Many electrical devices such as televisions, computers, computer monitors, stereo equipment, VCRs (video cassette recorders), DVDs (digital video disk players), printers, scanners, HDTVs (high definition televisions), and the like, can continue to consume power even when switched off. Over an extended period of time, nominally off electrical devices can consume a significant amount of electrical power and substantially raise the electrical bill of the user. One study found that 23% of electrical power consumed by a television and over 50% of the electrical power consumed by a VCR is used when the electrical devices are nominally off.
In another situation, a person might forget to turn off an electrical device when he is finished using the electrical device. For example, a person may remember to turn the computer off after he finishes using it. However, he may forget to turn off the printer, coupled to the computer, and the printer continues to consume electrical power when the person has no intention of using the printer for an extended period of time.
Power strips have become increasingly common because of the increased number of electrical devices in the home and office that people want to plug into a single outlet. Therefore, instead of plugging the electrical devices directly into the electrical outlet on the wall, many people use power strips, or the like.
When electrical devices are plugged into a power strip, a user can stop the power consumption of even nominally off electrical devices by toggling off the electrical power to the power strip. However, power strips are usually located behind a desk, a television stand, or the like, and accessing the power strips can be hard and/or inconvenient.
Accordingly, a need or potential for benefit exists for an apparatus or system that allows a user to easily switch on and off the electrical power to electrical outlets of a power strip without having to physical access the power strip.
To facilitate further description of the embodiments, the following drawings are provided in which:
For simplicity and clarity of illustration, the drawing figures illustrate the general manner of construction, and descriptions and details of well-known features and techniques may be omitted to avoid unnecessarily obscuring the invention. Additionally, elements in the drawing figures are not necessarily drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help improve understanding of embodiments of the present invention. The same reference numerals in different figures denote the same elements.
The terms “first,” “second,” “third,” “fourth,” and the like in the description and in the claims, if any, are used for distinguishing between similar elements and not necessarily for describing a particular sequential or chronological order. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the invention described herein are, for example, capable of operation in sequences other than those illustrated or otherwise described herein. Furthermore, the terms “include,” and “have,” and any variations thereof, are intended to cover a non-exclusive inclusion, such that a process, method, system, article, or apparatus that comprises a list of elements is not necessarily limited to those elements, but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
The terms “left,” “right,” “front,” “back,” “top,” “bottom,” “over,” “under,” and the like in the description and in the claims, if any, are used for descriptive purposes and not necessarily for describing permanent relative positions. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the invention described herein are, for example, capable of operation in other orientations than those illustrated or otherwise described herein. The term “on,” as used herein, is defined as on, at, or otherwise adjacent to or next to or over.
The terms “couple,” “coupled,” “couples,” “coupling,” and the like should be broadly understood and refer to connecting two or more elements or signals, electrical, physical, mechanical, and/or other manner. Two or more electrical elements may be electrically coupled but not be mechanically coupled; two or more mechanical elements may be mechanically coupled but not be electrically coupled; two or more electrical elements may be mechanically coupled but not be electrically coupled. Coupling (whether only mechanical, only electrical, or both) may be for any length of time, e.g., permanent or semi-permanent or only for an instant.
“Electrical coupling” and the like should be broadly understood and include coupling involving any electrical signal or connection, whether a power signal or connection, a data signal or connection, and/or other types or combinations of electrical signals or connections. “Mechanical coupling” and the like should be broadly understood and include mechanical coupling of all types.
The absence of the word “removably,” “removable,” and the like near the word “coupled,” and the like does not mean that the coupling, etc. in question is or is not removable.
A surge protector includes: (a) an electrical connector configured to receive electrical power; (b) one or more receivers configured to receive input via wireless signals, (c) at least one first switch electrically coupled to the electrical connector; (d) one or more first electrical outlets, and (e) one or more second electrical outlets electrically coupled to the electrical connector. In these embodiments, each switch of the at least one first switch is electrically coupled to at least one of the one or more first electrical outlets and at least one of the one or more receivers. The at least one first switch is configured to turn on or turn off the electrical power to the one or more first electrical outlets based on the input received by the one or more receivers. Furthermore, the one or more second electrical outlets are coupled to the electrical connector such that when the electrical connector receives electrical power, the one or more second electrical outlets receive electrical power.
