APPARATUS FOR PRODUCING AN OBJECT BY MEANS OF ADDITIVE MANUFACTURING AND METHOD OF USING THE APPARATUS

Information

  • Patent Application
  • 20190270245
  • Publication Number
    20190270245
  • Date Filed
    September 18, 2017
    7 years ago
  • Date Published
    September 05, 2019
    5 years ago
Abstract
Apparatus for producing an object by means of additive manufacturing, comprising: a process chamber for receiving on a build surface of a build plate a bath of powdered material which can be solidified; a support for positioning said build plate in relation to a surface level of said bath of powdered material; a solidifying device for solidifying a selective part of said material; and a homing device for moving said build surface, by said support, to a home position such that said object can be build on said build surface of said build plate, wherein said homing device comprises a homing member which can be displaced along said build surface of said build plate, wherein said homing device is designed for moving said build surface to said home position until a measured force for displacing said homing member is within a pre-determined range. Method for producing an object by means of additive manufacturing.
Description

According to a first aspect the invention relates to an apparatus for producing an object by means of additive manufacturing.


According to a second aspect the invention relates to a method of producing an object by means of additive manufacturing on a build surface of a build plate, using an apparatus according to the first aspect.


3D printing or additive manufacturing refers to any of various processes for manufacturing a three-dimensional object. Traditional techniques like injection molding can be less expensive for manufacturing, for example, polymer products in high quantities, but 3D printing or additive manufacturing can be faster, more flexible and less expensive when producing relatively small quantities of three-dimensional objects.


It is anticipated that additive manufacturing becomes more and more important in the future, as the increasing competitive pressure forces companies to not only manufacture more economically with a constant high product quality but also to save time and costs in the area of product development. The life span of products is continuously shortened. In addition to product quality and product costs, the moment of market introduction is becoming increasingly important for the success of a product.


The three-dimensional object may be produced by selectively solidifying, in a layer-like fashion, a powder, paper or sheet material to produce a three-dimensional, 3D, object. In particular, a computer controlled additive manufacturing apparatus may be used which sequentially sinters a plurality of layers to build the desired object in a layer-by-layer fashion. Primarily additive processes are used, in which successive layers of material are laid down under computer control. These objects can be of almost any shape or geometry, and are produced from a 3D model or other electronic data source.


In order to print a three-dimensional object, a printable model is to be created with a computer design package or via a 3D scanner, for example. Usually, the input is a 3D CAD file such as an STL file, a STEP file or a IGS file. Before printing the object from a CAD file, the file is to be processed by a piece of software, which converts the model into a series of thin subsequent layers. Further, apparatus settings and vectors are generated for controlling the creation of each of the subsequent layers.


A laser comprised in the computer controlled additive manufacturing apparatus follows these settings and vectors to solidify successive layers of material to built the 3D object from a series of cross sections. These layers, which correspond to the virtual cross sections from the CAD model, are during this process joined or fused at the same time to create the final 3D object.


One of the challenges in the manufacturing of three dimensional objects, in particular in additive manufacturing of metal objects, is achieving a desired accuracy of the manufactured object. According to prior art practice, an object is manufactured on a build plate, wherein the object is joined to the build plate through solidification of material used to build the object. A drawback of this practice is a relative large variation in force required to separate the object from the build plate.


It is therefore an object of the invention to provide an apparatus for producing an object by means of additive manufacturing, having a reduced variation in force required to separate a manufactured object from the build plate.


Thereto, the invention provides an apparatus according to claim 1. The apparatus comprises, a process chamber for receiving a bath of material which can be solidified, in particular a bath of powdered material that can be solidified in order to make metal products. A support is provided for positioning the build plate in relation to the surface level of the bath of material. A solidifying device, such as a laser device, for solidifying a layer of the material on the surface, in particular by means of electromagnetic radiation, is provided. To reduce the variation of separation force a homing device is provided comprising a homing member that is formed by a recoating device, such as a wiper, which can be displaced along the surface of the bath of powdered for levelling the surface of the bath and along the build surface of the build plate. According to the invention the variation of separation force is reduced by moving the build surface, by the support, to a home position. Moving the build surface to the home position allows for an increased accuracy of a height of the bath of powdered material on the build surface of the build plate before starting manufacturing of an object. An increased accuracy of a height results in a more accurate solidification at the build surface, thereby reducing the variation of separation force required for removing the object from the build surface.


In an advantageous embodiment of the apparatus said home position comprises a substantially flat reference plane, wherein said homing device comprises a tilting device for tilting said build surface to a position wherein said build surface is substantially parallel to said substantially flat reference plane in dependence of said measured force for displacing said homing member. Such an embodiment is beneficial for realizing a reduced variation of separation force of the object along the build surface. A reduced variation along the surface of the object reduces the risk of local damaging the object upon removing the object from the build surface.


It is beneficial if said measured force for displacing said homing member is a driving torque of an actuator for displacing said homing member along said build surface of said build plate. Measuring a driving torque of an actuator such as an electromotor is a relative reliable way of determining the force for moving the homing member across the build surface.


