This invention relates generally to oil and gas exploration, and in particular to forming and repairing wellbore casings to facilitate oil and gas exploration.
According to one aspect of the present invention, an apparatus for radially expanding and plastically deforming an expandable tubular member is provided that includes a first tubular support defining an internal passage and one or more radial passages; a tubular expansion cone coupled to the first tubular support and comprising an external expansion surface wherein the tubular expansion cone and the first tubular support are adapted to extend within the expandable tubular member so that the expandable tubular member is coupled to the external expansion surface of the tubular expansion cone; a second tubular support coupled to the first tubular support and defining an internal passage; a third tubular support coupled to the second tubular support so that the third tubular support at least partially extends within the second tubular support; and a fourth tubular support coupled to the second tubular support so that the second tubular support at least partially extends within the fourth tubular support; wherein the tubular expansion cone and the first, second, third and fourth tubular supports are movable relative to the expandable tubular member when the first tubular support and the tubular expansion cone extend within the expandable tubular member.
According to another aspect another aspect of the present invention, an apparatus for radially expanding and plastically deforming an expandable tubular member is provided that includes a first tubular support defining an internal passage and one or more radial passages; one or more rupture discs coupled to and positioned within corresponding radial passages of the first tubular support; a tubular expansion cone coupled to the first tubular support and comprising an external expansion surface; the expandable tubular member coupled to the external expansion surface of the tubular expansion cone and defining an internal passage; a second tubular support at least partially extending within the first tubular support and defining an internal passage; and an annular region at least partially defined by the internal surface of first tubular support and the external surface of the second tubular support wherein the internal passage of the second tubular support is in fluid communication with the annular region; wherein, when the one or more rupture discs rupture, the internal passage of the second tubular support is in fluid communication with the internal passage of the expandable tubular member via the annular region and the one or more radial passages of the first tubular support.
According to another aspect of the present invention, a system is provided that includes a tubular member defining an internal passage and adapted to extend within a preexisting structure; and means for radially expanding and plastically deforming the tubular member within the preexisting structure, the means comprising a shoe coupled to the tubular member, the shoe comprising an annular portion at least partially extending into the internal passage of the tubular member and defining an internal passage and a plug seat having an internal shoulder; and a plug element adapted to extend into the internal passage of the annular portion, the plug element defining an increased-diameter portion adapted to sealingly engage the internal shoulder of the plug seat, the plug element comprising a first sealing element extending in an annular channel formed in an external surface of the plug element and adapted to sealingly engage the plug seat; and a second sealing element in a spaced relation from the first sealing element and adapted to sealingly engage the plug seat.
According to another aspect of the present invention, a system is provided that includes a tubular member adapted to extend within a preexisting structure; and means for radially expanding and plastically deforming the tubular member within the preexisting structure; wherein the means comprises a shoe coupled to the tubular member, the shoe comprising a first component composed of a first material having a first material hardness, and a second component coupled to the first component and composed of a second material having a second material hardness.
According to another aspect of the present invention, an apparatus for radially expanding and plastically deforming an expandable tubular member is provided that includes a first tubular support defining an internal passage and one or more radial passages having countersunk portions; a tubular expansion cone coupled to the first tubular support and comprising an external expansion surface; the expandable tubular member coupled to the external expansion surface of the tubular expansion cone and defining an internal passage; one or more rupture discs coupled to and positioned within corresponding radial passages of the first tubular support wherein each of the one or more rupture discs is in the form of an annular body member defining an internal passage and comprises a shoulder defined at an end portion of the annular body member and contacting a wall defined by the countersunk portion of the corresponding radial passage; a threaded connection formed in the external surface of the annular body member and extending within the corresponding radial passage to couple the annular body member to the corresponding radial passage; a sealing element extending around the annular body member and sealingly engaging a surface of the corresponding radial passage, the sealing element axially positioned between the shoulder and the threaded connection; and a rupture element disposed in the internal passage of the annular body member wherein, when the rupture element ruptures, the internal passage of the first tubular support is in fluid communication with the internal passage of the expandable tubular member via the corresponding radial passage.
According to another aspect of the present invention, an apparatus for radially expanding and plastically deforming an expandable tubular member is provided that includes a first tubular support defining an internal passage and one or more radial passages; a tubular expansion cone coupled to the first tubular support and comprising an external expansion surface wherein the tubular expansion cone and the first tubular support are adapted to extend within the expandable tubular member and are moveable relative thereto; a second tubular support coupled to the first tubular support and defining an internal passage; a third tubular support coupled to the second tubular support so that the third tubular support at least partially extends within the second tubular support; and a sealing element comprising: an elastomeric element extending in a first annular channel formed in the external surface of the third tubular support wherein the elastomeric element sealingly engages the internal surface of the second tubular support, and a retainer extending in a second annular channel formed in the elastomeric element and biased against one or more walls of the second annular channel to retain the elastomeric element within the first annular channel.
According to another aspect of the present invention, an apparatus for radially expanding and plastically deforming an expandable tubular member is provided that includes a first tubular support; a tubular expansion cone coupled to the first tubular support and comprising an external expansion surface; the expandable tubular member coupled to the external expansion surface of the tubular expansion cone wherein the expandable tubular member comprises a first portion and a second portion wherein the inside diameter of the first portion is less than the inside diameter of the second portion, and wherein a dimension is defined between an end of the expandable tubular member corresponding to an end of the first portion and an end of the external expansion surface of the tubular expansion cone having a circumference substantially corresponding to the inside diameter of the second portion; a shoe defining one or more internal passages coupled to the second portion of the expandable tubular member; and means for maintaining the value of the dimension substantially constant when the length of the expandable tubular member is reduced.
According to another aspect of the present invention, a method of radially expanding and plastically deforming an expandable tubular member within a preexisting structure is provided that includes coupling a tubular expansion cone to a first tubular support; coupling a second tubular support to the first tubular support; coupling a third tubular support to the second tubular support so that the third tubular support at least partially extends within the second tubular support; and coupling a fourth tubular support to the second tubular support so that the second tubular support at least partially extends within the fourth tubular support; wherein the tubular expansion cone and the first, second, third and fourth tubular supports are movable relative to the expandable tubular member.
According to another aspect of the present invention, a method of radially expanding and plastically deforming an expandable tubular member within a preexisting structure is provided that includes coupling one or more rupture discs to and positioning the one or more rupture discs within corresponding one or more radial passages defined by a first tubular support; coupling a tubular expansion cone to the first tubular support so that an external expansion surface of the tubular expansion cone is coupled to the expandable tubular member wherein the expandable tubular member defines an internal passage; extending a second tubular support defining an internal passage within the first tubular support so that an annular region is defined by the external surface of the second tubular support and the internal surface of the first tubular support wherein the annular region is in fluid communication with the internal passage of the second tubular support; and displacing the tubular expansion cone and the first tubular support relative to the expandable tubular member wherein the step of displacing comprises permitting fluidic-material flow from the internal passage of the second tubular support and to the internal passage of the expandable tubular member.
According to another aspect of the present invention, a method is provided that includes inserting an expandable tubular member into a preexisting structure; and radially expanding and plastically deforming the expandable tubular member within the preexisting structure wherein the step of radially expanding and plastically deforming comprises coupling a shoe defining at least one internal passage and a plug seat to the expandable tubular member; and sealingly engaging a plug element with the plug seat so that fluidic-material flow through the at least one internal passage of the shoe is blocked, the step of sealingly engaging the plug element with the plug seat comprising sealingly engaging an increased-diameter portion of the plug element with an internal shoulder defined by the plug seat; sealingly engaging a first sealing element extending in an annular channel formed in an external surface of the plug element with the plug seat; and sealingly engaging a second sealing element in a spaced relation from the first sealing element with the plug seat.
d and 1e are enlarged views of portions of the apparatus of
a is a cross-sectional illustration of the apparatus of
a is a cross-sectional illustration of the apparatus of
a is a cross-sectional illustration of the apparatus of
a is a cross-sectional illustration of an embodiment of an apparatus for radially expanding and plastically deforming a tubular member during the placement of the apparatus within a wellbore.
b is a cross-sectional illustration of an embodiment of an apparatus for radially expanding and plastically deforming a tubular member during the placement of the apparatus within a wellbore, and that is similar to the apparatus illustrated in
Referring to
An end of a tubular support 14 that defines an internal passage 14a having a variable inside diameter, and includes a shoulder 14b and threaded connections 14c and 14d, is coupled to the other end of the tubular support 12. A sealing element such as a crimp seal 16 sealingly engages the internal surface of the tubular support 14. The crimp seal 16 includes an elastomeric element 16a (
A coupler 18 that defines an internal passage 18a, and includes a threaded connection 18b, is disposed in the internal passage 14a and is coupled to the tubular support 14, contacting the shoulder 14b.
