined as “second tray transport” that the switchback-transported sheet is transported to the stacker 84 via the branch path 70. Sheets for saddle stitching to perform the second tray transport are usually sheets with relatively long lengths in the transport direction to bend in two e.g. sheets of each size of A3, B4 and legal. Accordingly, these sheets significantly protrude to the downstream side of the first processing tray 54 in switchback transport for the second tray transport, and bending or fluttering occurs in the switchback transport. Further, in the second tray transport, since a transport distance to the stacker 84 is relatively long, bending is increased, and is sometimes not corrected even when the saddle stitching alignment plate 81 aligns.
In recent years, sheets have been transported at considerably high velocity with speedup of the image formation apparatus A, particularly significant productivity is required for end-face stitching, and therefore, in applying the velocity to the second tray transport, bending and fluttering of the sheet is increased. Accordingly, in the invention, the velocity of switchback transport in the second tray transport is made lower than the velocity of switchback transport in the wait transport, and it is intended to suppress bending and fluttering of the sheet in the second tray transport.
The respect of a difference in the velocity in switchback transport on the transport path 42 between the wait transport and the second tray transport as described above will be described with reference to sheet flow views from
First, referring to
In
First, in
Next, as shown in
In
Successively, in
In addition, in overlapping these two sheets one another, both the carry-in roller motor 34M and the transport roller motor 44M are set to transport the sheets at the same velocity with 1100 mm/s as the transport attainment velocity.
Next, the flow proceeds to a state of
As described above, in the wait transport for end-face stitching in
Referring to
In
First,
Next, as shown in
Then, when the first sheet (sheet 1) is nipped by the branch rollers 72 rotating at the same velocity of 600 mm/s, the switch gate 37 shifts to the position (position for blocking the escape path) for releasing the transport path 42. Concurrently therewith, the transport upper roller 44a of the transport rollers 44 is separated from the transport lower roller 44b to wait for carry-in of the next sheet (sheet 2).
In addition, since the transport roller motor 44M is once halted in switching from forward rotation to backward rotation, the velocity of 600 mm/s is set as a transport target velocity, and although the average velocity is slightly lower, the velocity is reduced with this velocity as a set value. Further, at the time of switchback transport, the velocity is reduced from 1100 mm/s to 600 mm/s. This is because fluttering of a sheet particularly occurs significantly in switchback transport that is return transport of the sheet and the sheet is transported a relatively long distance, the velocity is reduced particularly in the return. As another Embodiment, when the processing speed does particularly not require high speed, in reciprocating transport for discharging the sheet undergoing switchback outside the apparatus, the velocity may be reduced from 1100 mm/s to 600 mm/s.
Next, in
The passing transport is performed so as to eliminate or reduce the wait time of the next sheet, because the preceding sheet is transported at the reduced velocity.
Then, in
As described above, in the second tray transport for saddle stitching in
Herein, the wait transport of
First, as shown in
Next, when saddle stitching is confirmed (Step 10), it is assumed that sheets with relatively long lengths are usually used, and as described in
A Modification of the Embodiment as described above will be described next with reference to a flow diagram of
In the Embodiment up to
By adopting the flow in
In other words, when the “end-face stitching mode” or “saddle stitching mode” is set from the control panel 18 of the image formation section 2, the mode is confirmed (Step 100). When the mode is end-face stitching, the flow proceeds to the left side as viewed in the figure, and it is checked whether or not the length of the sheet to perform end-face stitching is longer than a predetermined length (Step 110). In this Modification, the case where the sheet size is B5, A4 horizontal or letter is set for short, and the case of exceeding the size e.g. lengths of A3, B4, legal and A4 vertical are set for long. Then, in the case of short, the processing is performed, while keeping the velocity of switchback transport at 1100 mm/s (Step 120). By this means, for example, a sheet or sheets up to three sheets are once switchback-transported to wait (branch path wait) in the branch path 70, and are switchback-transported again to the first processing tray 54 side. When the wait transport is completed, the step is finished, and the flow shifts to the next step.
