Apparatus for purging and excluding air from a hydraulic manifold assembly for variable deactivation of engine valves

Information

  • Patent Grant
  • 6758175
  • Patent Number
    6,758,175
  • Date Filed
    Friday, October 25, 2002
    22 years ago
  • Date Issued
    Tuesday, July 6, 2004
    20 years ago
Abstract
A hydraulic manifold assembly for variable actuation of engine valves in accordance with the invention includes oil flow galleries. Engine oil under pressure communicates with a global supply gallery in the manifold assembly, from which pressurized oil is supplied selectively via individual supply galleries to each variable actuator for each valve through the action of solenoid valves. At engine startup, all galleries may be empty of oil, or partially filled. A global relief valve at the end of the global supply gallery causes air to be purged immediately upon startup of the engine. Each solenoid and individual gallery is provided with a low pressure relief valve leading back to the crankcase when the solenoid supply valve is closed. A bleed orifice between the global supply gallery and each individual gallery continually bleeds oil under low pressure into the individual gallery, which purges initial air therein. Anti-draining means in each individual gallery keeps the gallery filled when the valve deactivation mechanism is deactuated.
Description




TECHNICAL FIELD




The present invention relates to internal combustion engines; more particularly, to devices for controlling systems in an internal combustion engine; and most particularly, to an improved hydraulic manifold assembly for controlling the flow of engine oil in variable activation and deactivation of valve lifters in an internal combustion engine, wherein air is automatically purged from the supply gallery and individual control galleries, and oil drainage there from is prevented.




BACKGROUND OF THE INVENTION




In conventional prior art four-stroke internal combustion engines, the mutual angular relationships of the crankshaft, camshaft, and valves are mechanically fixed; that is, the valves are opened and closed fully and identically with every two revolutions of the crankshaft, fuel/air mixture is drawn into each cylinder in a predetermined sequence, ignited by the sparking plug, and the burned residue discharged. This sequence occurs irrespective of the rotational speed of the engine or the load being placed on the engine at any given time.




It is known that for much of the operating life of a multiple-cylinder engine, the load might be met by a functionally smaller engine having fewer firing cylinders, and that at low-demand times fuel efficiency could be improves if one or more cylinders of a larger engine could be withdrawn from firing service. It is known in the art to accomplish this by de-activating the valve train leading to pre-selected cylinders in any of various ways, such as providing special valve lifters having internal locks which may be switched off either electrically or hydraulically. Such switching conveniently performed via a hydraulic manifold that utilizes electric solenoid valves to selectively pass oil to the lifters on command from an engine control module (ECM). Such a manifold is referred to in the art as a Lifter Oil Manifold Assembly (LOMA).




A serious problem exists in adapting hydraulic control to valve deactivation. Such systems require hydraulic rigidity for proper operation and as such are highly intolerant of air in either the main gallery or the individual control galleries. Air in these galleries can increase the deactivation response time and also cause variation in response time. Both of these conditions can cause inaccurate activation or deactivation timing, resulting in loss of function and potentially catastrophic engine failure.




It is a principal object of the present invention to provide an improved solenoid-actuated hydraulic manifold assembly for controlling the hydraulic locking and unlocking of deactivatable valve lifters in an internal combustion engine, wherein any air present in the supply or control oil galleries at engine startup is automatically purged from the circuits and is actively prevented from re-entry during the periods of inactivity.




SUMMARY OF THE INVENTION




Briefly described, a hydraulic manifold assembly for variable actuation of engine valves in accordance with the invention includes oil flow passages, or galleries, formed therein. Typically, a riser providing engine oil under pressure communicates with a global supply gallery in the manifold assembly, from which pressurized oil is supplied selectively via an individual supply gallery to each variable actuator for each valve through the action of a solenoid valve disposed between the global supply gallery and each individual supply gallery. At engine startup, all galleries may be empty of oil, or partially filled. A global relief valve at the end of the global supply gallery opposite the oil riser leads back to the crankcase and is set to open at a pressure below the normal operation engine oil pressure. Air in the global supply gallery is thus purged immediately upon startup of the engine, and oil continues to be flowed actively throughout the global gallery at all times, the pressure therein being equal to the opening pressure of the relief valve. Further, each solenoid and gallery is provided with a low pressure relief valve leading back to the crankcase. When the solenoid valve is open, the pressure relief valve is closed; when the solenoid valve is closed, the pressure relief valve is open. A bleed orifice between the global supply gallery and each individual gallery continually bleeds oil under low pressure into each individual gallery, which purges initial air therein but is insufficient to actuate the deactivation mechanism. Further, each individual gallery is provided with anti-draining means to keep the gallery filled while the valve deactivation mechanism is inactive.