A threaded connection 20a of an end of a tubular support 20 that defines an internal passage 20b and radial passages 20c and 20d, and includes an external flange 20e, and includes a plurality of circumferentially-spaced high-torque lugs 20f at the other end is coupled to the threaded connection 14d of the other end of the tubular support 14. In an exemplary embodiment, the tubular support 20 includes four circumferentially-spaced high-torque lugs 20f. A sealing element 21 extends in an annular channel 20g formed in the external surface of the tubular support 20 and sealingly engages the internal surface of the tubular support 14. An internal shoulder 20h of the tubular support 20 is defined between the radial passages 20c and 20d and the high-torque lugs 20f.
Rupture discs 22 and 24 are received and mounted within the radial passages 20c and 20d, respectively, of the tubular support 20. The rupture disc 22 (
An end of a tubular support 26 that defines an internal passage 26a and an increased-diameter portion 26b is coupled to the threaded connection 18b of the coupler 18 and extends within the internal passages 14a and 20b, engaging the internal shoulder 20h of the tubular support 20 and thereby coupling the tubular support 26 and the coupler 18 to the tubular support 20. The coupler 18 partially extends within the portion of the internal passage 26a corresponding to the increased-diameter portion 26b of the tubular support 26. An annular region 27 is defined by the external surface of the tubular support 26 and the internal surfaces of the tubular supports 14 and 20.
Radial passages 26c and 26d are formed through the wall of the tubular support 26, in the vicinity of the coupler 18, so that the internal passage 26a is in fluid communication with the annular region 27. A sealing element 28 extends in an annular channel 20i formed in the internal surface of the tubular support 20 and sealingly engages the external surface of the tubular support 26. A tubular expansion cone 30 that includes a tapered external expansion surface 30a is coupled to the external surface of the tubular support 20, circumferentially extending around the tubular support 20 so that an end of the tubular expansion cone abuts the external flange 20e. A sealing element 31 extends in an annular channel 20j formed in the external surface of the tubular support 20 and sealingly engages the internal surface of the tubular expansion cone 30.
A tubular support 32 is coupled to the tubular support 14 so that the tubular support 14 extends within the tubular support 32 and so that an end of the tubular support 32 is substantially flush with an end of the tubular support 14. The other end of the tubular support 32 abuts the other end of the tubular expansion cone 30. Set screws 34a and 34b extend through and threadably engage radial passages 36a and 36b, respectively, that are formed through the tubular supports 14 and 32. The distal ends of the set screws 34a and 34b contact and apply pressure against the external surface of the tubular support 20, thereby reducing the possibility of decoupling and/or relative movement between two or more of the tubular supports 14, 20 and 32 and parts coupled and/or engaged thereto during the operation of the apparatus 10, discussed below.
An expandable tubular member 38 that defines an internal passage 38a for receiving the tubular supports 14, 20, 26 and 32 and the coupler 18 mates with and is supported by the external expansion surface 30a of the tubular expansion cone 30. The expandable tubular member 38 includes an upper portion 38b having a smaller inside diameter and a threaded connection 38c, and further includes a lower portion 38d having a larger inside diameter and a threaded connection 38e. It is understood that another expandable tubular member may be coupled to the expandable tubular member 38 via the threaded connection 38c, and yet another expandable tubular member may be coupled to the former in a similar manner and so on, thereby forming a string of expandable tubular members having a continuous internal passage.
A nose or shoe 40 is coupled to the lower portion 38d of the expandable tubular member 38 via a threaded connection 38e. The shoe 40 includes an upper component 42 composed of a material having a material hardness, and a lower component 44 coupled to the upper component and composed of another material having another material hardness. In an exemplary embodiment, the material hardness of the material of the lower component 44 may be less than the material hardness of the material of the upper component 42. In an exemplary embodiment, the upper component 42 may be composed of an aluminum alloy and the lower component 44 may be composed of a composite material. In another exemplary embodiment, the upper component 42 may be composed of an aluminum alloy and the lower component 44 may be composed of a concrete material. It is understood that the upper component 42 and the lower component 44 may each be composed of a wide variety of materials.
A casing 42a of the upper component 42 defines external surfaces 42b and 42c and a cavity 42d having internal surfaces 42e and 42f. An annular portion 42g extends in an upward direction from the external surface 42b, defining an internal passage 42ga and a plug seat 42gb including a lead-in angled surface 42gba. A threaded connection 42h is coupled to the threaded connection 38e. Circumferentially-spaced lug pockets 42i for receiving the lugs 20f of the tubular support 20 are formed in the external surface 42b, thereby enabling torque loads or other types or combinations of loads to be transmitted between the tubular support 20 and the shoe 40 at any point during operation of the apparatus 10, discussed below, and/or for any conventional reason before, during or after the operation of the apparatus. In an exemplary embodiment, a quantity of eight circumferentially-spaced lug pockets 42i may be formed in the external surface 42b.
A sealing element 46 extends in an annular groove 42gc formed in the external surface of the annular portion 42g and sealingly engages the tubular support 20. A sealing element 48 extends in an annular groove 42ca formed in the external surface 42c and sealingly engages the internal surface of the expandable tubular member 38.
The lower component 44 is disposed in the cavity 42d and coupled to the upper component 42. External surfaces 44a and 44b are defined and are mated against the internal surfaces 42e and 42f, respectively. It is understood that the lower component 44 may be coupled to the upper component 42 via one or more threaded engagements, adhesives, friction or other conventional coupling techniques, or any combination thereof, so that torque loads or other types or combinations of loads may be easily transferred between the components. It is further understood that internal ribs (not shown) may extend from the internal surface 42e and/or 42f in order to facilitate the transmission of loads between the upper component 42 and the lower component 44.
Although tapered surfaces 44c and 44d are defined by the lower component 44, it is understood that the portion of the lower component extending below the upper component 42 may be substantially cylindrical.
An internal passage 44e is formed in the lower component 44, and a valve seat portion 44f of the lower component is disposed in the internal passage, extending from the internal walls therefrom and dividing the internal passage into sub-passages 44ea and 44eb. Passages 44fa and 44fb are formed through the valve seat portion 44f. Passages 44g, 44h, 44i and 44j are formed through the lower component 44, fluidically connecting the sub-passage 44eb to the environment outside of the apparatus 10.
A one-way poppet valve 50 is movably coupled to the valve seat portion 44f of the lower component 44 of the shoe 40, and includes a valve element 50a for controllably sealing the passages 44fa and 44fb. In an exemplary embodiment, the one-way poppet valve 50 only permits fluidic materials to be exhausted from the apparatus 10.
Shear pins 52a and 52b extend through the expandable tubular member 38 and the upper component 42, and into the lower component 44 to lock the shoe 40 to the expandable tubular member. In an exemplary embodiment, the shear pins 52a and 52b may be in the form of knurled drive-in shear pins, in which case it is understood that the shear pins can be easily installed and removed with a conventional tool such as, for example, a slide hammer.