In addition, identification of the sheet size in this Modification is set by obtaining size information from the image formation control section 200. Alternatively, a sensor for size detection may be disposed near the carry-in entrance 30 of the sheet processing apparatus B to detect.
On the other hand, when the sheet length is regarded as being long in the above-mentioned step, the switchback transport velocity by the transport rollers 44 is reduced from 1100 mm/s to 600 mm/s to perform switchback transport (Step 140). In this case, when the wait transport is performed together with a subsequent sheet, it is checked that the preceding sheet is nipped by the branch rollers 72, and then, the passing transport with the next sheet is performed (Step 160). When the wait transport is completed, the step is finished, and the flow shifts to the next step.
The “end-face stitching mode” or “saddle stitching mode” is set, and in the case of saddle stitching, the flow proceeds to the right side as viewed in the figure to check whether or not the length of the sheet to perform saddle stitching is longer than a predetermined length (Step 170). In this Modification, the case where the sheet size is A4 vertical is set for short, and for example, the case of A3, B4 and legal is set for long. Herein, A4 vertical that is set for long in end-face stitching is set for short in the saddle stitching on purpose. This is because the A4 vertical size in saddle stitching is sorted to short sheets among sheet lengths to perform saddle stitching, and is relatively easy to obtain high-speed processing. Further, since the branch rollers 72 rotate without halting for forward and backward rotation, alignment characteristics do not deteriorate so much, and therefore, the criterion is changed from end-face stitching.
In the case where the sheet length of sheets for saddle stitching is short, in this Modification, in the case of A4 vertical, the velocity of switchback transport is kept at 1100 mm/s to perform (Step 180). By this means, when it is judged that carry-in of sheets for saddle stitching in the stacker 84 is completed (Step 190), the second tray transport is regarded as being completed, and the flow shifts to the next step.
When the sheet length is regarded as being long in the foregoing, the switchback transport velocity by the transport rollers 44 is reduced from 1100 mm/s to 600 mm/s to perform switchback transport (Step 200). In this case, it is confirmed that the second tray transport is performed together with a subsequent sheet (Step 210), and after the preceding sheet is nipped by the branch rollers 72, the passing transport with the next sheet is performed (Step 220). When there is not a subsequent sheet to be a bunch, the processing of the second tray transport is completed, and the flow shifts to the next step such as saddle stitching.
As described above, in the above-mentioned Modification, instead of changing the velocity of switchback transport by the transport rollers 44 corresponding to end-face stitching or saddle stitching, in any one of end-face stitching and saddle stitching, the sheet length is checked to change the switchback velocity. Further, for example, in the same length of A4 vertical in end-face stitching and A4 vertical in saddle stitching, the most suitable switchback velocity is set to ensure compatibility between stable transport and speedup.
A system control configuration of the above-mentioned image formation apparatus will be described according to a block diagram of
The sheet processing control section 204 is the control CPU for operating the sheet processing apparatus B corresponding to the designated sheet processing mode described previously. The sheet processing control section 204 is provided with ROM 206 for storing operation programs and RAM 207 for storing control data. Further, to the sheet processing control section 204 are input signals from a various-sensor input section of a carry-in sensor 30S for detecting a sheet in the carry-in path 32, sheet sensor 42S for detecting a sheet in the transport path 42, branch sensor 70S for detecting a sheet in the branch path 70, paper surface sensor 24S for detecting a paper surface on the first sheet discharge tray 24 and the like
The sheet processing control section 204 is provided with a sheet transport control section 210 that controls the carry-in roller motor 32M of the carry-in path 32 of a sheet, the transport roller motor 44M of the transport path 42 and branch path, and the exit roller motor 48M of the first processing tray 54 exit. Further, the sheet processing control section 204 is provided with a punch drive control section 211 that controls a punch motor 31M for performing punching processing on a sheet in the punch unit 31, and a processing tray (first processing tray 54) control section 212 that controls the alignment plates 58 for performing collection operation of sheets in the first processing tray 54. Furthermore, the section is also provided with an end-face stitching control section 213 that controls an end-face stitching motor 62M of the end-face stitching unit 62 for performing end-face stitching on a bunch of sheets on the first processing tray 54, and a first tray (first sheet discharge tray 24) up-and-down control section 214 that controls the up-and-down motor 24M for moving up and down corresponding to a bunch of sheets subjected to end-face stitching and sheet switchback onto the first sheet discharge tray 24.
