Apparatus for providing power management in data communication systems

Information

  • Patent Grant
  • 8906307
  • Patent Number
    8,906,307
  • Date Filed
    Wednesday, August 18, 2010
    14 years ago
  • Date Issued
    Tuesday, December 9, 2014
    9 years ago
Abstract
A blood glucose meter having a compact housing, a display unit disposed on the housing, the display unit including a display light source to illuminate the display unit, an input unit disposed on the housing, the input unit configured to provide input functions for the blood glucose meter, and a power source provided within the housing for providing power to the blood glucose meter, where the housing includes a port integrated on said housing configured to receive a blood glucose test strip, and corresponding methods of measuring blood glucose meter is provided.
Description
BACKGROUND

The present invention relates to data monitoring systems. More specifically, the present invention relates to portable analyte monitoring systems. More specifically, the present invention relates to a compact, blood glucose meter for use in a glucose monitoring system to self-monitor glucose level in whole blood, as an aid to disease management, and also by healthcare professionals as an aid to monitor the effectiveness of diabetes treatment.


SUMMARY OF THE INVENTION

The market for glucose monitoring systems in the United States as well as globally is rapidly increasing, as better health education and early detection of diabetic conditions through regular check ups have increased the percentage of the diabetic population who undertake the task of monitoring their diet and daily activities based on the detected level of blood glucose using glucose monitoring systems. One group of such rapidly increasing segment of the population is children with diabetic conditions who are advised to monitor their blood glucose levels.


While miniaturization has been a factor of recent designs in the glucose monitoring systems and the glucose meters, the physical constraints of the components of such systems have established a certain size limitation. As such, the larger and bulkier the device, the less desirable and convenient for the device to be carried around or used and operated by the patients, especially children.


In view of the foregoing, in accordance with the various embodiments of the present invention, there is provided a blood glucose meter which is designed to be substantially more compact than presently available commercial blood glucose meters, which configuration that is much more amenable to usage and portage by younger diabetic patients such as children.


More specifically, in one aspect of the invention, the blood glucose meter is configured to include a LCD backlight and a flashlight features which will assist the patient in reading the metered glucose level in low-light testing areas such as in theaters, low ambient light restaurants, areas, outdoors during non-daylight times and so on, as well as a light source to guide the insertion and removal of the test strip, which may include the usage of a light emitting diode. Indeed, as the light source (e.g., the LED) may be pulsed and still display substantially the same light output as one which is turned on in steady state, the battery life of the glucose meter device may be prolonged since the pulsed LED light source requires significantly less power (and thus draining the battery at a much slower rate) than when the LED light source is maintained at the on position. Indeed, in one embodiment, the central processing unit of the glucose meter device may be configured to control the switching on and off of the light source as well as the level of light intensity by, for example, adjusting the duty cycle and the period during which the light source is configured to be turned on.


Additionally, in accordance with a further aspect of the invention, the blood glucose meter may include a numerically displayed clock with a date display which may be visible when the meter is not in use. Moreover, the clock feature in yet a further embodiment of the present invention may include an alarm which would allow the users to set alarm reminder for performing blood glucose level testing, where the alarm feature may include one or a combination of an auditory alarm, a visual alarm alert, and a vibration alert mode.


Indeed, a blood glucose meter in accordance with one embodiment of the present invention includes a compact housing for a blood glucose meter, a display unit disposed on the housing, the display unit configured to display information related to the blood glucose meter, an input unit disposed on the housing, the input unit configured to provide input functions for the blood glucose meter, and a power source provided within the housing for providing power to the blood glucose meter.


The display unit may include one of a liquid crystal display (LCD), a touch sensitive screen, and a plasma display unit.


The display unit may also include a light source to illuminate the display unit, where the light source may be configured to provide a backlight function and a flashlight function of the display unit.


The light source in one embodiment may be configured to be pulsed at a frequency greater than 60-100 Hertz. Moreover, the light source may further configured to have a peak wavelength of approximately 570 nanometers.


In one embodiment, the light source may include a light emitting diode (LED), and more specifically, a yellow-green LED.


In a further embodiment, the housing may include a port integrated on the housing configured to receive a blood glucose test strip.


The port may include a light source that may be configured to substantially illuminate the port to assist in the insertion and/or removal of the blood glucose test strip.


In yet another embodiment, the display unit may be configured to illuminate upon detection of a blood glucose test strip insertion into the port. Further, the display unit may be configured to remain illuminated until the test strip is removed from the port.


The input unit in one embodiment may include an on/off switch.


A blood glucose meter in accordance with another embodiment includes a compact housing for a blood glucose meter, a display unit disposed on the housing, the display unit including a display light source to illuminate the display unit, an input unit disposed on the housing, the input unit configured to provide input functions for the blood glucose meter, and a power source provided within the housing for providing power to the blood glucose meter, where the housing includes a port integrated on said housing configured to receive a blood glucose test strip.


The port in one embodiment may include a port light source, the port light source configured to substantially illuminate the port to assist in the insertion and/or removal of the blood glucose test strip.


Additionally, in an alternate embodiment, the port light source may be integrated with the display light source.


A method of measuring blood glucose level in accordance with yet another embodiment of the present invention includes the steps of providing a compact housing, disposing a display unit on the housing, the display unit including a display light source to illuminate the display unit, disposing an input unit on the housing, the input unit configured to provide input functions for the blood glucose meter, providing a power source within the housing for providing power to the blood glucose meter, where the housing includes a port integrated on said housing configured to receive a blood glucose test strip.


These and other features and advantages of the present invention will be understood upon consideration of the following detailed description of the invention and the accompanying drawings.


INCORPORATION BY REFERENCE

Applicants herein incorporate by reference application Ser. No. 09/434,026 filed Nov. 4, 1999 entitled “Small Volume In Vitro Analyte Sensor and Methods”, application Ser. No. 09/753,746 filed on Jan. 2, 2001 entitled “Analyte Monitoring Device and Methods of Use”, and Application Nos. 60/437,374 filed Dec. 31, 2002 and application Ser. No. 10/745,878 filed Dec. 26, 2003 both entitled “Continuous Glucose Monitoring System and Methods of Use”, each assigned to the Assignee of the present application for all purposes.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram illustrating an overall glucose monitoring system in accordance with one embodiment of the present invention;



FIG. 2 is a block diagram illustrating a glucose meter device shown in FIG. 1 in accordance with one embodiment of the present invention;



FIG. 3 illustrates the glucose meter device of FIG. 2 in accordance with one embodiment of the present invention;



FIGS. 4A and 4B illustrate the display screen of the glucose meter device in accordance with one embodiment of the present invention;



FIG. 5 is a flowchart illustrating the procedure for performing a blood glucose test using the glucose meter device in accordance with one embodiment of the present invention; and



FIG. 6 illustrates the output LED power level as a function of the power state in accordance with one embodiment of the present invention.