Another embodiment discloses an apparatus for providing electrical power to a first electrical device. The apparatus includes: (a) an electrical power device having: (1) a switch; (2) at least two first electrical connectors electrically coupled to the switch; (3) at least one second electrical connector; and (4) a receiver electrically coupled to the switch and configured to wirelessly receive information; and (b) a control device having: (1) a transmitter configured to wirelessly transmit the information to the receiver of the electrical power device; and (2) a user input mechanism electrically coupled to the transmitter and configured to receive the information from a user. In these embodiments, the switch is configured to toggle electrical power to the at least two first electrical connectors based on the information received by the receiver. The at least one second electrical connector receives electrical power when the electrical power device is receiving electrical power regardless of the information received by the receiver.
Still another embodiment discloses a system for providing electrical power to at least one first electrical device. The system includes: (a) a electrical power device having: (1) at least one first electrical connector configured to electrically couple to the at least one first electrical device; (2) a first receiver configured to receive a first wireless signal over a first medium; and (3) a switch electrically coupled to the first receiver and the at least one first electrical connector, the switch configured to control providing of electrical power to the at least one first electrical connector based on the first wireless signal; and (b) a signal management device having: (1) a second receiver configured to receive a second wireless signal over a second medium; and (2) a first transmitter electrically coupled to the second receiver and configured to transmit the first wireless signal over the first medium.
A further embodiment discloses a method of providing electrical power to a first electrical device and a second electrical device. The method including: (a) electrically coupling a first electrical outlet of a electrical power device to an electrical connector of the first electrical device, (b) electrically coupling a second electrical outlet of the electrical power device to an electrical connector of the second electrical device; (c) receiving first input from a user; (d) transmitting a first signal over a first wireless medium, the first signal comprises the first input; (e) receiving the first signal; (f) providing or stopping to provide electrical power to the first electrical connector of the first electrical device based on the first signal; and (g) providing electrical power to the second electrical connector of the second electrical device regardless of the first signal.
A still additional embodiment discloses an apparatus capable of providing electrical power. The apparatus includes: (a) a power strip with at least two electrical outlets; (b) a remote control configured to receive user input; (c) a base station configured to receive the user input via a first electromagnetic signal from the remote control and transmit the user input to the power strip via a second electromagnetic signal. In this embodiment, the power strip is configured to toggle electrical power to at least a first one of the at least two electrical outlets based on the user input. In some examples, the base station is configured to removably couple to the remote control such that the base station can provide electrical power to the remote control.
Turning to the drawings,
In some embodiments, a system or an apparatus 100 for an electrical device (not shown) can include: (a) a control device 110; and (b) an electrical power device 120. Control device 110 can be configured to control electrical power device 120.
In many examples, a user can input instructions into control device 110, and control device 110 communicates the instructions to electrical power device 120 via a wireless medium. Electrical power device 120 can carry out the instructions from the user and provide electrical power to, or stop providing electrical power to, one or more electrical devices coupled to electrical power device 120. Allowing a user to remotely turn on or turn off at least a portion of the electrical outlets of electrical power device 120, enables the user to cut electrical power to specific electrical devices when the electrical device is not in use. Accordingly, the power consumption by electrical devices not in use or nominally off can be stopped without having to turn off all the electrical devices coupled to electrical power device 120 and with having to physically access electrical power device 120.
In some embodiments, control device 110 can communicate the wireless signal to electrical power device 120 using a radio frequency signal. In various examples, using a radio frequency signal is preferred because radio frequency signal can pass through objects (e.g., desks and television stands). In other embodiments, control device 110 can communicate using infrared, Bluetooth, WiFi (Wireless Fidelity), or other wireless signals.
The embodiments described herein and illustrated in the figures exemplify an electrical power device 120 as a power strip. However, electrical power device 120 can be or include a power strip, power conditioners, a charging station, surge protectors, battery back-ups, duplex outlets, extension cords, and the like. In some embodiments, the power strip can include a surge protector. In the same or different embodiments, apparatus 100 can include more than one power strip configured to receive user instructions via control device 110.