Further, the sheet processing control section 204 has a stacker control section 216 that controls the saddle stitching alignment plate 81 of sheets to collect in the stacker 84 that is the second processing tray so as to perform saddle stitching processing and the stopper shift motor 85M of the stopper 85 for regulating the sheet front end, and a saddle stitching control section 217 that controls a saddle stitching motor 82M for binding the middle portion in the transport direction of a bunch of sheets.
Furthermore, the sheet processing control section 204 is also provided with a middle folding • discharge control section 218 that controls the folding rollers, folding blade and discharge motor 92M for folding the saddle-stitched bunch of sheets in two to discharge to the second sheet discharge tray 26.
Connection among each of the above-mentioned control sections, each sensor for detecting the sheet length and each drive motor, and the like are as described already in the aspect of each operation.
The sheet processing control section 204 of this Embodiment configured as described above causes the sheet processing apparatus B to execute the “print-out mode”, “end-face stitching mode”, “saddle stitching mode” and the like, for example. The processing modes will be described below.
The mode is to receive a sheet with an image formed from the main-body discharge outlet 3 of the image formation apparatus A and store the sheet in the first sheet discharge tray 24 using the transport rollers 44 and exit rollers 48.
The mode is to receive a sheet with an image formed from the main-body discharge outlet 3 in the first processing tray 54, collate sheets in the shape of a bunch, perform binding processing in the end-face stitching unit 62, and then, store in the first sheet discharge tray 24. In addition, in the end-face stitching processing, so as not to halt discharge of a subsequent sheet from the main-body discharge outlet 3, the “wait transport” is sometimes performed where a preceding sheet is switchback-transported and temporarily waits in the branch path 70.
The mode is to receive a sheet with an image formed from the main-body discharge outlet 3 of the image formation apparatus A in the stacker 84, collate sheets in the shape of a bunch, bind substantially the center in the receive transport direction of the sheets in the saddle stitching unit 82, fold in the shape of a booklet, and store in the second sheet discharge tray 26.
In addition, in the saddle stitching processing, the “second tray transport” is performed where the sheet from the main-body discharge outlet 3 is once discharged onto the first sheet discharge tray 24, is then switchback-transported to the branch path 70, and is transported to the stacker 84.
Hereinafter, Modifications will be described to perform more stable transport, while suppressing fluttering and catching in switchback transport of the above-mentioned Embodiments. In addition to reduction in the velocity in the switchback transport in the foregoing, Embodiment 3 is to perform a backup guide in the switchback transport by moving the first sheet discharge tray 24 up. Further, Embodiment 4 is to provide auxiliary guides 110 that extend and retract under the first processing tray 54 (first tray), and by this means, perform a backup guide in the switchback transport. Furthermore, Embodiment 4 also describes an apparatus where the first sheet discharge tray 24 is moved up according to extension of the auxiliary guide 110. In addition, in drawings of the Modifications, components similar to the foregoing are represented by adding the same reference numerals.
Referring to
First,
Next, as shown in
Next, in
Then, in
Herein, another Embodiment (Modification) of the wait transport in end-face stitching in
In addition, the distance to shift from the sheet receive position Sm to the separate position 24S1 may be adjusted in position so that the sheet front end does not collide, according to the sheet size to perform the wait transport.
As described above, in this Modification, even in high-velocity transport of the wait transport, it is possible to prevent the sheet front end from buckling, and by placing the sheet across the first sheet discharge tray 24 and first processing tray 54, it is possible to carry the sheet to the reference surface 57 side smoothly.