DETAILED DESCRIPTION


FIG. 1 is a block diagram illustrating an overall glucose monitoring system in accordance with one embodiment of the present invention. Referring to the Figure, the glucose monitoring system 100 in accordance with one embodiment includes a glucose meter device 103 configured to receive a test strip 102 which is used to collect the blood sample for determining the blood glucose level of the user 101. The lancing device 104 is used to draw the blood sample from the user 101 to be collected onto the test strip 102. In one embodiment, the lancing device 104 may be used on the user's fingers, forearm, upper arm, hand, thigh or calf, for example. Moreover, the glucose meter device 103 and the system 100 is configured such that a very small blood sample size such as, for example, approximately 0.3 microliter of sample blood, is necessary to determine a corresponding blood glucose level.


As can be further seen from FIG. 1, the glucose meter device 103 may be operatively coupled to an external computer 105 which may include, in one embodiment, a server terminal connected to a data network, a stand along desktop or laptop computer for use by the user's physician or care provider (or the user herself), a personal digital assistant (PDA) which is operatively configured to store and/or further, to communicate with a data network to transmit and receive patient data related to the glucose level detected from the collected blood sample, for further diagnosis, analysis and the like.


In one embodiment, the user 101 may provide the configuration parameters as well as calibration code to the glucose meter device 103, while the glucose meter device 103 may be configured to output signal prompts to the user 101 such as to indicate a sample fill signal and a sample result signal, and further, to output display the resulting measured blood glucose level from the sampled blood from the user 101. Furthermore, after the user 101 is lanced with the lancing device 104 to generate sufficient amount of sample blood, the test strip 102 is provided in contact thereto (i.e., to the sample blood) while the test strip 102 is operatively coupled to the glucose meter device 103. In this manner, the glucose meter device 103 may in one embodiment be configured to alert the user that the amount of blood sample on the test strip 102 is sufficient to determine the corresponding blood glucose level.


In one aspect of the present invention, the glucose meter device 103 may be configured to make clinical measurements of glucose in whole blood in the range for approximately 20 to 500 mg/dL. Furthermore, as discussed in further detail below, the glucose meter device 103 may be configured to include a display unit which is configured to operate as a user interface to visually interact with the user 101 to prompt for data input, or alternatively, to provide information to the user 101 corresponding to the user's operation of one or more functions of the glucose meter device 103. In one embodiment, the display unit of the glucose meter device 103 may include a LCD display screen which may further be configured, in an alternate embodiment to include a touch-sensitive pad so as to allow the user 101 to input data therethrough. Moreover, in a further embodiment of the present invention, the display unit of the glucose meter device 103 may be configured to include a backlight feature which would permit the user 101 to operate the glucose meter device 103 in a dark ambient setting such as in a theater, outdoor at night, and the like.



FIG. 2 is a block diagram illustrating a glucose meter device shown in FIG. 1 in accordance with one embodiment of the present invention. Referring to FIG. 2, the glucose meter device 103 in accordance with one embodiment of the present invention includes a central processing unit 206 operatively coupled to a digital data processing unit 204. The central processing unit 206 is further operatively coupled to a storage unit 207 which, in one embodiment, may include one or more of a data storage unit, a random access memory unit and a read-only memory unit. As can be further seen from the Figure, the digital data processing unit 204 is further operatively coupled to an input/output (I/O) interface unit 205 which, in one embodiment, is configured to interface with the external computer 105 (FIG. 1).


Moreover, in the glucose meter device 103, there is provided an analog data processing unit 201 which is configured to detect and process analog signals and which is further operatively coupled to the digital data processing unit 204 for digital data processing of the detected and processed analog signals received from the analog data processing unit 201 in one embodiment of the present invention. Referring back to FIG. 2, the analog data processing unit 201 of the glucose meter device 103 is further configured to operatively couple to a test strip connector unit 202 which is configured to engage with a test strip 102 (FIG. 1) when inserted into the glucose meter device 103. Thereafter, the analog data processing unit 201 as mentioned above is configured to detect the signal level from the collected blood sample received from the test strip 102 (FIG. 1) via the test strip connector unit 202, and to transmit that detected and analog processed data to the digital data processing unit 204 for further data processing.


Referring yet again to FIG. 2, there is also shown a user interface unit 203 provided to the glucose meter device 103. As can be seen, the user interface unit 203 is operatively coupled to the user 101 (FIG. 1) to receive input data or instructions therefrom, or alternatively, to output the processed and/or generated information to the user 101. More specifically, in accordance with one embodiment of the present invention, the user interface unit 203 may include a display unit, an input device such as an input keypad, or any other equivalent device which may provide substantially the same functionality as the input device such as an input keypad.


Additionally, the display unit of the user interface unit 203 may include an LCD display unit which is also capable of providing backlighting so as to permit the user to view the displayed information on the backlit display unit of the user interface unit 203 in dark ambient settings. Moreover, in an alternate embodiment of the present invention, the user interface unit 203 may also include a flashlight feature which, upon activation by the user, is configured to emit a consistent light beam to assist the user in the operation of the glucose meter device 103 and/or the lancing device 104 in dark surroundings. Further, the flashlight feature may also be configured to include a timer function such that the flashlight is configured, in one embodiment, to automatically turn off after a predetermined period of time has elapsed. In this manner, the power source for the glucose meter device 103 (FIG. 1) may be conserved in the cases where the user 101 leaves the flashlight feature on the glucose meter device 103 on.


Referring yet again to FIG. 2, the user interface unit 203 in accordance with a further embodiment of the present invention may include a speaker unit configured to output audio signals. More specifically, in one aspect of the present invention, the user 101 may be alerted or reminded of one or more time specific events or reminder such as the next time the user 101 needs to take a blood glucose level measurement. Rather than relying solely upon the user's memory, the glucose meter device 103 may be configured with an alarm feature operatively engaged with a timer function such that, in addition to displaying the current time information on the display unit, the glucose meter device 103 may be configured to generate and output an audible sound for each specific event or reminder which the user 101 has pre-programmed into the glucose meter device 103. Moreover, in a further embodiment, the audible alarm output (or a series or audible tones as may be selected by the user) may be simultaneously generated with the backlight feature of the glucose meter device 103 such that for each of use, the user is able to view information displayed on the display unit of the user interface unit 203 substantially immediately without the need to perform extra steps such as turning on the backlight function of the glucose meter device 103. In the preferred embodiment, the meter allows the user to set up to four separate alarms to go off every 24 hours at a particular time to remind the user to test her blood glucose level. Preferably, the volume of each alarm may be set independently.