According to a second aspect the invention relates to a method of producing an object by means of additive manufacturing on a build surface of a build plate, using an apparatus according to the first aspect of the invention. The method comprises the steps of:


displacing said homing member along said build surface of said build plate;


measuring said force for displacing said homing member;


moving said build surface to said home position until said measured force for displacing said homing member is within a pre-determined range. The advantages of the method according to the second aspect of the invention are analogue to the benefits of the apparatus according to the first aspect of the invention.


In an embodiment of the method is advantageous if during said step of measuring said force, said force is measured at least at two locations along said build surface, wherein during said step of moving said build surface to said home position said build surface is tilted towards said substantially flat reference plane in dependence of said force measured at said at least two locations.





An embodiment of the invention will be described in the following wherein:



FIG. 1 is a schematic overview of an apparatus according to the present invention for additive manufacturing an object.






FIG. 1 shows an overview of an apparatus 1 for producing an object by means of additive manufacturing. The apparatus 1 comprises a process chamber 5 for receiving a bath of powdered material which can be solidified. The bath of powdered material is receivable on a build surface 7 of a build plate 9. The build plate 9 may be positioned in relation to a substantially flat reference plane H and the bath of material via support 13. The support 13 is movably provided in a shaft 11, such that after solidifying a layer, the support 13 may be lowered, and a further layer of material may be solidified on top of the part of the object already formed. A tilting device 27 is provided for tilting the build surface 7 towards the substantially flat reference plane H. A solidifying device 15 is provided for solidifying a selective part of the material. In the embodiment shown, the solidifying device 15 is a laser device, which is arranged for producing electromagnetic radiation in the form of laser light, in order to melt a powdered material provided on the support 13, which then, after cooling forms a solidified part of the object to be produced. However, the invention is not limited to the type of solidifying device.


The apparatus 1 comprises a homing device 17 for moving the build surface 7 to a home position before building object. The homing device 17 is provided with a homing member 19 which can be displaced along the build surface 7. The homing member 19 is formed by a recoating device, such as a wiper, which can be displaced along the surface of the bath of powdered for levelling the surface of the bath and along the build surface 7 of the build plate 9. A force detection device 21 is provided for measuring a force for displacing the homing member 19 along the build surface 7. The force detection device 21 measures the torque of the actuator 25 for moving the homing member 19 along the build surface 7. The torque of the actuator 25 is measured at least at two locations of the homing member 19 along the build surface 7.


In case the forces measured by the force detection device 21 measured at the at least two locations are substantially equal but below the pre-determined force range, the build surface 7 is moved upwards in the process chamber 5 towards the reference plan H until the measured forces are within the pre-determined range. Should the measured forces both be above the pre-determined force-range, the build surface is moved downward in the process chamber 5 until the measured forces are within the pre-determined force range. When the forces measured at the at least two locations are not substantially equal the build surface 7 is tilted using the tilting device 27 to move the build surface 7 to a position wherein the build surface 7 is substantially parallel to the reference plane H.

Claims
  • 1. Apparatus (1) for producing an object by means of additive manufacturing, comprising: a process chamber (5) for receiving on a build surface (7) of a build plate (9) a bath of powdered material which can be solidified;a support (13) for positioning said build plate (9) in relation to a surface level of said bath of powdered material;a solidifying device (15) for solidifying a selective part of said material; anda homing device (17) for moving said build surface (7), by said support (13), to a home position such that said object can be build on said build surface (7) of said build plate (9), wherein said homing device (17) comprises a homing member (19) which can be displaced along said build surface (7) of said build plate (9), wherein said homing device (17) is designed for moving said build surface (7) to said home position until a measured force for displacing said homing member (19) is within a pre-determined range, wherein said homing member (19) is formed by a recoating device, such as a wiper, which can be displaced along the surface of the bath of powdered for levelling the surface of the bath and along the build surface (7) of the build plate (9).
  • 2. Apparatus (1) according to claim 1, wherein said home position comprises a substantially flat reference plane (H), wherein said homing device (17) comprises a tilting device (27) for tilting said build surface (7) to a position wherein said build surface (7) is substantially parallel to said substantially flat reference plane (H) in dependence of said measured force for displacing said homing member (19).
  • 3. Apparatus (1) according to claim 1, wherein said measured force for displacing said homing member (19) is a torque of an actuator (25) for displacing said homing member (9) along said build surface (7) of said build plate (9).
  • 4. Method of producing an object by means of additive manufacturing on a build surface (7) of a build plate (9), using an apparatus (1) according to claim 1, the method comprises the steps of: displacing said homing member (19) along said build surface (7) of said build plate (9);measuring said force for displacing said homing member (19);moving said build surface (7) to said home position until said measured force for displacing said homing member (19) is within a pre-determined range.
  • 5. Method according to claim 4, wherein during said step of measuring said force, said force is measured at least at two locations along said build surface (7), wherein during said step of moving said build surface (7) to said home position said build surface (7) is tilted towards said substantially flat reference plane (H) in dependence of said force measured at said at least two locations.
Priority Claims (1)
Number Date Country Kind
2017473 Sep 2016 NL national
PCT Information
Filing Document Filing Date Country Kind
PCT/NL2017/050610 9/18/2017 WO 00