In the illustrated examples, each of electrical outlets 131, 132, 133, 134, 135, 136, 141, and 142 have three receptacles: hot, neutral, and ground. In some examples, one of the hot and neutral receptacles of each of electrical outlets 131, 132, 133, 134, 135, and 136 are electrically coupled to switch 221. The ground prong and the other one of the hot and neutral receptacles of each of electrical outlets 131, 132, 133, 134, 135, and 136 are electrically coupled to plug 211. In the illustrated embodiment, all three receptacles of electrical outlets 141 and 142 are electrically coupled to plug 211 without being routed through switch 221. Also, electrical outlets 141 and 142 are not controlled by power toggle mechanism 123 or receiver 222. That is, electrical outlets 141 and 142 are always on when plug 211 is coupled to an external electrical source (e.g., a wall electrical outlet).
Switch 221 is configured to toggle electrical power on and off to electrical outlets 131, 132, 133, 134, 135, and 136. In some examples, switch 221 can toggle the electrical power in each of electrical outlets 131, 132, 133, 134, 135, and 136 individually. For example, switch 221 could turn off electrical outlet 131 while leaving electrical outlets 132, 133, 134, 135, and 136 in their current power status (i.e., on or off).
In other examples, switch 221 can be configured to change the power status of groups of electrical outlets 131, 132, 133, 134, 135, and 136. For example, switch 221 could be configured such that electrical outlets 131, 132, and 133 are always tuned on and off together. Likewise, in these examples, switch 221 could be configured to always turn on or turn off electrical outlets 134, 135, and 136 as a group. In yet a further embodiment, switch 221 can be configured to toggle the electrical power to all of electrical outlets 131, 132, 133, 134, 135, and 136 as a group.
Receiver 222 can be configured to receive electromagnetic signals and communicate the information in the electromagnetic signals to switch 221. That is, receiver 222 can receive instructions from control device 110 regarding toggling electrical power to one or more of electrical outlets 131, 132, 133, 134, 135, and 136. In some examples, receiver 222 is configured to receive RF signals. In some examples, receiver 222 can be configured to receive infrared, Bluetooth, Wi-Fi or other wireless signals.
In some embodiments, electrical power device 120 can include a second receiver (not shown) to receive signals over a second medium, or receiver 222 could be configured to receive signals over a second medium. In the same or different embodiments, switch 221 and receiver 222 can be integrated into a single component, instead of being two separate components. For example, a single integrated circuit or controller could include receiver 222 and switch 221.
In some embodiments, electrical power device 120 can also include power toggle mechanism 123. In many examples, power toggle mechanism 123 is a button, a knob, a keypad, a touch screen, a mechanical switch, or a multitude of such devices that allows a user to manually turn on or off the power to electrical outlets 131, 132, 133, 134, 135, and 136. In other embodiments, power toggle mechanism 123 can be configured to allow a user to turn on or turn off all or a subset of electrical outlets 131, 132, 133, 134, 135, 136, 141, and 142.
In some embodiments, electrical power device 120 can also include a visual indication 125 (
In the example illustrated in
In the same or different example, the exterior surface of electrical power device 120 can include text or a sticker identifying the controllable electrical outlets. In still other embodiments, the exterior surface region around the controllable electrical outlets can be raised or depressed in relation to the exterior surface region around the non-controllable outlets.
In some embodiments, electrical outlets 131, 132, 133, 134, 135, 136, 141, and 142 can be standard AC (alternative current) outlets. In other examples, one or more of electrical outlets 131, 132, 133, 134, 135, 136, 141, and 142 can be DC (direct current) connectors or other types of connectors such as USB (universal serial bus) connectors, RJ11 (registered jack) connectors, or the like.
In some examples, electrical power device 120 can include additional electrical components used to provide electrical power to electrical outlets 131, 132, 133, 134, 135, 136, 141, and 142. In these examples, switch 221 can also stop providing electrical power to one or more of these electrical components when electrical power device 120 stops providing electrical power to electrical outlets 131, 132, 133, 134, 135, and 136. Stopping providing electrical power to these electrical components can help reduce the electrical power used by electrical power device 120.
In some examples, electrical power device 120 can include additional electrical components used to provide electrical power to electrical outlets 131, 132, 133, 134, and 141. In these examples, switch 221 can also stop providing electrical power to one or more of these electrical components when electrical power device 120 stops providing electrical power to electrical outlets 131, 132, 133, 134, and 141. Stopping providing electrical power to these electrical components can help reduce the electrical power used by electrical power device 120.