Referring back yet again to FIG. 2, in one embodiment of the present invention, the central processing unit 206 is configured to perform a plurality of functions to maintain, calibrate and operate the glucose meter device 103. More specifically, upon power up of the glucose meter device 103 when the power source such as the batteries, are placed in the respective section of the device housing, under the control of the central processing unit 206, the glucose meter device 103 is configured to perform a power on/reset sequence to initialize the various aforementioned components of the glucose meter device 103 to the necessary configuration settings. Upon successful completion of the power on/reset sequence, the central processing unit 206 is then configured to enter the glucose meter device 103 into a default operation mode (for example, the clock mode) as discussed in further detail below. More specifically, in one embodiment, the central processing unit 206 is configured to access the storage unit 207 to retrieve the corresponding power on/reset sequence instruction set from the storage unit 207 (for example, in the ROM portion and/or the RAM portion thereof). Moreover, in one embodiment, the central processing unit 206 is configured to perform and complete the aforementioned power on/reset sequence within approximately 500 mseconds.


In one aspect, the central processing unit 206 of the glucose meter device 103 may be configured for operating the meter device 103 in one of the following modes of operation—the clock mode (the default mode discussed above), the test mode, the configuration mode, and the measurement log review mode. The default clock mode is configured in one embodiment to display the time/date information as configured by the user 101. The test mode includes operations for the user to perform blood glucose measurements, the configuration mode includes functions for the user to select user preferences for configurable parameters of the glucose meter device 103, and the measurement log review mode allows reviewing of the glucose measurements stored in the meter device 103.


In one embodiment, when the glucose meter device 103 enters a non-clock mode of operation, the meter device 103 may be configured to display a self-test screen that illuminates all segments of the display unit in the user interface unit 203 prior to operating in the selected mode of operation. Moreover, the glucose meter device 103 may be configured to exit all operation modes after exceeding a predetermined period of non-activity/idle time (for example, 2 minutes) such as no switch activity, test strip activity, or display activity, for example.


Additionally, the central processing unit 206 of the glucose meter device 103 is configured such that, upon detection that there was a loss of power (for example, battery removal), the internal date is set to the last recorded date, and in the case where there is no valid recorded dates, the central processing unit 206 is configured to set the internal date to a predetermined date such as Jan. 1, 2002, for example. Likewise, upon detection of the loss of power, the internal time in one embodiment is reset to 12:00 am until a further time when the user resets the internal time. Moreover, the blood sample test data collected during the period of power loss is configured to be flagged with a “lost time” flag and the corresponding lost power internal date and time discussed above. Upon re-application of power to the glucose meter device 103, in one embodiment, the user may be prompted (e.g., blinking signals displayed on the user interface unit 203) to reset the time and date information in the default clock mode.


Referring still again to FIG. 2, in the test mode of operation of the glucose meter device 103 in one embodiment, the correct insertion of the test strip 102 (FIG. 1) engaged into the test strip connector unit 202 of the meter device 103 is detected, and upon removal of the test strip 102, the meter device 103 is configured to enter the default operation mode. In this manner, the glucose meter device 103 may be configured to automatically enter into the test mode of operation upon the correct insertion of the test strip 102. Alternatively, the glucose meter device 103 may be configurable to enable manual initiation of the test mode of operation (such as, for example, by the user's manual operation of the test mode switch (not shown) of the meter device 103.


During the test mode of operation, if a faulty operation is detected, the glucose meter device 103 is configured to generate and output a corresponding respective message as such. Examples of such faulty operation includes, but not limited to, the detection of a used test strip, insufficient blood sample on the test strip, incorrect insertion of the test strip into the test strip connector unit 202 of the meter device 103, or when the coulometer circuits are not ready for sample processing. The outputted message to the user alerting of the faulty operation may include an audible sound, a visual display, or a combination of both.


Upon successfully collecting sufficient blood sample for processing from the user 101 (FIG. 1), the glucose meter device 103 is configured to process the collected sample, and to generate a corresponding blood glucose data for output display to the user 101 on the user interface unit 203. The blood glucose data may be, for example, displayed in units of mg/dL or in units of mmol. Moreover, in one embodiment, the meter device 103 may also be configured to display the time and date information corresponding to the blood glucose level test. Moreover, the central processing unit 206 is further configured to store the processed and displayed blood glucose data in the storage unit 207.


Referring still to FIG. 2, in the configuration mode of operation, in one embodiment of the present invention, the user 101 may select and input certain predetermined parameters into the glucose meter device 103 to configure the meter device 103 for subsequent use thereafter. For example, such configurable parameters include the displayed date and time information, the alarm settings on the glucose meter device 103, the preferred display format for data display on the display unit of the user interface unit 203 in the meter device 103, the concentration unit of the generated glucose level, and an average glucose level information based on a user selected number of days such as 14-day or 30 day average of stored results.


In the measurement log review mode of operation discussed above, the glucose meter device 103 is configured to display a glucose summary (that is, the average glucose level information) of stored results, as well as other parameters such as the number of measurements incorporated into the displayed average level, and a visual indication to the user that the displayed data is the average glucose level information, and not a specific sampled glucose level data. As will be discussed in further detail below, the glucose meter device 103 may be configured to enter the measurement log review mode of operation upon the operation of the mode switch (in the user interface unit 203) while the meter device 103 is in the default clock mode.


In one embodiment, the glucose meter device 103 may be configured so that a “LO” is displayed for measured glucose values which are below 20 mg/dL, and in contrast, a “HI” is displayed when the measured glucose value exceeds 500 mg/dL. Furthermore, the meter device 103 may be configured to display the processed glucose level within approximately 15 seconds from the sampling of the corresponding blood for samples below 200 mg/dL when measured at room temperature and humidity.



FIG. 3 illustrates the glucose meter device of FIG. 2 in accordance with one embodiment of the present invention. As shown, the glucose meter device 103 includes a housing 307 which substantially encases the meter device 103. In one embodiment, the glucose meter device 103 may be physically configured such that it is 3.12 inches in length, 2.25 inches in width and 0.85 inches in height, with no more that 1.4 ounces in weight with the batteries installed. Moreover, the material used for the housing 307 may comprise plastic, metal, polymer, or a combination of any suitable material which provides substantial physical integrity when subject to normal usage of the meter device 103 including occasional dropping and other physical impacts.


Also shown in FIG. 3 is a data port 301 which corresponds to the I/O interface unit 205 (FIG. 2), and is configured to operatively couple to an external computer or data processing device to transfer data collected and processed by the glucose meter device 103. The data port 301 in one embodiment may include one of a Universal Serial Bus (USB) port, an infrared data communication port, a Bluetooth communication port, and a Wi-Fi wireless data communication port (for example, IEEE 802.11 or its equivalents).


Referring back to FIG. 3, provided on the housing 307 is a display screen 302 which may be configured to display the test results and other parameters and information such as time and data information and the like. The display screen 302 in one embodiment may include a built-in display backlight for use in low-light conditions, and may be configured to automatically switch on in low-light settings for a predetermined period of time (such as 1 minute, for example), or may be configured for manual user operation.