During operation, with continuing reference to
In an exemplary embodiment, movement of the tubular supports 12, 14, 20, 26 and 32, the coupler 18, and the tubular expansion cone 30, relative to the expandable tubular member 38, the shoe 40 and the valve 50, is possible in either an upward or downward direction as long as there is a gap between the distal ends of the lugs 20f and the bottom surfaces of the corresponding lug pockets 42i of the upper component 42 of the shoe 40. For example, when the apparatus 10 encounters a resistance during placement in the wellbore 54 such as, for example, the shoe 40 becoming jammed or stuck in the wellbore 54, the tubular supports 12,14, 20, 26 and 32, the coupler 18, and the tubular expansion cone 30 may move downward, relative to the expandable tubular member 38, the shoe 40 and the valve 50, until the distal ends of the lugs 20f contact the bottom surfaces of the corresponding lug pockets 42i. At this point, torque loads or other types or combinations of loads may be applied to the apparatus 10 in any conventional manner in an effort to free the apparatus 10 from the aforementioned resistance. It is understood that the degree of movement of the tubular supports 12, 14, 20, 26 and 32, the coupler 18, and the tubular expansion cone 30 may also be limited by the gap between the distal end of the tubular support 26 and the distal end of the annular portion 42g of the upper component 42 of the shoe 40.
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, as illustrated in
Continued injection of the fluidic material 58 into the apparatus 10, following the seating of the plug element 60 in the plug seat 42gb, pressurizes the internal passage 26a of the tubular support 26. This pressurization causes the fluidic material 58 in the internal passage 26a to flow through the radial passages 26c and 26d of the tubular support 26, and to flow axially through the annular region 27 until reaching the rupture discs 22 and 24. When the pressurization reaches a predetermined pressure value, the rupture elements 22a and 24a of the rupture discs 22 and 24, respectively, are ruptured. Thus, the radial passages 20c and 20d of the tubular support 20 are opened so that the annular region 27 is in fluid communication with the internal passage 38a of the expandable tubular member 38.
As a result, the fluidic material 58 flows through the radial passages 20c and 20d, thereby pressurizing the portion of the internal passage 38a that is below the tubular expansion cone 30. Due to this pressurization, the tubular supports 12, 14, 20, 26 and 32, the coupler 18, and the tubular expansion cone 30 are displaced in an upward direction 62, relative to the expandable tubular member 38, the shoe 40, the valve 50 and the plug element 60, thereby radially expanding and plastically deforming the expandable tubular member 38.
In an exemplary embodiment, as illustrated in
It is understood that, after radially expanding and plastically deforming the expandable tubular member 38, the shoe 40 may be drilled out in any conventional manner for any conventional reason such as, for example, continuing with the next drilling operation. It is further understood that, due to the lower component 44 of the shoe 40 having a lower material hardness, the drill-out time for the shoe may be reduced.
In several exemplary embodiments, it is understood that one or more of the operational steps in each embodiment may be omitted.
Referring to
An end of a tubular support 114 that defines an internal passage 114a having a variable inside diameter, and includes threaded connections 114b and 114c, is coupled to the other end of the tubular support 112. A crimp seal 116 is disposed in an annular channel 112e formed in the external surface of the tubular support 112 and sealingly engages the wall of the internal passage 114a. The crimp seal 116 is identical to the crimp seal 16 of the embodiment of
A threaded connection 120a of an end of a tubular support 120 that defines an internal passage 120b and radial passages 120c and 120d, and includes an external flange 120e, and includes a plurality of circumferentially-spaced high-torque lugs 120f at the other end, is coupled to the threaded connection 114c of the other end of the tubular support 114. In an exemplary embodiment, the tubular support 120 includes four circumferentially-spaced high-torque lugs 120f. A sealing element 121 extends in an annular channel 120g formed in the external surface of the tubular support 120 and sealingly engages the internal surface of the tubular support 114.
Rupture discs 122 and 124 are received and mounted within the radial passages 120c and 120d, respectively, of the tubular support 120. The rupture discs 122 and 124 are substantially similar to the rupture discs 22 and 24, respectively, of the embodiment of
An end of a tubular support 126 that defines an internal passage 126a and an increased-diameter portion 126b, and includes a threaded connection 126c, extends within the internal passages 114a and 120b so that the reduced-diameter portion 112d of the tubular support 112 extends within the increased-diameter portion 126b, thereby defining an annular region 126d between the external surface of the reduced-diameter portion and the internal surface of the increased-diameter portion. An annular region 127 is defined by the external surface of the tubular support 126 and the internal surfaces of the tubular supports 114 and 120. Thus, the internal passage 126a is in fluid communication with the annular region 127 via the annular region 126d.
A tubular expansion cone 130 that includes a tapered external expansion surface 130a is coupled to the external surface of the tubular support 120, circumferentially extending around the tubular support 120 so that an end of the tubular expansion cone abuts the external flange 120e. A sealing element 131 extends in an annular channel 120h formed in the external surface of the tubular support 120 and sealingly engages the internal surface of the tubular expansion cone 130.
A tubular support 132 is coupled to the tubular support 114 so that the tubular support 114 extends within the tubular support 132 and so that an end of the tubular support 132 is substantially flush with an end of the tubular support 114. The other end of the tubular support 132 abuts the other end of the tubular expansion cone 130. Set screws 134a and 134b extend through and threadably engage radial passages 136a and 136b, respectively, that are formed through the tubular supports 114 and 132. The distal ends of the set screws 134a and 134b contact and apply pressure against the external surface of the tubular support 120, thereby reducing the possibility of decoupling and/or relative movement between two or more of the tubular supports 114, 120 and 132 and parts coupled and/or engaged thereto during the operation of the apparatus 100, discussed below.
An expandable tubular member 138 that defines an internal passage 138a for receiving the tubular supports 114, 120, 126 and 132 mates with and is supported by the external expansion surface 130a of the tubular expansion cone 130. The expandable tubular member 138 includes an upper portion 138b having a smaller inside diameter and a threaded connection 138c, and further includes a lower portion 138d having a larger inside diameter and a threaded connection 138e. It is understood that another expandable tubular member may be coupled to the expandable tubular member 138 via the threaded connection 138c, and yet another expandable tubular member may be coupled to the former in a similar manner and so on, thereby forming a string of expandable tubular members having a continuous internal passage.
A nose or shoe 140 is coupled to the lower portion 138d of the expandable tubular member 138 via a threaded connection 138e. The shoe 140 includes an upper component 142 composed of a material having a material hardness, and a lower component 144 coupled to the upper component and composed of another material having another material hardness. In an exemplary embodiment, the material hardness of the material of the lower component 144 may be less than the material hardness of the material of the upper component 142. In an exemplary embodiment, the upper component 142 may be composed of an aluminum alloy and the lower component 144 may be composed of a composite material. In another exemplary embodiment, the upper component 142 may be composed of an aluminum alloy and the lower component 144 may be composed of a concrete material. It is understood that the upper component 142 and the lower component 144 may each be composed of a wide variety of materials.
A casing 142a of the upper component 142 defines external surfaces 142b and 142c and a cavity 142d having internal surfaces 142e and 142f. An annular portion 142g extends in an upward direction from the external surface 142b. The annular portion 142g is coupled to the tubular support 126 via the threaded connection 126c, and defines an internal passage 142ga and a plug seat 142gb including a lead-in angled surface 142gba. A threaded connection 142h is coupled to the threaded connection 138e. Circumferentially-spaced lug pockets 142i for receiving the lugs 120f of the tubular support 120 are formed in the external surface 142b, thereby enabling torque loads or other types or combinations of loads to be transmitted between the tubular support 120 and the shoe 140 at any point during operation of the apparatus 100, discussed below, and/or for any conventional reason before, during or after the operation of the apparatus. In an exemplary embodiment, a quantity of eight circumferentially-spaced lug pockets 142i may be formed in the external surface 142b.
A sealing element 146 extends in an annular groove 142gc formed in the external surface of the annular portion142g and sealingly engages the tubular support 120. A sealing element 148 extends in an annular groove 142ca in the external surface 142c and sealingly engages the internal surface of the expandable tubular member 138.