For example, if electrical power device 120 receives AC electrical power and converts the AC electrical power into DC electrical power, electrical power device 120 can include transformers, bridge rectifiers, and the like. When switch 221 stops providing electrical power to electrical outlets 131, 132, 133, and/or 134, electrical power device 120 can also stop providing electrical power to one or more of the transformer, bridge rectifiers, and the like.
User input mechanism 112 can be configured to receive instructions from a user. In various examples, user input mechanism 112 can be one or more buttons or knobs, mechanical switches, or a keypad. In another example, user input mechanism 112 can be a touch screen. User input mechanism 112 can be configured to communicate the user instruction to transmitter 311.
Transmitter 311 is configured to transmit the user instructions using a wireless signal to electrical power device 120 (
In many embodiments, control device 110 can have a second transmitter (no shown) configured to transmit wireless signals using a second medium or frequency. In yet still other embodiments, transmitter 311 can transmit wireless signals using two or more mediums or frequencies.
Power management system 314 is configured to provide power for control device 110. In one example, power management system 314 can include one or more batteries 316. Batteries 316 can provide electrical power to control device 110. In various examples, batteries 316 can be disposable or rechargeable batteries.
In the same or different examples, control device 110 can be a standard universal remote or a remote for a television, cable box, audio system, or the like. That is, in some embodiments, control device 110 is not a device specially designed and manufactured to work with apparatus 100. Control device 110 can be a device capable of transmitting wireless signals over the predetermined medium and capable of being programmed to control electrical power device 120 for example.
Referring, to
In the embodiment illustrated in
Power toggle mechanism 123 can be coupled between plug 211 and electrical outlets 131, 132, and 133. In this embodiment, power toggle mechanism 123 can turn on or turn off electrical power to electrical outlets 131, 132, and 133
Referring to
In the embodiment illustrated in
In this embodiment, each of receivers 571, 572, 573, and 574 is configured to receive information regarding turning on or turning off electrical outlets 131, 132, 133, and 134, respectively. That is, receivers 571, 572, 573, and 574 are configured to receive instructions via an electromagnetic signal from control device 110 (
Receivers 571, 572, 573, and 574 can be identical or similar to receiver 222 (
Turning to a further embodiment,
Electrical power device 620 can include: (a) electrical outlets 131, 132, 133, 134, 135, and 136; (b) a switch 625; (c) one or more switches 651, 652, 653, 654, 655, and 656; (d) electrical plug 211 electrically coupled to switches 625, 651, 652, 653, 654, 655, 656, and 656, electrical outlets 131, 132, 133, 134, 135, and 136, and switch 625; and (d) cable 109 coupling plug 211 to switches 625, 651, 652, 653, 654, 655, 656, and 656 and electrical outlets 131, 132, 133, 134, 135.
Switches 651, 652, 653, 654, 655, and 656 are electrically coupled to electrical outlets 131, 132, 133, 134, 135, and 136, respectively. In this embodiment, a user can chose which of electrical outlets 131, 132, 133, 134, 135, and 136 are controllable by control device 110 using switches 651, 652, 653, 654, 655, and 656.
Switches 651, 652, 653, 654, 655, and 656 allow a user to choose one of three states (on, off, or remote controlled) for each of electrical outlets 131, 132, 133, 134, 135, and 136. For example, using switch 651, a user can choose if electrical outlet 131 is on, off, or remote controlled. If a user chooses to set switch 651 in the remote controlled position, a user can toggle the electrical power to electrical outlet 131 using control device 110. If a user sets electrical outlet 131 in the on position using switch 651, electrical power is provided to electrical outlet 131 until the user changes the setting using switch 651. If the user sets electrical outlet 131 in the off position using switch 651, electrical power is not provided to electrical outlet is off until the user changes the setting using switch 651.
In other embodiments, switches 651, 652, 653, 654, 655, and 656 allow a user to choose one of two states (off or remote control) for each of electrical outlets 131, 132, 133, 134, 135, and 136. In still a further embodiments, switches 651, 652, 653, 654, 655, and 656 allow a user to choose one of two states (on or remote control) for each of electrical outlets 131, 132, 133, 134, 135, and 136.