Also shown in FIG. 3 are three input switches—a mode switch 303, the configuration switch 304, and the light switch 305. In one embodiment, the mode switch 303 may be operated by the user to toggle between different operation modes such as the test mode, and the clock mode (default), configuration mode, and the measurement log review mode, each discussed above. The configuration switch 304 may be configured to, for example, mark a test result as control solution, change the test strip code, time and alarm settings, the output sound options, date information, the measurement unit information, and for review of the stored sample results. Also, the configuration switch 304 may also be depressed to silence the output of an alarm. Finally, the light switch 305 is configured to control the operation of the backlight of the display screen 302, as well as the flashlight function of the meter device 103.


Referring yet again to FIG. 3, a test strip port 306 is additionally provided on the housing 307 of the glucose meter device 103, and is configured to receive the insertion of a test strip 308. In one embodiment, the test strip port 306 substantially corresponds to the test strip connector unit 202 shown in FIG. 2. Also provided on the test strip port 306 is a light source such as a light emitting diode (LED) and the like which is configured to switch on and off under the operation of, for example, the light switch 305, or alternatively, in accordance with a certain operations of the glucose meter device 103 such as, for example, the detection of the test strip 308 at the opening of the test strip port 306. As can be further seen, the test strip 308 may include a top portion 309 and a bottom portion 310 such that the top portion 309 is configured to be inserted into the test strip port 306 of the glucose meter device 103, while the bottom portion 310 of the test strip 308 substantially comprises the blood sample target areas for the user to apply the blood sample or a control solution thereto. In one embodiment, the test strip 308 is a Freestyle® Test Strip currently available from the assignee of the present application, TheraSense, Inc. of Alameda, Calif.



FIGS. 4A and 4B illustrate the display screen of the glucose meter device in accordance with one embodiment of the present invention. Referring to the Figures, the display screen 302 of the glucose meter device shown in FIG. 3 includes a plurality of visual representation of display information. For example, as shown in FIG. 4A, the check owner's manual symbol 401 is displayed to alert the user 101 (FIG. 1) to refer to the manual of the glucose meter device, and may be displayed on the display screen 302 when, for example, the meter device detects LO or HI blood glucose level, out of temperature range results, and low power state. The control solution test result symbol 302 is displayed to alert the user that the user has marked a test result as a control solution test.


Referring back to FIG. 4A, the message area 403 of the display screen 302 may be configured to display information such as the date information, the time information, the number of tests performed, and other information related to the operation and function of the glucose meter device. There is also provided in the display screen 302 a test result area 406 which is configured to display the resulting glucose level determined from the corresponding blood sample. Also shown in FIG. 4A are a battery symbol 405 and a memory mode symbol 404, where the battery symbol 405 is configured to be illuminated when the power supply level (e.g., the battery level) is detected to be lower than the optimum operating level, and to alert the user 101 (FIG. 1) to replace the same. The memory mode symbol 404 on the other hand, is configured to display to the user 101 (FIG. 1) that the test result displayed in the rest result area 406 has been stored in the memory (the storage unit 207 (FIG. 2)) of the glucose meter device. In one embodiment, the memory capacity of the meter device may store up to approximately 250 blood glucose test results.


Referring now to FIG. 4B, the display screen 302 may further be configured to display a blood drop symbol and a test strip symbol 414, which are configured to operate in tandem to alert the user that the meter device is ready to apply the blood sample or the control solution. Moreover, the unit symbol 413 is configured to appear with the test result data displayed in the test result area 406 of the display screen 302 when the blood sample has been successfully collected and a corresponding glucose level has been determined based on the collected blood sample. The date setup symbol 407 on the display screen 302 may be displayed in the configuration mode when the user is setting the date information of the glucose meter device.


As further shown, a check and set test strip code symbol 408 is provided on the display screen 302 to alert the user to check and set the test strip code, while the thermometer symbol 409 is displayed on the display screen 302 when the meter is operating in a temperature range that is beyond that which will permit an accurate reading. A set of sound level symbols 410 are provided in one embodiment to indicate whether the glucose meter device audible output alert mode is at a predetermined setting (for example, high, low or off), while the time set symbol 411 appears on the display screen 302 in the default clock mode when the user is setting the time information on the glucose meter device. Finally, the data average symbol 412 is configured to appear on the display screen 302 with a glucose reading that is the average value of the readings from the past 14 days, for example or any other predetermined time period as may be established by the meter device as a default mode or by the user during calibration stage of the glucose meter device.


In the preferred embodiment of the present invention, when the meter 103 is not otherwise in use, the current date is continuously displayed on the upper line (top row of five 7-segment digits) of message area 403, and the current time is continuously displayed on the lower line (bottom row of five 7-segment digits) of message area 403. As previously mentioned, immediately after a blood glucose test is completed, the numerical result is shown in the test result area 406. In this preferred embodiment, the date and time information are displayed in a different area of display screen 302 from the glucose test results, and with different sized digits (preferably smaller as shown). Also, it is preferable that the test result area 406 be offset from the center of display screen 302, even more preferably located in a corner of the display screen 302 as shown.


In the manner described above, the display screen 302 of the glucose meter device in accordance with one embodiment of the present invention may be configured to display information corresponding to the glucose tests and the processed results in a easy and intuitive manner.



FIG. 5 is a flowchart illustrating the procedure for performing a blood glucose test using the glucose meter device in accordance with one embodiment of the present invention. Referring to FIGS. 2 and 5, at step 501, the glucose meter device detects the insertion of a test strip 102 in the test strip connector unit 202 (FIG. 2). In response to the detection of the test strip 102 insertion, the meter device 103 is powered on, and at step 502, the inserted test strip is verified and a self test of the meter device is performed. More specifically, at step 502, a system check illumination briefly lights up the entire display screen 302 and the various data symbols and areas included therein, and thereafter, in step 503 the user 101 is prompted to input a code number which corresponds to the calibration code number preassigned to the test strip inserted into the meter device.


After verifying the code number for the test strip, at step 504, the blood drop and test strip symbols 414 (FIG. 4B) are displayed on the display screen 302 to prompt the user to apply the blood sample to the test strip. When the blood sample is in contact with the test strip, the test strip acts like a sponge and pulls the blood into the strip through its edges. Thereafter at step 505, it is determined whether the collected blood sample amount is sufficient to generate a corresponding blood glucose level. If it is determined at step 505 that the collected blood sample amount is not sufficient to generate the corresponding blood glucose level, then the procedure returns to step 504 to prompt the user to further apply the blood sample to the test strip.


On the other hand, if it is determined at step 505 that the collected level of blood sample is sufficient to generate the corresponding blood glucose level, the user 101 (FIG. 1) is notified as such in step 506 by an audible alert sound output via the user interface 203 (e.g., through an output speaker), and/or by visual display on the display screen 302 (FIG. 3). The glucose meter device is then configured at step 507 to determine the glucose value corresponding to the detected blood sample, and thereafter at step 508, to display the resulting glucose value on the display screen 302 (FIG. 3), and to store the generated glucose value in the storage unit 207 (FIG. 2).