The lower component 144 is disposed in the cavity 142d and coupled to the upper component 142. External surfaces 144a and 144b are defined and are mated against the internal surfaces 142e and 142f, respectively. It is understood that the lower component 144 may be coupled to the upper component 142 via one or more threaded engagements, adhesives, friction or other conventional coupling techniques, or any combination thereof, so that torque loads or other types or combinations of loads may be easily transferred between the components. It is further understood that internal ribs (not shown) may extend from the internal surface 142e and/or 142f in order to facilitate the transmission of loads between the upper component 142 and the lower component 144.
Although tapered surfaces 144c and 144d are defined by the lower component 144, it is understood that the portion of the lower component extending below the upper component 142 may be substantially cylindrical.
An internal passage 144e is formed in the lower component 144, and a valve seat portion 144f of the lower component is disposed in the internal passage, extending from the internal walls therefrom and dividing the internal passage into sub-passages 144ea and 144eb. Passages 144fa and 144fb are formed through the valve seat portion 144f. Passages 144g, 144h, 144i and 144j are formed through the lower component 144, fluidically connecting the sub-passage 144eb to the environment outside of the apparatus 100.
A one-way poppet valve 150 is movably coupled to the valve seat portion 144f of the lower component 144 of the shoe 140, and includes a valve element 150a for controllably sealing the passages 144fa and 144fb. In an exemplary embodiment, the one-way poppet valve 150 only permits fluidic materials to be exhausted from the apparatus 100.
Shear pins 152a and 152b extend through the expandable tubular member 138 and the upper component 142, and into the lower component 144 to lock the shoe 140 to the expandable tubular member. In an exemplary embodiment, the shear pins 152a and 152b may be in the form of knurled drive-in shear pins, in which case it is understood that the shear pins can be easily installed and removed with a conventional tool such as, for example, a slide hammer.
During operation, with continuing reference to
In an exemplary embodiment, movement of the tubular supports 112, 114, 120 and 132 and the tubular expansion cone 130, relative to the tubular support 126, the expandable tubular member 138, the shoe 140 and the valve 150, is possible in either an upward or downward direction as long as there is a gap between the distal ends of the lugs 120f and the bottom surfaces of the corresponding lug pockets 142i of the upper component 142 of the shoe 140. For example, when the apparatus 100 encounters a resistance during placement in the wellbore 54 such as, for example, the shoe 140 becoming jammed or stuck in the wellbore 54, the tubular supports 112, 114, 120 and 132 and the tubular expansion cone 30 may move downward, relative to the tubular support 126, the expandable tubular member 138, the shoe 140 and the valve 150, until the distal ends of the lugs 120f contact the bottom surfaces of the corresponding lug pockets 142i. At this point, torque loads or other types or combinations of loads may be applied to the apparatus 100 in any conventional manner in an effort to free the apparatus 100 from the aforementioned resistance. It is understood that the degree of movement of the tubular supports 112, 114, 120 and 132 and the tubular expansion cone 130 may also be limited by the gap between the end of the tubular support 126 adjacent the increased-diameter portion 126b and the transition region of the tubular support 112 between the reduced-diameter portion 112d and the remainder of the tubular support 112, and/or by the degree of extension of the reduced-diameter portion 112 into the tubular support 126.
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, as illustrated in
Continued injection of the fluidic material 158 into the apparatus 100, following the seating of the plug element 160 in the plug seat 142gb, pressurizes the internal passage 126a of the tubular support 126. This pressurization causes the fluidic material 158 in the internal passage 126a to flow into the annular region 127 via the annular region 126d, and axially through the annular region 127 until reaching the rupture discs 122 and 124. The rupture discs 122 and 124 rupture when the pressurization reaches a predetermined pressure value. Thus, the radial passages 120c and 120d of the tubular support 120 are opened so that the annular region 127 is in fluid communication with the internal passage 138a of the expandable tubular member 138.
As a result, the fluidic material 158 flows through the radial passages 120c and 120d, thereby pressurizing the portion of the internal passage 138a that is below the tubular expansion cone 130. Due to this pressurization, the tubular supports 112, 114, 120 and 132, and the tubular expansion cone 130, are displaced in an upward direction 162, relative to the tubular support 126, the expandable tubular member 138, the shoe 140, the valve 150 and the plug element 160, thereby radially expanding and plastically deforming the expandable tubular member 138.
It is understood that, during operation of the apparatus 100, after radially expanding and plastically deforming the expandable tubular member 138, the tubular supports 112, 114, 120 and 132 and the tubular expansion cone 130 may be reinserted into the expandable tubular member 138, and displaced in a downward direction, relative to the tubular support 126, the expandable tubular member 138, the shoe 140, the valve 150 and the plug element 160, and for any conventional reason, until the distal ends of the lugs 120f contact the bottom surfaces of the corresponding lug pockets 142i.
It is further understood that, after radially expanding and plastically deforming the expandable tubular member 138, the shoe 140 may be drilled out in any conventional manner for any conventional reason such as, for example, continuing with the next drilling operation. It is further understood that, due to the lower component 144 of the shoe 140 having a lower material hardness, the drill-out time for the shoe may be reduced.
In several exemplary embodiments, it is understood that one or more of the operational steps in each embodiment may be omitted.
Referring to
An end of a tubular support 214 that defines an internal passage 214a and includes threaded connections 214b and 214c, is coupled to the other end of the tubular support 212. A crimp seal 216 is disposed in an annular channel 212e formed in the external surface of the tubular support 212 and sealingly engages the wall of the internal passage 214a. The crimp seal 216 is identical to the crimp seal 16 of the embodiment of
A threaded connection 220a of an end of a tubular support 220 that defines an internal passage 220b and radial passages 220c and 220d, and includes an external flange 220e, and includes a plurality of circumferentially-spaced high-torque lugs 220f at the other end, is coupled to the threaded connection 214c of the other end of the tubular support 214. In an exemplary embodiment, the tubular support 220 includes four circumferentially-spaced high-torque lugs 220f. Circumferentially-spaced cavities 220g and 220h are formed in the external surface of the tubular support 220 in the vicinity of the radial passages 220c and 220d, respectively, and extend from the radial passages to the external flange 220e. A sealing element 221 extends in an annular channel 220i formed in the external surface of the tubular support 220 and sealingly engages the internal surface of the tubular support 214.
Rupture discs 222 and 224 are received and mounted within the radial passages 220c and 220d, respectively, of the tubular support 220. The rupture discs 222 and 224 are substantially similar to the rupture discs 22 and 24, respectively, of the embodiment of FIGS. 1,1a, 1b, 1c, 1d and 1e and therefore will not be described in detail.
An end of a tubular support 226 that defines an internal passage 226a and an increased-diameter portion 226b, and includes a threaded connection 226c, extends within the internal passages 214a and 220b so that the reduced-diameter portion 212d of the tubular support 212 extends within the increased-diameter portion 226b, thereby defining an annular region 226d between the external surface of the reduced-diameter portion and the internal surface of the increased-diameter portion. An annular region 227 is defined by the external surface of the tubular support 226 and the internal surfaces of the tubular supports 214 and 220. Thus, the internal passage 226a is in fluid communication with the annular region 227 via the annular region 226d.
A tubular expansion cone 230 that includes a tapered external expansion surface 230a is coupled to the external surface of the tubular support 220, circumferentially extending around the tubular support 220 so that an end of the tubular expansion cone abuts the external flange 220e (abutment not shown in
A tubular support 232 is coupled to the tubular support 214 so that the tubular support 214 extends within the tubular support 232 and so that an end of the tubular support 232 is substantially flush with an end of the tubular support 214. The other end of the tubular support 232 abuts the other end of the tubular expansion cone 230. A sealing element 233 extends in an annular channel 220j formed in the external surface of the tubular support 220 and sealingly engages the internal surface of the tubular expansion cone 230. Set screws 234a and 234b extend through and threadably engage radial passages 236a and 236b, respectively, that are formed through the tubular supports 214 and 232. The distal ends of the set screws 234a and 234b contact and apply pressure against the external surface of the tubular support 220, thereby reducing the possibility of decoupling and/or relative movement between two or more of the tubular supports 214, 220 and 232 and parts coupled and/or engaged thereto during the operation of the apparatus 200, discussed below.