Switch 625 is configured receive user instructions via electromagnetic signals from control device 110. Based on the user instructions, switch 625 is configured to toggle electrical power to the electrical outlets that the user selected to be remote controlled using switches 651, 652, 653, 654, 655, and 656. In some embodiments, switch 625 can be identical to or similar to the combination of switch 221 (
Turning to a yet another embodiment,
Electrical power device 720 can include: (a) electrical outlets 131, 132, 133, 134, 135, and 136; (b) switch 625; (c) one or more switches 751, 752, 753, 754, 755, and 756; (d) a controller 767; (e) electrical plug 211 electrically coupled to switches 751, 752, 753, 754, 755, 756, and 756, electrical outlets 131, 132, 133, 134, 135, and 136, and controller 767; and (f) cable 109 coupling plug 211 to switches 751, 752, 753, 754, 755, 756, and 756 and electrical outlets 131, 132, 133, 134, 135.
Controller 767 can be configured to control switches 751, 752, 753, 754, 755, and 756. Similar to switches 651, 652, 653, 654, 655, and 656 in
In this embodiment, charging station 920 includes: (a) two or more connectors or outlets 131 and 132; (b) a switching system 1029 having switches 925 and 926; (c) plug 211 electrically coupled to switching system 1029 and electrical outlets 131 and 132; and (d) cable 109 coupling plug 211 to switching system 1029 and electrical outlets 131 and 132.
In some examples, outlets 131 and 132 can be part of a power strip, surge protector, or the like. Electrical outlets 131 and 132 can be electrically coupled to switches 925 and 926, respectively. In one example, electrical device 991 and electrical device 992 can be coupled to electrical outlets 131 and 132, respectively. In some examples, electrical devices 991 and 992 can be electrical devices or accessories such as mobile phones, personal digital assistants (PDAs), digital music (MP3) players, or the like.
Switches 925 and 926 allow a user to independently toggle the electrical power to each of electrical outlets 131 and 132, respectively. In some embodiments, switches 925 and 926 are controllable by a control device 110 (
In one example, switching system 1029 could use a mechanical, optical, or weight system to automatically switch the electrical power on or off to each of electrical outlets 131 and 132. For example, tray 981 could include a device that detects the weight of electrical devices 991 or 992 and turn on the electrical power to at least one of electrical outlet 131 and 132 when the weight of the item is detected in tray 981. In another example, switching system 1029 could use an optical sensor to detect the placement of either of electrical devices 991 and 992 in tray 981. Switching system 1029 can also wirelessly receive user input.
In some examples, charging station can include one or more visual indicators 982 and 983. Visual indicators 982 and 983 can show that electrical power is being supplied to electrical outlets 131 and 132, respectively. For example, visual indicators 982 and 983 could be lights or a digital display.
Electrical outlets 131 and 132 are shown in
Referring to
The next activity in method 1100 of
The next activity in method 1100 of
A subsequent activity in method 1100 of
The next activity in method 1100 of
A subsequent activity in method 1100 of
The next activity in method 1100 of
Activity 1163 through activity 1166 can be repeated to change the power setting of any or all of the first electrical outlets based on input from a user
Turning to another embodiment,
In some embodiments, an apparatus or system 1200 for providing electrical power to electrical device 1250 can include: (a) a remote control or a control device 1210; (b) a base station or a signal management device 1230; and (c) an electrical power device 120.
In some embodiments, electrical power device 120 is configured to provide electrical power or stop providing electrical power to electrical device 1250 based on user input or instructions received from signal management device 1230 and/or control device 1210 via signal management device 1230. That is, in various examples, control device 1210 can receive instructions from a user and wirelessly transmit those instructions using a first wireless medium (i.e. an electromagnetic signal) to signal management device 1230. Signal management device 1230 can wirelessly transmit the instructions to electrical power device 120 using a second wireless medium. Electrical power device 120 can use those instructions to toggle the power (i.e., turn on or turn off) the electrical outlet coupled to electrical device 1250.
Allowing a user to remotely turn on or turn off electrical outlets of electrical power device 120, enables the user to cut electrical power to specific electrical devices when the electrical device is not in use. Accordingly, the power consumption by electrical devices not in use or nominally off can be stopped without having to turn off all the electrical devices coupled to electrical power device 120 and without having to physically access electrical power device 120.