In one embodiment, the glucose meter device may be configured to output a single audible alert notification when the collected blood sample is sufficient to generate the corresponding glucose level information, and to output a double audible alert notification when the glucose level information has been determined and displayed on display screen 302. Additionally, in one embodiment, the time and date information may also be displayed on the display screen 302 in connection with the generated glucose level information.


In accordance with another embodiment, the glucose meter device may be configured such that upon power on procedure, the light source (e.g., an LED) at the test strip port 306 (FIG. 3) is configured to illuminate at substantially 50% of the full intensity to permit the introduction of the test strip 102 into the test strip port 306. Thereafter, when the test strip 102 is fully inserted into the test strip port 306 of the glucose meter device, the light source at the test strip port 306, and alternatively, in addition to the backlight of the display screen 302, is illuminated at the full intensity level to indicate blood sample collection operation.


When the collection of the blood sample is concluded, the intensity of the light source at the test strip port 306 (and alternatively, as well as the backlight of the display screen 302) are reduced substantially to the 50% level again, and when the test strip is removed from the test strip port 306, the light source is configured to shut off completely. Indeed, as the light source (e.g., the LED) may be pulsed and still display substantially the same light output as one which is turned on in steady state, the battery life of the glucose meter device may be prolonged since the pulsed LED light source requires significantly less power (and thus draining the battery at a much slower rate) than when the LED light source is maintained at the on position. Indeed, in one embodiment, the central processing unit 206 of the glucose meter device 103 may be configured to control the switching on and off of the light source as well as the level of light intensity by, for example, adjusting the duty cycle and the period during which the light source is configured to be turned on. For example, FIG. 6 illustrates the output LED power level as a function of the power state in accordance with one embodiment of the present invention. As can be seen from the Figure, 50% duty cycle as shown on the X-axis corresponds to approximately 80% of the output power level for the LED light source.


In a preferred embodiment, a yellow/green LED is used for the test strip light, such as part number LT19209-40 manufactured by Ledtech Electronics Corporation located in Hsin-Tien, Taiwan, or part number ZSG56W manufactured by SunLED Co. located in Kowloon, Hong Kong. These LEDs provide a light having a peak wavelength of about 575 nanometers, which has been found to provide optimal contrast between various colors of blood against various skin pigments in low light conditions. More specifically, using a yellow-green LED with peak wavelength of 570 nanometers in one embodiment provided optional contrast between the various colors of blood against the skin pigments in low light conditions.


Also, preferably, the test light LED is pulsed faster than 60-100 hertz so that it appears to the human eye that it is continuously on without flickering, most preferably 3 or 7 khz. It has been discovered that a 10% duty cycle with the LEDs specified above provides the most desired balance between light intensity and battery power savings. A brighter light output than this can be disruptive in certain low light settings, such as a movie theater, and can inhibit inconspicuous blood glucose testing.


In an alternate embodiment of the present invention, the glucose meter device may be configured such that the backlight on the display screen 302 is turned on when the test strip 102 is inserted into the test strip port 306 of the meter device. Thereafter, the backlight is configured to turn off when the blood drop and test strip symbols 414 are displayed in tandem to alert the user that the meter device is ready to apply the blood sample or the control solution. At the same time that the backlight is turned off, the light source at the test strip port 306 (e.g., the LED light source) is illuminated so that the user may light up the test strip 102 and the sample acquisition site on the user 101 if desired. Thereafter, when the meter device detects a sufficient level of blood sample on the test strip 102 (i.e., step 505 (FIG. 5) is successfully performed), the light source at the test strip port 306 is disabled, and the backlight on the display screen 302 is once again illuminated so that the user may view the corresponding glucose level generated from the collected blood sample.


In a slightly different embodiment, pressing the light button 305 powers on either the display backlight or the test strip light, depending on what mode the meter is in. Pressing the light button 305 in non-test modes powers on the display backlight. The display backlight goes out when light button 305 is pressed again, or when the meter is inactive for 5 seconds. Pressing the light button when the blood drop and test strip symbols appear on the display screen powers on the test strip light. The test strip light goes out when the light button 305 is pressed again, or the meter receives the correct amount of blood for the test (i.e. the test strip is filled), or after 60 seconds of meter inactivity, or when the test strip is removed from the meter. Thus, in this embodiment, the test strip light cannot be activated unless there is a test strip inserted in the test strip port. If either the test strip light or the display backlight is used during the test mode, the backlight preferably powers on to show the test results after the measurement is complete.


Preferably, the glucose meter is powered by two coin cell batteries of a common size, such as CR2032. It is also preferable that one of the batteries is dedicated to powering the test strip light and display backlight, and the other is dedicated to powering the meter's processor and other functions. It may also be desirable to allow the meter to be placed in a “shelf mode” after final testing at the factory such that even with batteries inserted, nothing is shown on the display and the processor is in an energy saving sleep mode until one of the buttons is pressed or a test strip is inserted in the meter to resume normal operation.


In the manner described above, in accordance with the various embodiments of the present invention, the glucose meter device 103 is configured such that it is simple, intuitive and easy to use, permitting the user to perform the tests relatively discreetly, and is also easily used by third parties such as the user's physician, nurse, care giver or family member. Moreover, given the compact physical configuration, the glucose meter device 103 is substantially small, compact, sleek and readily portable by the user.