BRIEF DESCRIPTION OF THE DRAWINGS




The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:





FIG. 1

is a schematic drawing of an oil system for an internal combustion engine showing the relationship of a valve deactivation control system to a prior art pressurized oil system;





FIG. 2

is an enlarged schematic drawing of a portion of the drawing shown in

FIG. 1

, showing addition and rearrangement of valving and oil galleries in accordance with the invention;





FIG. 3

is a cross-sectional schematic view, not to scale, of a first embodiment of a portion of a hydraulic manifold control system in accordance with the invention;





FIG. 4

is a cross-sectional schematic view, not to scale, of a second embodiment of a portion embodiment of a portion of a hydraulic manifold control system in accordance with the invention;





FIG. 5

is an enlarged cross-sectional view of the valve head portion of the hydraulic manifold system shown in

FIGS. 3 and 4

, showing an oil bleed configuration alternative to that shown in

FIGS. 3 and 4

.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring to

FIG. 1

, the prior art engine oil circuits for an internal combustion engine are provided with a valve deactivation apparatus. While only a single control valve and lifter are shown in the schematic drawing, it should be understood that valve deactivation is useful only in multiple-cylinder engines for selectively reducing the number of combusting cylinders.




In

FIG. 1

, an oil pump


10


feeds oil from sump


12


to a juncture


14


where the flow is split three ways. A first portion


16


provides general lubrication the engine. A second portion


18


provides oil conventionally to the hydraulic lifter gallery


19


, which support valve deactivation lifters


20


. A third portion


22


provides oil to a valve deactivation control system


24


. An optional pressure relief valve


26


at the entrance to the system is openable to the sump to maintain pressure in system


24


at a predetermined maximum level. Oil is filtered by strainer


28


and then is supplied via a global supply gallery


38


to a solenoid control valve


30


wherein it is either diverted to the sump


12


of the control valve


30


is not energized, or is diverted to deactivation lifter


20


if the control valve


30


is energized, to cause the associated engine intake and exhaust valves to be deactivated. An engine control module (ECM)


32


receives input signals


33


from a pressure transducer


34


in the control system


24


and integrates via an algorithm such signals with other input operating data such as oil temperature and engine speed to provide output signals


36


to energize or de-energize solenoid control valve


30


.




Referring to

FIGS. 2 through 4

, oil circuits in accordance with the invention are similar to those shown in

FIG. 1

, with the following implement changes.




First, pressure relief valve


26


leading to drain


29


is moved from the entrance to the global supply gallery


38


to an end thereof adjacent solenoid control valve


30


to permit purging of air from all of the gallery up to the entry to the solenoid control valve. As in the prior art, relief valve


26


is set to establish a desired pressure in the global supply gallery.




Second, a gallery


40


is provided through the seat


42


of solenoid valve


30


in communication with drain line


44


, which is provided with a second pressure relief valve


46


, and in communication behind valve head


43


with individual gallery


48


when valve


30


is closed to gallery


38


, as shown in FIG.


3


.




Third, an oil bleed port


50


disposed between global gallery


38


and individual gallery


48


, as shown in

FIGS. 3 and 4

, permits a low volume of oil to fill and then flow through these galleries at all times when the engine is running to purge air therefrom. Preferably, bleed port


50


has a diameter between about 0.25 mm and 0.50 mm. Valve


46


is set to open at a relatively low pressure, for example, 2 psig. Valve


46


thus functions as an anti-draining valve to prevent gallery


40


from draining by gravity when the engine is not running.




Fourth, two different anti-draining means are provided in individual gallery


48


, as shown in

FIGS. 3 and 4

, respectively.




Referring to

FIG. 3

, in a first arrangement


51


, manifold body


52


is mated to engine tower


54


with contains a bore


56


in communication with individual gallery


48


and leading to deactivation valve lifer


20


. Tower


54


may be sealed to body


52


as by an O-ring


58


in known fashion. Bore


56


houses an extension


60


of gallery


48


which may comprise, for example, a length of flexible hose attached to body


52


as by a nipple


62


. At the distal end of extension


60


is a third pressure relief valve


64


having a very low opening pressure, preferably about 1 psig. Thus, when galleries


40


,


48


, and


60


have been filled with oil, valves


46


and


64


prevent them from draining by gravity when the engine is shut off. Because drain valve


46


has a higher opening pressure than does valve


64


, oil admitted to individual gallery


48


when solenoid valve


30


is opened during operation will open valve


64


preferentially to actuate lifter


20


as intended. When the solenoid valve is closed, pressure capacitance in galleries


40


and


48


is dissipated immediately through valves


46


and


64


, but the galleries do not drain and thus are ready for the next demand of lifter


20


.




Referring to

FIG. 4

, an alternate arrangement


59


is shown which is similar to that shown in FIG.


3


. However, extension


60


and valve


64


are replaced by a rod


66


connected to manifold body


52


and extending within bore


56


to create an annular space


68


therebetween. Preferably, the radial dimension of space


68


is small, for example, about 0.4 mm as may be achieved when the diameter of bore


56


is 9.0 mm and the diameter of rod


66


is 8.2 mm. A check valve such as valve


64


is obviated, in that oil can flow freely through annular space


68


as needed to actuate lifter


20


, but when solenoid valve


30


is closed, surface tension keeps the oil residual in space


68


from draining out.