An expandable tubular member 238 that defines an internal passage 238a for receiving the tubular supports 214, 220, 226 and 232 mates with and is supported by the external expansion surface 230a of the tubular expansion cone 230. The expandable tubular member 238 includes an upper portion 238b having a smaller inside diameter and a threaded connection 238c, and further includes a lower portion 238d having a larger inside diameter and a threaded connection 238e. It is understood that another expandable tubular member may be coupled to the expandable tubular member 238 via the threaded connection 238c, and yet another expandable tubular member may be coupled to the former in a similar manner and so on, thereby forming a string of expandable tubular members having a continuous internal passage.
A nose or shoe 240 is coupled to the lower portion 238d of the expandable tubular member 238 via the threaded connection 238e. The shoe 240 includes an upper component 242 composed of a material having a material hardness, and a lower component 244 coupled to the upper component and composed of another material having another material hardness. In an exemplary embodiment, the material hardness of the material of the lower component 244 may be less than the material hardness of the material of the upper component 242. In an exemplary embodiment, the upper component 242 may be composed of an aluminum alloy and the lower component 244 may be composed of a composite material. In another exemplary embodiment, the upper component 242 may be composed of an aluminum alloy and the lower component 244 may be composed of a concrete material. It is understood that the upper component 242 and the lower component 244 may each be composed of a wide variety of materials.
A casing 242a of the upper component 242 defines external surfaces 242b and 242c and a cavity 242d having internal surfaces 242e and 242f. An annular portion 242g extends in an upward direction from the external surface 242b. The annular portion 242g is coupled to the tubular support 226 via the threaded connection 226c, and defines an internal passage 242ga and a plug seat 242gb including a lead-in angled surface 242gba, and includes a reduced-diameter portion 242gc . An annular region 243 is defined by the external surface of the reduced-diameter portion 242gc of the annular portion 242g and the internal surface of the tubular support 220. The annular regions 227 and 243 are concentrically aligned and are in fluid communication with each other. Thus, the internal passage 226a of the tubular support 226 is in fluid communication with the annular region 243 via the annular regions 226d and 227.
A threaded connection 242h is coupled to the threaded connection 238e. Circumferentially-spaced lug pockets 242i for receiving the lugs 220f of the tubular support 220 are formed in the external surface 242b, thereby enabling torque loads or other types or combinations of loads to be transmitted between the tubular support 220 and the shoe 240 at any point during operation of the apparatus 200, discussed below, and/or for any conventional reason before, during or after the operation of the apparatus. In an exemplary embodiment, a quantity of eight circumferentially-spaced lug pockets 242i may be formed in the external surface 242b.
A sealing element 246 extends in an annular groove 242gd formed in the external surface of the annular portion 242g and sealingly engages the internal surface of the tubular support 220. A sealing element 248 extends in an annular groove 242ca in the external surface 242c and sealingly engages the internal surface of the expandable tubular member 238.
The lower component 244 is disposed in the cavity 242d and coupled to the upper component 242. External surfaces 244a and 244b are defined and are mated against the internal surfaces 242e and 242f, respectively. It is understood that the lower component 244 may be coupled to the upper component 242 via one or more threaded engagements, adhesives, friction or other conventional coupling techniques, or any combination thereof, so that torque loads or other types or combinations of loads may be easily transferred between the components. It is further understood that internal ribs (not shown) may extend from the internal surface 242e and/or 242f in order to facilitate the transmission of loads between the upper component 242 and the lower component 244.
Although tapered surfaces 244c and 244d are defined by the lower component 244, it is understood that the portion of the lower component extending below the upper component 242 may be substantially cylindrical.
A cavity 244e is formed in the lower component 244, and a valve seat portion 244f of the lower component is disposed in the cavity, extending from the internal walls therefrom. Passages 244fa and 244fb are formed through the valve seat portion 244f, fluidically connecting the internal passage 242ga to the cavity 244e. Passages 244g, 244h, 244i and 244j are formed through the lower component 244, fluidically connecting the cavity 244e to the environment outside of the apparatus 200.
A one-way poppet valve 250 is movably coupled to the valve seat portion 244f of the lower component 244 of the shoe 240, and includes a valve element 250a for controllably sealing the passages 244fa and 244fb. In an exemplary embodiment, the one-way poppet valve 250 only permits fluidic materials to be exhausted from the apparatus 200.
Shear pins 252a and 252b extend through the expandable tubular member 238 and the upper component 242, and into the lower component 244 to lock the shoe 240 to the expandable tubular member. In an exemplary embodiment, the shear pins 252a and 252b may extend through the threaded connections 238e and 242h. In an exemplary embodiment, the shear pins 252a and 252b may be in the form of knurled drive-in shear pins, in which case it is understood that the shear pins can be easily installed and removed with a conventional tool such as, for example, a slide hammer.
During operation, with continuing reference to
In an exemplary embodiment, movement of the tubular supports 212, 214, 220 and 232 and the tubular expansion cone 230, relative to the tubular support 226, the expandable tubular member 238, the shoe 240 and the valve 250, is possible in either an upward or downward direction as long as there is a gap between the distal ends of the lugs 220f and the bottom surfaces of the corresponding lug pockets 242i of the upper component 242 of the shoe 240. For example, when the apparatus 200 encounters a resistance during placement in the wellbore 54 such as, for example, the shoe 240 becoming jammed or stuck in the wellbore 54, the tubular supports 212, 214, 220 and 232 and the tubular expansion cone 230 may move downward, relative to the tubular support 226, the expandable tubular member 238, the shoe 240 and the valve 250, until the distal ends of the lugs 220f contact the bottom surfaces of the corresponding lug pockets 242i. At this point, torque loads or other types or combinations of loads may be applied to the apparatus 200 in any conventional manner in an effort to free the apparatus 200 from the aforementioned resistance. It is understood that the degree of movement of the tubular supports 212, 214, 220 and 232 and the tubular expansion cone 230 may also be limited by the gap between the end of the tubular support 226 adjacent the increased-diameter portion 226b and the transition region of the tubular support 212 between the reduced-diameter portion 212d and the remainder of the tubular support 212, and/or by the degree of extension of the reduced-diameter portion 212d into the tubular support 226.
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, as illustrated in
Continued injection of the fluidic material 258 into the apparatus 200, following the seating of the plug element 260 in the plug seat 242gb, pressurizes the internal passage 226a of the tubular support 226. This pressurization causes the fluidic material 258 in the internal passage 226a to flow into the annular region 227 via the annular region 226d, and axially through the annular regions 227 and 243 until reaching the rupture discs 222 and 224. The rupture discs 222 and 224 rupture when the pressurization reaches a predetermined pressure value. The radial passages 220c and 220d are thereby opened and the annular region 243 is in fluid communication with the internal passage 238a of the expandable tubular member 238 via the internal passages 231a and 231b and the radial passages.
As a result, the fluidic material 258 flows through the radial passages 220c and 220d and the internal passages 231a and 231b, thereby pressurizing the portion of the internal passage 238a that is below the tubular expansion cone 230. Due to this pressurization, the tubular supports 212, 214, 220 and 232, and the tubular expansion cone 230, are displaced in an upward direction 262, relative to the tubular support 226, the expandable tubular member 238, the shoe 240, the valve 250 and the plug element 260, thereby radially expanding and plastically deforming the expandable tubular member 238.
It is understood that, during operation of the apparatus 200, after radially expanding and plastically deforming the expandable tubular member 238, the tubular supports 212, 214, 220 and 232 and the tubular expansion cone 230 may be reinserted into the expandable tubular member 238, and displaced in a downward direction, relative to the tubular support 226, the expandable tubular member 238, the shoe 240, the valve 250 and the plug element 260, and for any conventional reason, until the distal ends of the lugs 220f contact the bottom surfaces of the corresponding lug pockets 242i.