Various other modifications and alterations in the structure and method of operation of this invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. It is intended that the following claims define the scope of the present invention and that structures and methods within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. An analyte meter, comprising: a housing;a strip port disposed in the housing and sized to receive an analyte test strip;a processing unit for measuring an analyte level detected from the analyte test strip;an interface unit that operatively couples the analyte meter to an external computer to transmit data related to the analyte level detected from the analyte test strip, wherein the interface unit operatively couples the analyte meter to an external computer via a wireless connection;a liquid crystal display (LCD) screen;a non-transitory memory comprising stored instructions that cause the processing unit tooperate the analyte meter in a clock mode that displays current time and/or date information on the LCD screen, a test mode for performance of analyte measurements, a configuration mode that enables user selection of configuration preferences, and a measurement log review mode that enables reviewing of stored analyte measurements, andconfigure the analyte meter to automatically exit the clock mode and enter the test mode upon receiving the analyte test strip in the strip port.
  • 2. The analyte meter of claim 1, wherein the analyte meter further comprises a mode switch to toggle between different modes of operation.
  • 3. The analyte meter of claim 1, wherein the analyte meter exits all modes of operation after exceeding a predetermined period of non-activity.
  • 4. The analyte meter of claim 1, wherein the analyte meter further comprises a speaker unit to output audio signals.
  • 5. The analyte meter of claim 1, wherein the LCD displays a memory mode symbol to indicate that data has been stored in a memory unit of the analyte meter.
  • 6. The analyte meter of claim 1, further comprising: a light source coupled to the housing to illuminate the strip port; anda power source to provide power to the light source.
  • 7. The analyte meter of claim 6, wherein the light source is one or more LEDs.
  • 8. The analyte meter of claim 6, wherein the analyte meter pulses the light source at a predetermined frequency and predetermined duty cycle, wherein the predetermined frequency is greater than 100 Hz, and wherein the predetermined duty cycle is approximately 10%.
  • 9. The analyte meter of claim 6, wherein the light source illuminates the LCD.
  • 10. The analyte meter of claim 6, wherein the light source provides backlighting to the LCD.
  • 11. The analyte meter of claim 6, wherein the light source is coupled to the housing on the same end as the strip port.
  • 12. The analyte meter of claim 1, wherein the analyte meter is a glucose meter.
  • 13. The analyte meter of claim 1, measurement log review mode allows reviewing of glucose measurements stored in the meter.
  • 14. The analyte meter of claim 1, wherein when the meter is in the measurement log review mode, the meter displays a glucose summary of stored results, average glucose level information, a number of measurements incorporated into the displayed average level, or a visual indication to the user that the displayed data is average glucose level information.
  • 15. The analyte meter of claim 1, wherein the meter is configured to enter the measurement log review mode upon operation of a mode switch in a user interface unit while the meter is in the default clock mode.
  • 16. The analyte meter of claim 1, wherein the clock mode is a default mode of operation for the analyte meter.
  • 17. The analyte meter of claim 1, wherein the analyte meter comprises a self-test screen that is displayed upon entry into the test mode, the configuration mode, or the measurement log review mode; and wherein the self-test screen illuminates all segments of the LCD screen prior to operation in the test mode, the configuration mode, or the measurement log review mode.
  • 18. The analyte meter of claim 1, wherein the analyte meter is configured to exit the test mode, the configuration mode, or the measurement log review mode after a predetermined period of non-activity or idle time, and to enter the clock mode following the exiting of the test mode, the configuration mode, or the measurement log review mode.
  • 19. The analyte meter of claim 1, wherein the test mode is automatically exited and the clock mode entered upon removal of the analyte test strip from the strip port.
RELATED APPLICATION

This application claims priority under 35 USC §119 to Provisional Patent Application No. 60/478,436 filed on Jun. 12, 2003, entitled “Method and Apparatus for Providing Power Management in Data Communication Systems”, the disclosure of which is incorporated herein by reference for all purposes.