In either of the embodiments shown in

FIGS. 3 and 4

, bleed port


50


can be omitted if it is acceptable to allow galleries


40


,


48


, and


60


to fill upon startup to the engine, for example, during a brief startup protocol the solenoids may all exercised briefly to fill the galleries. Alternatively, referring to

FIG. 5

, if a bleed is desired, a fixed bleed


50




a


may be formed simply by providing a small groove in the seat


42


of the solenoid valve such that a low volume of oil is continuously bypassed of the solenoid valve.




While the invention has been described by reference to various specific embodiments, it should be understood that changes may be made within the spirit and scope of the inventive concepts described. Accordingly, it is intended that the invention not be limited to the described embodiments, but will have full scope defined by the language of the following claims.



Claims
  • 1. A hydraulic manifold: assembly 24 for control of a variable valve actuation device for an engine valve wherein air is automatically purged from the assembly and is prevented from re-entering, comprising:a) a global oil supply gallery 38 in said manifold assembly and having a proximal end for receiving oil from said engine; b) a first pressure relief valve 26 disposed at a distal end of said global supply gallery for allowing purging of air from said gallery; c) at least one individual oil supply gallery 48 in said manifold assembly for supplying oil control from said global supply gallery to said variable valve actuation device; d) a control valve 30 having a valve seat 42 disposed between said global supply gallery and said individual supply gallery for regulating flow of control oil; and e) means 64, 66 for preventing draining of oil from said individual supply gallery.
  • 2. A hydraulic manifold assembly in accordance with claim 1 further compromising oil bleed means 50 between said global supply gallery and said individual supply gallery.
  • 3. A hydraulic manifold assembly in accordance with claim 2 wherein said oil bleed means compromises a bleed orifice 50.
  • 4. A hydraulic manifold assembly in accordance with claim 2 wherein said oil bleed means comprises a groove 50a in said valve seat.
  • 5. A hydraulic manifold assembly in accordance with claim 1 further compromising a drain gallery 40 from said valve seat and a second pressure relief valve 46 disposed in said drain gallery.
  • 6. A hydraulic manifold assembly in accordance with claim 1 wherein said individual supply gallery has a distal end adjacent said variable valve deactuation device and wherein said means for preventing draining includes a third pressure relief valve 64 at said distal end.
  • 7. A hydraulic manifold assembly in accordance with claim 1 wherein said individual supply gallery has a bore terminating at said variable valve deactuation device and wherein said means for draining comprises a rod disposed in said bore to create an annular space therebetween for flow of oil to said variable valve deactuation device, wherein oil is retained by surface tension during periods of inactivity of said device.
  • 8. A hydraulic manifold assembly in accordance with claim 7 wherein the radial thickness of said annular space of about 0.4 mm.
  • 9. An internal combustion engine having a hydraulic manifold assembly for control of a variable valve actuation device for an engine valve wherein air is automatically purged from the assembly and is prevented from re-entering, comprising:a) a global oil supply gallery 38 in said manifold assembly and having a proximal end for receiving oil from said engine; b) a first pressure relief valve 26 disposed at a distal end of said global supply gallery for allowing purging of air from said gallery; c) at least one individual oil supply gallery 48 in said manifold assembly for supplying oil control from said global supply gallery to said variable valve actuation device; d) a control valve 30 having a valve seat 42 disposed between said global supply gallery and said individual supply gallery for regulating flow of control oil; and e) means 64, 66 for preventing draining of oil from said individual supply gallery.
  • 10. A hydraulic manifold assembly 24 for control of a variable valve actuation device for an engine valve wherein air is automatically purged from the assembly and is prevented from re-entering, comprising:a) a global oil supply gallery 38 in said manifold assembly and having a proximal end for receiving oil from said engine; b) a first pressure relief valve 26 disposed at a distal end of said global supply gallery for allowing purging of air from said gallery; c) at least one individual oil supply gallery 48 in said manifold assembly for supplying oil control from said global supply gallery to said variable valve actuation device; d) a control valve 30 having a valve seat 42 disposed between said global supply gallery and said individual supply gallery for regulating flow of control oil; and e) means for preventing draining of oil from said individual supply gallery, wherein said individual supply gallery has a bore terminating at said variable valve deactuation device, wherein said means for draining comprises a rod disposed in said bore to create an annular space therebetween for flow of oil to said variable valve deactuation device, and wherein oil is retained by surface tension during periods of inactivity of said device.
  • 11. A hydraulic manifold assembly in accordance with claim 10 wherein the radial thickness of said annular space of about 0.4 mm.
US Referenced Citations (10)
Number Name Date Kind
4296911 Escobosa Oct 1981 A
4656976 Rhoads Apr 1987 A
4793307 Quenneville et al. Dec 1988 A
5105782 Meneely Apr 1992 A
5386809 Reedy et al. Feb 1995 A
5619965 Cosma et al. Apr 1997 A
6125828 Hu Oct 2000 A
6308671 Reed et al. Oct 2001 B1
6439176 Payne et al. Aug 2002 B1
6591796 Scott Jul 2003 B1
Foreign Referenced Citations (1)
Number Date Country
3807699 Sep 1989 DE