It is further understood that, after radially expanding and plastically deforming the expandable tubular member 238, the shoe 240 may be drilled out in any conventional manner for any conventional reason such as, for example, continuing with the next drilling operation. It is further understood that, due to the lower component 244 of the shoe 240 having a lower material hardness, the drill-out time for the shoe may be reduced.
In several exemplary embodiments, it is understood that one or more of the operational steps in each embodiment may be omitted.
Referring to
An end of a tubular support 314 that defines an internal passage 314a having a variable inside diameter, and includes a shoulder 314b and threaded connections 314c and 314d, is coupled to the other end of the tubular support 312. A crimp seal 316 is disposed in an annular channel 312d formed in the external surface of the tubular support 312 and sealingly engages the wall of the internal passage 314a. The crimp seal 316 is identical to the crimp seal 16 of the embodiment of
A coupler 318 that defines an internal passage 318a, and includes a threaded connection 318b, is disposed in the internal passage 314a and is coupled to the tubular support 314, contacting the shoulder 314b.
A threaded connection 320a of an end of a tubular support 320 that defines an internal passage 320b and radial passages 320c and 320d, and includes an external flange 320e, and includes a plurality of circumferentially-spaced high-torque lugs 320f at the other end is coupled to the threaded connection 314d of the other end of the tubular support 314. In an exemplary embodiment, the tubular support 320 includes four circumferentially-spaced high-torque lugs 320f. A sealing element 321 extends in an annular channel 320g formed in the external surface of the tubular support 320 and sealingly engages the internal surface of the tubular support 314. An internal shoulder 320h of the tubular support 320 is defined between the radial passages 320c and 320d and the distal ends of the high-torque lugs 320f.
Rupture discs 322 and 324 are received and mounted within the radial passages 320c and 320d, respectively, of the tubular support 320. The rupture discs 322 and 324 are substantially similar to the rupture discs 22 and 24, respectively, of the embodiment of
An end of a tubular support 326 that defines an internal passage 326a and an increased-diameter portion 326b is coupled to the threaded connection 318b of the coupler 318 and extends within the internal passages 314a and 320b, and includes an end that engages the internal shoulder 320h of the tubular support 320, thereby coupling the tubular support 326 and the coupler 318 to the tubular support 320. The coupler 318 partially extends within the portion of the internal passage 326a corresponding to the increased-diameter portion 326b of the tubular support 326. An annular region 327 is defined by the external surface of the tubular support 326 and the internal surfaces of the tubular supports 314 and 320.
Radial passages 326c and 326d are formed through the wall of the tubular support 326, in the vicinity of the coupler 318, so that the internal passage 326a is in fluid communication with the annular region 327. A sealing element 328 extends in an annular channel 320i formed in the internal surface of the tubular support 320 and sealingly engages the external surface of the tubular support 326. A tubular expansion cone 330 that includes a tapered external expansion surface 330a is coupled to the external surface of the tubular support 320, circumferentially extending around the tubular support 320 so that an end of the tubular expansion cone abuts the external flange 320e. A sealing element 331 extends in an annular channel 320j formed in the external surface of the tubular support 320 and sealingly engages the internal surface of the tubular expansion cone 330.
A tubular support 332 is coupled to the tubular support 314 so that the tubular support 314 extends within the tubular support 332. An end of the tubular support 332 abuts the other end of the tubular expansion cone 330. Set screws 334a and 334b extend through and threadably engage radial passages 336a and 336b, respectively, that are formed through the tubular supports 314 and 332. The distal ends of the set screws 334a and 334b contact and apply pressure against the external surface of the tubular support 320, thereby reducing the possibility of decoupling and/or relative movement between two or more of the tubular supports 314, 320 and 332 and parts coupled and/or engaged thereto during the operation of the apparatus 300, discussed below.
An expandable tubular member 338 that defines an internal passage 338a for receiving the tubular supports 314, 320, 326 and 332 and the coupler 318 mates with and is supported by the external expansion surface 330a of the tubular expansion cone 330. The expandable tubular member 338 includes an upper portion 338b having a smaller inside diameter and a threaded connection 338c, and further includes a lower portion 338d having a larger inside diameter and a threaded connection 338e. It is understood that another expandable tubular member may be coupled to the expandable tubular member 338 via the threaded connection 338c, and yet another expandable tubular member may be coupled to the former in a similar manner and so on, thereby forming a string of expandable tubular members having a continuous internal passage.
A nose or shoe 340 is coupled to the lower portion 338d of the expandable tubular member 338 via a threaded connection 338e. The shoe 340 includes an upper component 342 composed of a material having a material hardness, and a lower component 344 coupled to the upper component and composed of another material having another material hardness. In an exemplary embodiment, the material hardness of the material of the lower component 44 may be less than the material hardness of the material of the upper component 42. In an exemplary embodiment, the upper component 342 may be composed of an aluminum alloy and the lower component 344 may be composed of a composite material. In another exemplary embodiment, the upper component 342 may be composed of an aluminum alloy and the lower component 344 may be composed of a concrete material. It is understood that the upper component 342 and the lower component 344 may each be composed of a wide variety of materials.
A casing 342a of the upper component 342 defines external surfaces 342b and 342c and a cavity 342d having internal surfaces 342e and 342f. An annular portion 342g extends in an upward direction from the external surface 342b and into the internal passage 326a of the tubular support 326, defining an internal passage 342ga and a plug seat 342gb including a lead-in angled surface 342gba. A threaded connection 342h is coupled to the threaded connection 338e. Circumferentially-spaced lug pockets 342i for receiving the lugs 320f of the tubular support 320 are formed in the external surface 342b, thereby enabling torque loads or other types or combinations of loads to be transmitted between the tubular support 320 and the shoe 340 at any point during operation of the apparatus 300, discussed below, and/or for any conventional reason before, during or after the operation of the apparatus. In an exemplary embodiment, a quantity of eight circumferentially-spaced lug pockets 342i may be formed in the external surface 342b.
A sealing element 346 extends in an annular groove 342gc formed in the external surface of the annular portion 342g and sealingly engages the internal surface of the tubular support 326. A sealing element 348 extends in an annular groove 342ca in the external surface 342c and sealingly engages the internal surface of the expandable tubular member 338.
The lower component 344 is disposed in the cavity 342d and coupled to the upper component 342. External surfaces 344a and 344b are defined and are mated against the internal surfaces 342e and 342f, respectively. It is understood that the lower component 344 may be coupled to the upper component 342 via one or more threaded engagements, adhesives, friction or other conventional coupling techniques, or any combination thereof, so that torque loads or other types or combinations of loads may be easily transferred between the components. It is further understood that internal ribs (not shown) may extend from the internal surface 342e and/or 342f in order to facilitate the transmission of loads between the upper component 342 and the lower component 344.
Although tapered surfaces 344c and 344d are defined by the lower component 344, it is understood that the portion of the lower component extending below the upper component 342 may be substantially cylindrical.
An internal passage 344e is formed in the lower component 344, and a valve seat portion 344f of the lower component is disposed in the internal passage, extending from the internal walls therefrom and dividing the internal passage into sub-passages 344ea and 344eb, with a tubular support 345 extending within the passage 344ea from the valve seat portion 344f to the external surface 344a. Passages 344fa and 344fb are formed through the valve seat portion 344f. Passages 344g, 344h, 344i and 344j are formed through the lower component 344, fluidically connecting the sub-passage 344eb to the environment outside of the apparatus 300.
A one-way poppet valve 350 is movably coupled to the valve seat portion 344f of the lower component 344 of the shoe 340, and includes a valve element 350a for controllably sealing fluidic-material flow through the passages 344fa and 344fb. In an exemplary embodiment, the one-way poppet valve 350 only permits fluidic materials to be exhausted from the apparatus 300.