US Referenced Citations (344)
Number Name Date Kind
3930493 Williamson Jan 1976 A
4018547 Rogen Apr 1977 A
4121282 Ohsawa Oct 1978 A
4439197 Honda et al. Mar 1984 A
4531235 Brusen Jul 1985 A
4866396 Tamura Sep 1989 A
4984581 Stice Jan 1991 A
5004532 Hale Apr 1991 A
5019974 Beckers May 1991 A
5051880 Harm et al. Sep 1991 A
5079920 Whitehead et al. Jan 1992 A
5081421 Miller et al. Jan 1992 A
5124661 Zelin et al. Jun 1992 A
5207666 Idriss et al. May 1993 A
5211371 Coffee May 1993 A
5211626 Frank et al. May 1993 A
5278997 Martin Jan 1994 A
5325280 Tortola et al. Jun 1994 A
5366292 Voss Nov 1994 A
5391250 Cheney, II et al. Feb 1995 A
5404585 Vimpari et al. Apr 1995 A
5507288 Bocker et al. Apr 1996 A
5568400 Stark et al. Oct 1996 A
5575770 Melsky et al. Nov 1996 A
5604404 Sahara Feb 1997 A
5622413 Kim et al. Apr 1997 A
5622482 Lee Apr 1997 A
5645709 Birch et al. Jul 1997 A
5661643 Blakely et al. Aug 1997 A
5695949 Galen et al. Dec 1997 A
5699243 Eckel et al. Dec 1997 A
5703928 Galloway et al. Dec 1997 A
5822715 Worthington et al. Oct 1998 A
5848990 Cirelli et al. Dec 1998 A
5899855 Brown May 1999 A
5913833 Elstrom et al. Jun 1999 A
6027459 Shain et al. Feb 2000 A
6027496 Loomis et al. Feb 2000 A
6027692 Galen et al. Feb 2000 A
6059546 Brenan et al. May 2000 A
6063039 Cunningham et al. May 2000 A
6067463 Jeng et al. May 2000 A
6071249 Cunningham et al. Jun 2000 A
6071251 Cunningham et al. Jun 2000 A
6073031 Helstab et al. Jun 2000 A
6077660 Wong et al. Jun 2000 A
6081104 Kern Jun 2000 A
6085871 Karamata Jul 2000 A
6093156 Cunningham et al. Jul 2000 A
6129823 Hughes et al. Oct 2000 A
6132371 Dempsey et al. Oct 2000 A
6144303 Federman Nov 2000 A
6144922 Douglas et al. Nov 2000 A
6155992 Henning et al. Dec 2000 A
6160449 Klomsdorf et al. Dec 2000 A
6162202 Sicurelli et al. Dec 2000 A
6173160 Liimatainen Jan 2001 B1
6175752 Say et al. Jan 2001 B1
6185452 Schulman et al. Feb 2001 B1
6206841 Cunningham et al. Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6242961 Liu et al. Jun 2001 B1
6245060 Loomis et al. Jun 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6262708 Chu Jul 2001 B1
6283926 Cunningham et al. Sep 2001 B1
6295506 Heinonen et al. Sep 2001 B1
6298255 Cordero et al. Oct 2001 B1
6306104 Cunningham et al. Oct 2001 B1
6312888 Wong et al. Nov 2001 B1
6315721 Schulman et al. Nov 2001 B2
6368274 Van Antwerp et al. Apr 2002 B1
6375638 Nason et al. Apr 2002 B2
6377894 Deweese et al. Apr 2002 B1
6403944 MacKenzie et al. Jun 2002 B1
6417074 Kopley et al. Jul 2002 B2
6425829 Julien Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6437379 Kopley et al. Aug 2002 B2
6438385 Heinonen et al. Aug 2002 B1
6466807 Dobson et al. Oct 2002 B1
6471980 Sirhan et al. Oct 2002 B2
6492180 Brown et al. Dec 2002 B2
6506168 Fathallah et al. Jan 2003 B1
6514460 Fendrock Feb 2003 B1
6522530 Bang Feb 2003 B2
6526298 Khalil et al. Feb 2003 B1
6540891 Stewart et al. Apr 2003 B1
6551276 Mann et al. Apr 2003 B1
6558320 Causey, III et al. May 2003 B1
6558321 Bird et al. May 2003 B1
6560471 Heller et al. May 2003 B1
6562001 Lebel et al. May 2003 B2
6564105 Starkweather et al. May 2003 B2
6565509 Say et al. May 2003 B1
6565738 Henning et al. May 2003 B1
6569157 Shain et al. May 2003 B1
6571128 Lebel et al. May 2003 B2
6577899 Lebel et al. Jun 2003 B2
6582393 Sage, Jr. Jun 2003 B2
6585644 Lebel et al. Jul 2003 B2
6586971 Naffziger et al. Jul 2003 B1
6600997 Deweese et al. Jul 2003 B2
6615061 Khalil et al. Sep 2003 B1
6615074 Mickle et al. Sep 2003 B2
6641533 Causey, III et al. Nov 2003 B2
6648821 Lebel et al. Nov 2003 B2
6659948 Lebel et al. Dec 2003 B2
6669669 Flaherty et al. Dec 2003 B2
6679841 Bojan et al. Jan 2004 B2
6687546 Lebel et al. Feb 2004 B2
6692457 Flaherty Feb 2004 B2
6694191 Lebel et al. Feb 2004 B2
6702857 Brauker et al. Mar 2004 B2
6723072 Flaherty et al. Apr 2004 B2
6730200 Stewart et al. May 2004 B1
6733446 Lebel et al. May 2004 B2
6740075 Lebel et al. May 2004 B2
6741877 Shults et al. May 2004 B1
6752787 Causey, III et al. Jun 2004 B1
6758810 Lebel et al. Jul 2004 B2
6764581 Forrow et al. Jul 2004 B1
6810290 Lebel et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6811534 Bowman, IV et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6833540 MacKenzie et al. Dec 2004 B2
6835553 Han et al. Dec 2004 B2
6837858 Cunningham et al. Jan 2005 B2
6840912 Kloepfer et al. Jan 2005 B2
6859831 Gelvin et al. Feb 2005 B1
6862465 Shults et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6931327 Goode, Jr. et al. Aug 2005 B2
6950708 Bowman IV et al. Sep 2005 B2
6958129 Galen et al. Oct 2005 B2
6958705 Lebel et al. Oct 2005 B2
6974437 Lebel et al. Dec 2005 B2
6990372 Perron et al. Jan 2006 B2
7003340 Say et al. Feb 2006 B2
7020508 Stirovic et al. Mar 2006 B2
7024245 Lebel et al. Apr 2006 B2
7024249 Weisner et al. Apr 2006 B2
7041468 Drucker et al. May 2006 B2
7043287 Khalil et al. May 2006 B1
7067498 Wolf et al. Jun 2006 B2
7074307 Simpson et al. Jul 2006 B2
7081195 Simpson et al. Jul 2006 B2
7098803 Mann et al. Aug 2006 B2
7108778 Simpson et al. Sep 2006 B2
7110803 Shults et al. Sep 2006 B2
7123206 Hess et al. Oct 2006 B2
7134999 Brauker et al. Nov 2006 B2
7136689 Shults et al. Nov 2006 B2
7136704 Schulman Nov 2006 B2
7153212 Karten et al. Dec 2006 B1
7154398 Chen et al. Dec 2006 B2
7186566 Qian Mar 2007 B2
7192450 Brauker et al. Mar 2007 B2
7202734 Raab Apr 2007 B1
7205409 Pei et al. Apr 2007 B2
7225535 Feldman et al. Jun 2007 B2
7226978 Tapsak et al. Jun 2007 B2
7258666 Brown Aug 2007 B2
7266400 Fine et al. Sep 2007 B2
7276029 Goode, Jr. et al. Oct 2007 B2
7310544 Brister et al. Dec 2007 B2
7344507 Briggs et al. Mar 2008 B2
7364592 Carr-Brendel et al. Apr 2008 B2
7366556 Brister et al. Apr 2008 B2
7379765 Petisce et al. May 2008 B2
7424318 Brister et al. Sep 2008 B2
7460898 Brister et al. Dec 2008 B2
7467003 Brister et al. Dec 2008 B2
7471972 Rhodes et al. Dec 2008 B2
7494465 Brister et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7519408 Rasdal et al. Apr 2009 B2
7583990 Goode, Jr. et al. Sep 2009 B2
7591801 Brauker et al. Sep 2009 B2
7599726 Goode, Jr. et al. Oct 2009 B2
7613491 Boock et al. Nov 2009 B2
7615007 Shults et al. Nov 2009 B2
7632228 Brauker et al. Dec 2009 B2
20010023095 Kopley et al. Sep 2001 A1
20010024864 Kopley et al. Sep 2001 A1
20020118090 Park et al. Aug 2002 A1
20020193679 Malave et al. Dec 2002 A1
20030023317 Brauker et al. Jan 2003 A1
20030032874 Rhodes et al. Feb 2003 A1
20030060765 Campbell et al. Mar 2003 A1
20030078560 Miller et al. Apr 2003 A1
20030107487 Korman et al. Jun 2003 A1
20030198558 Nason et al. Oct 2003 A1
20030212346 Yuzhakov et al. Nov 2003 A1
20030217966 Tapsak et al. Nov 2003 A1
20040011671 Shults et al. Jan 2004 A1
20040019321 Sage et al. Jan 2004 A1
20040045879 Shults et al. Mar 2004 A1