In some examples, the first wireless medium is an infrared signal. In the same or different embodiments, the second wireless medium is an RF (radio frequency) signal. In other embodiment, either or both of the wireless mediums can be infrared signals or RF signals.
In some examples, using an infrared signal for the first wireless medium and a radio frequency signal as the second wireless medium is preferred because radio frequency signal can pass through objects (e.g., desks and television stands). Furthermore, using an infrared signal as the first wireless medium would make system 1200 compatible with many existing programmable universal, television, audio system, video cassette recorder (VCR), and digital video disk (DVD) remotes. In some embodiments, control device 1210 can communicate using an infrared, Bluetooth, Wi-Fi, or other wireless signal.
User input mechanism 1313 can be configured to receive instructions from a user. In one example, user input mechanism 1313 can be one or more buttons or knobs, a keypad, or mechanical switches. In another example, user input mechanism 1313 can be a touch screen. User input mechanism 1313 can be configured to communicate the user instruction to transmitter 1311.
Transmitter 1311 is configured to transmit the user instruction using a wireless signal to signal management device 1230 (
Power management system 1314 is configured to provide power for control device 1210 (
In one example, power management system 1314 can include: (a) one or more batteries 1316; and (b) a coupling mechanism 1315. Coupling mechanism 1315 can be configured to couple to a coupling mechanism 1425 (
When coupling mechanism 1315 is coupled to coupling mechanism 1425 (
In other embodiments, power management system 1314 can be devoid of coupling mechanism 1315. In some examples, control device 1210 can be a standard universal remote or a remote for a television, cable box, audio system or the like. That is, control device 1210 does not have be a device specially designed and manufactured to work with system 1200. Control device 1210 can be a device capable of transmitting wireless signals over the predetermined medium and capable of being programmed to control electrical power device 120. In various examples, system 1200 can be configured such that using a control device 1210 to turn on or off an electrical device also turns on or off, respectively, the electrical outlet in electrical power device 120 that the electrical device is coupled to. For example, when a user turns on a television using the remote control for the television, system 1200 could also receive this wireless signal and turn on the electrical outlet in electrical power device 120 coupled to the television. In another embodiment, a different button on the remote control for the television could be programmed to toggle the power for the electrical outlet coupled to the television.
In some examples, signal management device 1230 can include: (a) a receiver 1421; (b) a transmitter 1422 electrically coupled to receiver 1421; (c) a power management system 1423; and (d) a user input mechanism 1426.
Receiver 1421 can be configured to receive a wireless signal over the same medium and frequency as transmitter 1311 (
After receiving the wireless signal from transmitter 1311 (
In some embodiments, user input mechanism 1426 can receive user instructions from the user. In these embodiments, user input mechanism 1426 communicates the user instructions to transmitter 1422, which transmits the instructions via a wireless signal over the second medium. In many examples, user input mechanism 1426 can be similar to or identical to user input mechanism 1313 (
In various embodiments, power management system 1423 can provide electrical power for signal management device 1230. Power management system 1423 includes a coupling mechanism 1425. Coupling mechanism 1425 can be configured to couple to coupling mechanism 1315 (
In some embodiments, signal management device 1230 can also have other functions or be integrated with other electrical devices. For example, signal management device 1230 could include or be integrated with an electrical device for cable or satellite television (e.g., a cable box). In other examples, signal management device could be integrated with audio equipments or a DVD player.