Shear pins 352a and 352b extend through the expandable tubular member 338 and the upper component 342, and into the lower component 344 to lock the shoe 340 to the expandable tubular member. In an exemplary embodiment, the shear pins 352a and 352b may be in the form of knurled drive-in shear pins, in which case it is understood that the shear pins can be easily installed and removed with a conventional tool such as, for example, a slide hammer. Anti-rotation flats 354a and 354b are formed in the lower component 344.
During operation, with continuing reference to
In an exemplary embodiment, movement of the tubular supports 312, 314, 320, 326 and 332, the coupler 318, and the tubular expansion cone 330, relative to the expandable tubular member 338, the shoe 340 and the valve 350, is possible in either an upward or downward direction as long as there is a gap between the distal ends of the lugs 320f and the bottom surfaces of the corresponding lug pockets 342i of the upper component 342 of the shoe 340. For example, when the apparatus 300 encounters a resistance during placement in the wellbore 54 such as, for example, the shoe 340 becoming jammed or stuck in the wellbore 54, the tubular supports 312, 314, 320, 326 and 332, the coupler 318, and the tubular expansion cone 330 may move downward, relative to the expandable tubular member 338, the shoe 340 and the valve 350, until the distal ends of the lugs 320f contact the bottom surfaces of the corresponding lug pockets 342i. At this point, torque loads or other types or combinations of loads may be applied to the apparatus 300 in any conventional manner in an effort to free the apparatus 300 from the aforementioned resistance.
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, as illustrated in
Continued injection of the fluidic material 358 into the apparatus 300, following the seating of the plug element 360 in the plug seat 342gb, pressurizes the internal passage 326a of the tubular support 326. This pressurization causes the fluidic material 358 in the internal passage 326a to flow through the radial passages 326c and 326d of the tubular support 326, and to flow axially through the annular region 327 until reaching the rupture discs 322 and 324. The rupture discs 322 and 324 rupture when the pressurization reaches a predetermined pressure value. Thus, the radial passages 320c and 320d of the tubular support 320 are opened so that the annular region 327 is in fluid communication with the internal passage 338a of the expandable tubular member 338.
As a result, the fluidic material 358 flows through the radial passages 320c and 320d, thereby pressurizing the portion of the internal passage 338a that is below the tubular expansion cone 330. Due to this pressurization, the tubular supports 312, 314, 320, 326 and 332, the coupler 318, and the tubular expansion cone 330 are displaced in an upward direction 362, relative to the expandable tubular member 338, the shoe 340, the valve 350 and the plug element 360, thereby radially expanding and plastically deforming the expandable tubular member 338.
It is understood that, during operation of the apparatus 300, after radially expanding and plastically deforming the expandable tubular member 338, the tubular supports 312, 314, 320, 326 and 332, the coupler 318, and the tubular expansion cone 330 may be reinserted into the expandable tubular member 338, and displaced in a downward direction, relative to the expandable tubular member 338, the shoe 340, the valve 350 and the plug element 360, and for any conventional reason, until the distal ends of the lugs 320f contact the bottom surfaces of the corresponding lug pockets 342i. Due to the downward movement of the tubular support 326 relative to the plug element 360, one or more of the wipers 360a, 360b, 360c and 360d of the plug element may bend downwards and sealingly engage the internal surface of the tubular support 326.
It is understood that, after radially expanding and plastically deforming the expandable tubular member 338, the shoe 340 may be drilled out in any conventional manner for any conventional reason such as, for example, continuing with the next drilling operation. It is further understood that, due to the lower component 344 of the shoe 340 having a lower material hardness, the drill-out time for the shoe may be reduced.
In several exemplary embodiments, it is understood that one or more of the operational steps in each embodiment may be omitted.
In an exemplary embodiment, as illustrated in
During operation of the apparatus 300, as described above, the plug element 360 may be injected into the apparatus through the passages 312a, 314a, 318a, 326a and 342ga until the plug element is seated in the plug seat 342gb and any flow of fluidic material through the internal passage 342ga is blocked. At this point, the wipers 360b, 360c and 360c are compressed and sealingly engage the internal surface of the tubular support 326. The wiper 360a is also compressed and sealingly engages the plug seat 342gb, including the lead-in angled surface 342gba of the plug seat 342gb. In an exemplary embodiment, the plug seat 342gb may have a coating composed of an erosion-resistant material such as, for example, an elastomer coating, a hard chromium electroplate coating, an electroless nickel coating with dispersed carbide particles, or a high-velocity oxy-fuel (HVOF) coating with tungsten carbide (WC) particles in nickel binder. It is understood that the plug seat 342gb may have other coatings. Also at this point, the increased-diameter portion 368a of the cylindrical support 368 of the plug element 360 contacts and sealingly engages a shoulder 342gd formed in plug seat 342gb, and the sealing element 370 sealingly engages the plug seat 342gb.
As illustrated in
During operation of the apparatus 300, as described above, the plug element 371 may be injected into the apparatus through the passages 312a, 314a, 318a, 326a and 342ga until the plug element is seated in the plug seat 342gb and any flow of fluidic material through the internal passage 342ga is blocked. At this point, the wipers 371b, 371c and 371d are compressed and sealingly engage the internal surface of the tubular support 326. The wiper 371a is also compressed and sealingly engages the plug seat 342gb, including the lead-in angled surface 342gba of the plug seat 342gb. In an exemplary embodiment, the plug seat 342gb may have a coating composed of an erosion-resistant material such as, for example, an elastomer coating, a hard chromium electroplate coating, an electroless nickel coating with dispersed carbide particles, or a high-velocity oxy-fuel (HVOF) coating with tungsten carbide (WC) particles in nickel binder. It is understood that the plug seat 342gb may have other coatings. Also at this point, the increased-diameter portion 372a of the core 372 of the plug element 371 contacts and sealingly engages the shoulder 342gd formed in the plug seat 342gb, and the sleeve 376 sealingly engages the plug seat 342gb.
As illustrated in
A nose 386 is coupled to an end of the cylindrical support 384. A seal 388 extends around the coupler 382 and an end of the seal abuts the other end of the cylindrical support 384. A ring 390 extends around the coupler 382, engaging the external surface of the coupler and the internal surface of the seal 388. In an exemplary embodiment, the seal 388 may be in the form of a composite seal constructed of elastomeric and/or thermoplastic components. In another exemplary embodiment, the seal 388 may be in the form of an elastomeric cup-type seal with polyetheretherketone (PEEK) backup. A sealing element 392 extends in an annular channel 384b formed in the external surface of the cylindrical support 384. In an exemplary embodiment, the sealing element 392 may be in the form of a composite seal constructed of elastomeric and/or thermoplastic components. In another exemplary embodiment, the sealing element 392 may be in the form of an elastomeric D-seal with PEEK backups.
During operation of the apparatus 300, as described above, the plug element 379 may be injected into the apparatus through the passages 312a, 314a, 318a, 326aand 342ga until the plug element is seated in the plug seat 342gb and any flow of fluidic material through the internal passage is blocked. At this point, the wipers 379a, 379b, 379c and 379d are compressed and sealingly engage the internal surface of the tubular support 326. The portion of the seal 388 in the vicinity of the ring 390 is also compressed and sealingly engages the plug seat 342gb. In an exemplary embodiment, the plug seat 342gb may have a coating composed of an erosion-resistant material such as, for example, an elastomer coating, a hard chromium electroplate coating, an electroless nickel coating with dispersed carbide particles, or a high-velocity oxy-fuel (HVOF) coating with tungsten carbide (WC) particles in nickel binder. It is understood that the plug seat 342gb may have other coatings. Also at this point, the increased-diameter portion 384a of the core 384 of the plug element 379 contacts and sealingly engages the shoulder 342gd formed in the plug seat 342gb, and the sealing element 392 sealingly engages the plug seat 342gb.