20040064133 Miller et al. Apr 2004 A1
20040132220 Fish Jul 2004 A1
20040133092 Kain Jul 2004 A1
20040152622 Keith et al. Aug 2004 A1
20040186362 Brauker et al. Sep 2004 A1
20040186365 Yin et al. Sep 2004 A1
20040199059 Brauker et al. Oct 2004 A1
20050031689 Shults et al. Feb 2005 A1
20050038680 McMahon Feb 2005 A1
20050043598 Goode, Jr. et al. Feb 2005 A1
20050053365 Adams et al. Mar 2005 A1
20050065464 Talbot et al. Mar 2005 A1
20050090607 Tapsak et al. Apr 2005 A1
20050112169 Brauker et al. May 2005 A1
20050143635 Kamath et al. Jun 2005 A1
20050176136 Burd et al. Aug 2005 A1
20050182306 Sloan Aug 2005 A1
20050187720 Goode, Jr. et al. Aug 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050235732 Rush Oct 2005 A1
20050245795 Goode, Jr. et al. Nov 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050249606 Rush Nov 2005 A1
20060001551 Kraft et al. Jan 2006 A1
20060015020 Neale et al. Jan 2006 A1
20060016700 Brister et al. Jan 2006 A1
20060019327 Brister et al. Jan 2006 A1
20060020186 Brister et al. Jan 2006 A1
20060020187 Brister et al. Jan 2006 A1
20060020188 Kamath et al. Jan 2006 A1
20060020189 Brister et al. Jan 2006 A1
20060020190 Kamath et al. Jan 2006 A1
20060020191 Brister et al. Jan 2006 A1
20060020192 Brister et al. Jan 2006 A1
20060036139 Brister et al. Feb 2006 A1
20060036140 Brister et al. Feb 2006 A1
20060036141 Kamath et al. Feb 2006 A1
20060036142 Brister et al. Feb 2006 A1
20060036143 Brister et al. Feb 2006 A1
20060036144 Brister et al. Feb 2006 A1
20060036145 Brister et al. Feb 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060247508 Fennell Nov 2006 A1
20070016381 Kamath et al. Jan 2007 A1
20070163880 Woo et al. Jul 2007 A1
20070203966 Brauker et al. Aug 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20080021666 Goode, Jr. et al. Jan 2008 A1
20080033254 Kamath et al. Feb 2008 A1
20080045824 Tapsak et al. Feb 2008 A1
20080064941 Funderburk et al. Mar 2008 A1
20080071156 Brister et al. Mar 2008 A1
20080083617 Simpson et al. Apr 2008 A1
20080086042 Brister et al. Apr 2008 A1
20080086044 Brister et al. Apr 2008 A1
20080086273 Shults et al. Apr 2008 A1
20080108942 Brister et al. May 2008 A1
20080146900 Andrews et al. Jun 2008 A1
20080183061 Goode et al. Jul 2008 A1
20080183399 Goode et al. Jul 2008 A1
20080188731 Brister et al. Aug 2008 A1
20080189051 Goode et al. Aug 2008 A1
20080194935 Brister et al. Aug 2008 A1
20080194936 Goode et al. Aug 2008 A1
20080194937 Goode et al. Aug 2008 A1
20080194938 Brister et al. Aug 2008 A1
20080195232 Carr-Brendel et al. Aug 2008 A1
20080195967 Goode et al. Aug 2008 A1
20080197024 Simpson et al. Aug 2008 A1
20080200788 Brister et al. Aug 2008 A1
20080200789 Brister et al. Aug 2008 A1
20080200791 Simpson et al. Aug 2008 A1
20080208025 Shults et al. Aug 2008 A1
20080214915 Brister et al. Sep 2008 A1
20080214918 Brister et al. Sep 2008 A1
20080228051 Shults et al. Sep 2008 A1
20080228054 Shults et al. Sep 2008 A1
20080242961 Brister et al. Oct 2008 A1
20080262469 Brister et al. Oct 2008 A1
20080275313 Brister et al. Nov 2008 A1
20080287764 Rasdal et al. Nov 2008 A1
20080287765 Rasdal et al. Nov 2008 A1
20080287766 Rasdal et al. Nov 2008 A1
20080296155 Shults et al. Dec 2008 A1
20080306368 Goode et al. Dec 2008 A1
20080306434 Dobbles et al. Dec 2008 A1
20080306435 Kamath et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20090012379 Goode et al. Jan 2009 A1
20090018424 Kamath et al. Jan 2009 A1
20090030294 Petisce et al. Jan 2009 A1
20090036758 Brauker et al. Feb 2009 A1
20090036763 Brauker et al. Feb 2009 A1
20090043181 Brauker et al. Feb 2009 A1
20090043182 Brauker et al. Feb 2009 A1
20090043525 Brauker et al. Feb 2009 A1
20090043541 Brauker et al. Feb 2009 A1
20090043542 Brauker et al. Feb 2009 A1
20090045055 Rhodes et al. Feb 2009 A1
20090062633 Brauker et al. Mar 2009 A1
20090062635 Brauker et al. Mar 2009 A1
20090076356 Simpson et al. Mar 2009 A1
20090076360 Brister et al. Mar 2009 A1
20090076361 Kamath et al. Mar 2009 A1
20090099436 Brister et al. Apr 2009 A1
20090124877 Goode, Jr. et al. May 2009 A1
20090124878 Goode et al. May 2009 A1
20090124879 Brister et al. May 2009 A1
20090124964 Leach et al. May 2009 A1
20090131768 Simpson et al. May 2009 A1
20090131769 Leach et al. May 2009 A1
20090131776 Simpson et al. May 2009 A1
20090131777 Simpson et al. May 2009 A1
20090137886 Shariati et al. May 2009 A1
20090137887 Shariati et al. May 2009 A1
20090143659 Li et al. Jun 2009 A1
20090143660 Brister et al. Jun 2009 A1
20090156919 Brister et al. Jun 2009 A1
20090156924 Shariati et al. Jun 2009 A1
20090163790 Brister et al. Jun 2009 A1
20090163791 Brister et al. Jun 2009 A1
20090178459 Li et al. Jul 2009 A1
20090182217 Li et al. Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192380 Shariati et al. Jul 2009 A1
20090192722 Shariati et al. Jul 2009 A1
20090192724 Brauker et al. Jul 2009 A1
20090192745 Kamath et al. Jul 2009 A1
20090192751 Kamath et al. Jul 2009 A1
20090203981 Brauker et al. Aug 2009 A1
20090204341 Brauker et al. Aug 2009 A1
20090216103 Brister et al. Aug 2009 A1
20090240120 Mensinger et al. Sep 2009 A1
20090240128 Mensinger et al. Sep 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090242399 Kamath et al. Oct 2009 A1
20090242425 Kamath et al. Oct 2009 A1
20090247855 Boock et al. Oct 2009 A1
20090247856 Boock et al. Oct 2009 A1
20090287073 Boock et al. Nov 2009 A1
20090287074 Shults et al. Nov 2009 A1
20090299155 Yang et al. Dec 2009 A1
20090299156 Simpson et al. Dec 2009 A1
20090299162 Brauker et al. Dec 2009 A1
20090299276 Brauker et al. Dec 2009 A1
Foreign Referenced Citations (13)
Number Date Country
0455455 Nov 1991 EP
0878707 Nov 1998 EP
0543916 Jul 2001 EP
1130638 Sep 2001 EP
2001177423 Jun 2001 JP
2001056673 Nov 2001 JP
WO 02084860 Oct 2002 WO
WO 2004028337 Apr 2004 WO
WO 2005101994 Nov 2005 WO
WO 2006079114 Jul 2006 WO
WO 2006110913 Oct 2006 WO
WO 2006113408 Oct 2006 WO
WO 2006113521 Oct 2006 WO
Non-Patent Literature Citations (4)
Entry
“An Electrochemical Slow Flow Meter” http://gore.ocean.washington.edu/researchjslow flow meter.html, Feb. 10, 2005, 3.
Barbosa, R. M. (1996) “Electrochemical Studies of Zinc in Zinc-Insulin Solution”, Journal of the Royal Society of Chemistry. CAPLUS Abstract. Analyst 121(12):1789-1793.
Bard, A. J., et al. (2001) “Methods Involving Forced Convection—Hydrodynamic Methods”, Electrochemical Methods—Fundamentals and Applications: 331-367.
Kissinger, P. T. (1996) “Introduction to Analog Instrumentation”, Laboratory Techniques in Electroanalytical Chemistry, Second Edition, Revised and Expanded, Jan. 165-194.
Related Publications (1)
Number Date Country
20100312085 A1 Dec 2010 US
Provisional Applications (1)
Number Date Country
60478436 Jun 2003 US
Continuations (1)
Number Date Country
Parent 10861626 Jun 2004 US
Child 12859081 US