Next, referring to
Referring to
As shown in
As shown in
Accordingly, by driving the auxiliary guide motor 110M, the shift pinion 117 also rotates, and the guide rack 112 meshing with the pinion also shifts according to the rotation direction, and shifts the auxiliary guide 110. For example, as shown in
Recognition of an extension/retract position of the auxiliary guide 110 is performed by that an auxiliary guide sensor 110S provided on the rear end side of the support rail 111 detects a rear end 114 of the auxiliary guide 110. Further, drive from the auxiliary guide motor 110M is transferred to the auxiliary guide 110 via the torque limiter 118. Therefore, even when a front end contact portion 116 of a front end 113 of the auxiliary guide 110 comes into contact with the placement surface of the first sheet discharge tray 24 or the sheet placed on the tray, drive idles by the torque limiter 118, and the auxiliary guide 110 is not broken.
By this means, when the placement surface of the first sheet discharge tray 24 or the sheet placed on the tray is positioned in the guide position 24Sh that is a position nearer to the first processing tray exit 50, the front contact portion 116 of the auxiliary guide 110 comes into intimate contact with the placement surface or the placed sheet upper surface to eliminate the height difference, and the guide is more suitable as a guide of transport of sheets (long and short dashed-line position of the placement surface of the first sheet discharge tray 24 or the placed sheet in
The auxiliary guide 111 configured as described above acts as a sheet guide of switchback transport in the guide position, in the second tray transport to transport the sheet to the stacker 84 in the present application. This respect will be described in a subsequent flow diagram of sheets.
In the “wait transport” for rotating the transport rollers 44 backward to wait in the branch path 70, and then transporting to the first processing tray 54 side again to collect in the first processing tray 54 and perform end-face stitching on a bunch of sheets shown in
Referring to
The velocity to switchback-transport is the same as in
Next, as shown in
Next, also in
As described above, in the second tray transport for saddle stitching in
Herein, another Embodiment (Modification) of the wait transport in the end-face stitching in
As described above, in this Modification, also in the wait transport using relatively short sheets, the auxiliary guide 110 is provided to extend in the guide position so as to transport sheets stably.
In the second tray transport, the auxiliary guide 110 is provided to extend in the guide position above the placement surface of the first sheet discharge tray 24 or the sheet placed on the placement surface, which is the same as shown in
A block diagram of
As described above, according to each of the Embodiments described above, it is possible to provide the apparatus for reducing bending and fluttering of a sheet also in transporting a relatively long sheet in switchback-transporting to carry in a different tray, and further preventing alignment characteristics from deteriorating with few occurrences of the sheet jam.
Further, the present invention is not limited to the above-mentioned Embodiments, various modifications thereof are capable of being made in the scope without departing from the invention, and all technical matters included in the technical ideas described in the scope of the claims are subjects of the invention. The Embodiments described previously illustrate preferred examples, a person skilled in the art is capable of achieving various types of alternative examples, corrected examples, modified examples or improved examples from the content disclosed in the present Description, and the examples are included in the technical scope described in the scope of the claims attached herewith.
Number | Date | Country | Kind |
---|---|---|---|
2015-168393 | Aug 2015 | JP | national |
2015-168394 | Aug 2015 | JP | national |
2015-168395 | Aug 2015 | JP | national |
2015-168396 | Aug 2015 | JP | national |
This is a divisional patent application of Ser. No. 15/245,419 filed on Aug. 24, 2016, which claims priorities of Japanese Patent Applications No. 2015-168393 filed on Aug. 28, 2015, No. 2015-168394 filed on Aug. 28, 2015, No. 2015-168395 filed on Aug. 28, 2015 and No. 2015-168396 filed on Aug. 28, 2015, the disclosure of which are incorporated herein.
Number | Date | Country | |
---|---|---|---|
Parent | 15245419 | Aug 2016 | US |
Child | 15883990 | US |