In many embodiments, the first activity in method 1500 is an activity 1561 of electrically coupling an electrical outlet of an electrical power device to an electrical connector of a first electrical device. For example, the electrical power device of activity 1161 can be identical or similar to electrical power device 120, 420, 520, 620720, 820, or 920 of
Referencing again
A subsequent activity in method 1500 is an activity 1563 of transmitting a first wireless signal over a first wireless medium. The signal transmitted over the first wireless medium can contain the first input from activity 1562. In various embodiments, activity 1563 can include transmitting the first wireless signal over the first wireless medium using a control device. In the example illustrated in
The next activity in method 1500 is an activity 1564 of receiving the first wireless signal. In many embodiments, activity 1564 can include receiving the first wireless signal in a signal management device. In the example illustrated in
The next activity in method 1500 is an activity 1565 of converting the first wireless signal into the second wireless signal. Like the first wireless signal, the second wireless signal can contain the first input from activity 1562. In some examples, receiver 1421 (
A subsequent activity in method 1500 is an activity 1566 of transmitting or relaying the second wireless signal over a second wireless medium. In numerous embodiments, activity 1566 can include transmitting the second wireless signal over the second wireless medium using the signal management device. In the example illustrated in
The next activity in method 1500 is an activity 1567 of receiving the second wireless signal in the electrical power device. In the example illustrated in
A subsequent activity in method 1500 is an activity 1568 of providing or stopping to provide electrical power to the first electrical device based on the second wireless signal. In one example, the second wireless signal is translated to an intermediary signal (i.e., an electrical signal inside the electrical power device) and transmitted from receiver 222 (
Activity 1562 through activity 1568 of method 1500 can be repeated to change the power setting of electrical outlets based on user instructions entered into the control device.
Turning to another embodiment,
In some examples of system 1600, control device 1210 can receive instructions from a user and wirelessly transmit the user instructions to repeater 1640 over a first medium. Repeater 1640 can retransmit or relay the user instruction to signal management device 1230 over the first medium or a second medium. Signal management device 1230 can receive the user instructions and wirelessly transmit or further relay the user instruction to electrical power device 120 using the first or second medium or a third medium. Finally, electrical power device 120 can use the user instructions to turn on or off the electrical outlet coupled to electrical device 1250.
Although the invention has been described with reference to specific embodiments, it will be understood by those skilled in the art that various changes may be made without departing from the spirit or scope of the invention. For example, the power strip can have different number of electrical outlets. That is, the power strip could have two electrical outlets, three electrical outlets, four electrical outlets, five electrical outlets, etc. Furthermore, the electrical outlets can be two receptacle outlets (i.e., no ground receptacle) instead of the three receptacle outlets. In yet another example, signal management device 1230 can include a second transmitter and/or second receiver. The second transmitter and/or second receiver would allow signal management device 1230 to receive and/or transmit on two frequencies and/or using two different mediums (e.g., RF signals and infrared signals). Likewise, control device 110 can have two transmitters and electrical power device 120 can have two receivers. Additional examples of such changes have been given in the foregoing description. Accordingly, the disclosure of embodiments of the invention is intended to be illustrative of the scope of the invention and is not intended to be limiting.
It is intended that the scope of the invention shall be limited only to the extent required by the appended claims. To one of ordinary skill in the art, it will be readily apparent that the power strip, apparatus, device, system, and method of use discussed herein may be implemented in a variety of embodiments, and that the foregoing discussion of certain of these embodiments does not necessarily represent a complete description of all possible embodiments. Rather, the detailed description of the drawings, and the drawings themselves, disclose at least one preferred embodiment of the invention, and may disclose alternative embodiments of the invention.
All elements claimed in any particular claim are essential to the invention claimed in that particular claim. Consequently, replacement of one or more claimed elements constitutes reconstruction and not repair. Additionally, benefits, other advantages, and solutions to problems have been described with regard to specific embodiments. The benefits, advantages, solutions to problems, and any element or elements that may cause any benefit, advantage, or solution to occur or become more pronounced, however, are not to be construed as critical, required. or essential features or elements of any or all of the claims.
Moreover, embodiments and limitations disclosed herein are not dedicated to the public under the doctrine of dedication if the embodiments and/or limitations: (1) are not expressly claimed in the claims; and (2) are or are potentially equivalents of express elements and/or limitations in the claims under the doctrine of equivalents.
This application claims the benefit of U.S. Provisional Application No. 60/977,312, filed Oct. 3, 2007 and U.S. Provisional Application No. 60/977,248, filed Oct. 3, 2007. This is also a continuation-in-part application of U.S. application Ser. No. 12/034,836, filed Feb. 21, 2008. U.S. Provisional Application Nos. 60/977,312 and 60/977,248 and U.S. application Ser. No. 12/034,836 are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60977312 | Oct 2007 | US | |
60977248 | Oct 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12034836 | Feb 2008 | US |
Child | 12245556 | US |