Referring to
The operation of the apparatus 400 is similar to that of the apparatus 300 of the embodiment of FIGS. 11,11a and 11b and therefore will not be described in detail. It is understood that, due to the pressurization of the portion of the internal passage 338a that is below the tubular expansion cone 330, the tubular supports 312, 314, 320, 326 and 332, the coupler 318, the tubular expansion cone 330 and the spacer 402 are displaced in the upward direction 362, relative to the expandable tubular member 338, the shoe 340, the valve 350 and the plug element 360, thereby radially expanding and plastically deforming the expandable tubular member 338.
Referring to
The expandable tubular member 412 is in the form of a modification of the expandable tubular member 338 of the apparatus 400 of the embodiment of
The operation of the apparatus 410 is similar to that of the apparatus 400 of the embodiment of
In several of the embodiments, the expandable tubular members 38, 138, 238, 338 and/or 412 are radially expanded and plastically deformed using one or more of the methods and apparatuses disclosed in one or more of the following: (1) U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, which claims priority from provisional application 60/121,702, filed on Feb. 25, 1999, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, which claims priority from provisional application 60/119,611, filed on Feb. 11, 1999, (4) U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338,filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (5) U.S. patent application Ser. No. 10/169,434, filed on Jul. 1, 2002, which claims priority from provisional application 60/183,546, filed on Feb. 18, 2000, (6) U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (7) U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (8) U.S. Pat. No. 6,575,240, which was filed as patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,907, filed on Feb. 26, 1999, (9) U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (10) U.S. patent application Ser. No. 09/981,916, filed on Oct. 18, 2001 as a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (11) U.S. Pat. No. 6,604,763, which was filed as application Ser. No. 09/559,122, filed on Apr. 26, 2000, which claims priority from provisional application 60/131,106, filed on Apr. 26, 1999, (12) U.S. patent application Ser. No. 10/030,593, filed on Jan. 8, 2002, which claims priority from provisional application 60/146,203, filed on Jul. 29, 1999, (13) U.S. provisional patent application Ser. No. 60/143,039, filed on Jul. 9, 1999, (14) U.S. patent application Ser. No. 10/111,982, filed on Apr. 30, 2002, which claims priority from provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (15) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (16) U.S. provisional patent application Ser. No. 60/438,828, filed on Jan. 9, 2003, (17) U.S. Pat. No. 6,564,875, which was filed as application Ser. No. 09/679,907, on Oct. 5, 2000, which claims priority from provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (18) U.S. patent application Ser. No. 10/089,419, filed on Mar. 27, 2002, which claims priority from provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (19) U.S. patent application Ser. No. 09/679,906, filed on Oct. 5, 2000, which claims priority from provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (20) U.S. patent application Ser. No. 10/303,992, filed on Nov. 22, 2002, which claims priority from provisional patent application serial no. 60/212,359, filed on Jun. 19, 2000, (21) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (22) U.S. provisional patent application Ser. No. 60/455,051, filed on Mar. 14, 2003, (23) PCT application US02/2477, filed on Jun. 26, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/303,711, filed on Jul. 6, 2001, (24) U.S. patent application Ser. No. 10/311,412, filed on Dec. 12, 2002, which claims priority from provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, (25) U.S. patent application Ser. No. 10/, filed on Dec. 18, 2002, which claims priority from provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000, (26) U.S. patent application Ser. No. 10/322,947, filed on Jan. 22, 2003, which claims priority from provisional patent application Ser. No. 60/233,638, filed on Sep. 18, 2000, (27) U.S. patent application Ser. No. 10/406,648, filed on Mar. 31, 2003, which claims priority from provisional patent application Ser. No. 60/237,334, filed on Oct. 2, 2000, (28) PCT application US02/04353, filed on Feb. 14, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/270,007, filed on Feb. 20, 2001, (29) U.S. patent application Ser. No. 10/465,835, filed on Jun. 13, 2003, which claims priority from provisional patent application Ser. No. 60/262,434, filed on Jan. 17, 2001, (30) U.S. patent application Ser. No. 10/465,831, filed on Jun. 13, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/259,486, filed on Jan. 3, 2001, (31) U.S. provisional patent application Ser. No. 60/452,303, filed on Mar. 5, 2003, (32) U.S. Pat. No. 6,470,966, which was filed as patent application Ser. No. 09/850,093, filed on May 7, 2001, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (33) U.S. Pat. No. 6,561,227, which was filed as patent application Ser. No. 09/852,026, filed on May 9, 2001, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (34) U.S. patent application Ser. No. 09/852,027, filed on May 9, 2001, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (35) PCT Application US02/25608, filed on Aug. 13, 2002, which claims priority from provisional application 60/318,021, filed on Sep. 7, 2001, (36) PCT Application US02/24399, filed on Aug. 1, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/313,453, filed on Aug. 20, 2001, (37) PCT Application US02/29856, filed on Sep. 19, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/326,886, filed on Oct. 3, 2001, (38) PCT Application US02/20256, filed on Jun. 26, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/303,740, filed on Jul. 6, 2001, (39) U.S. patent application Ser. No. 09/962,469, filed on Sep. 25, 2001, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (40) U.S. patent application Ser. No. 09/962,470, filed on Sep. 25, 2001, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (41) U.S. patent application Ser. No. 09/962,471, filed on Sep. 25, 2001, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (42) U.S. patent application Ser. No. 09/962,467, filed on Sep. 25, 2001, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (43) U.S. patent application Ser. No. 09/962,468, filed on Sep. 25, 2001, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (44) PCT application US 02/25727,filed on Aug. 14, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/317,985, filed on Sep. 6, 2001, and U.S. provisional patent application Ser. No. 60/318,386, filed on Sep. 10, 2001, (45) PCT application US 02/39425, filed on Dec. 10, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/343,674, filed on Dec. 27, 2001, (46) U.S. utility patent application Ser. No. 09/969,922, filed on Oct. 3, 2001, which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (47) U.S. utility patent application Ser. No. 10/516,467, filed on Dec. 10, 2001, which is a continuation application of U.S. utility patent application Ser. No. 09/969,922, filed on Oct. 3, 2001, which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (48) PCT application US 03/00609, filed on Jan. 9, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/357,372, filed on Feb. 15, 2002, (49) U.S. patent application Ser. No. 10/074,703, filed on Feb. 12, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (50) U.S. patent application Ser. No. 10/074,244, filed on Feb. 12, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (51) U.S. patent application Ser. No. 10/076,660, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (52) U.S. patent application Ser. No. 10/076,661, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (53) U.S. patent application Ser. No. 10/076,659, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (54) U.S. patent application Ser. No. 10/078,928, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (55) U.S. patent application Ser. No. 10/078,922, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (56) U.S. patent application Ser. No. 10/078,921, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (57) U.S. patent application Ser. No. 10/261,928, filed on Oct. 2, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (58) U.S. patent application Ser. No. 10/079,276, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (59) U.S. patent application Ser. No. 10/262,009, filed on Oct. 2, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (60) U.S. patent application Ser. No. 10/092,481, filed on Mar. 7, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (61) U.S. patent application Ser. No. 10/261,926, filed on Oct. 2, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (62) PCT application US 02/36157, filed on Nov. 12, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/338,996, filed on Nov. 12, 2001, (63) PCT application US 02/36267, filed on Nov. 12, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/339,013, filed on Nov. 12, 2001, (64) PCT application US 03/11765, filed on Apr. 16, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/383,917, filed on May 29, 2002, (65) PCT application US 03/15020, filed on May 12, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/391,703, filed on Jun. 26, 2002, (66) PCT application US 02/39418, filed on Dec. 10, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/346,309, filed on Jan. 7, 2002, (67) PCT application US 03/06544, filed on Mar. 4, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/372,048, filed on Apr. 12, 2002, (68) U.S. patent application Ser. No. 10/331,718, filed on Dec. 30, 2002, which is a divisional U.S. patent application Ser. No. 09/679,906, filed on Oct. 5, 2000, which claims priority from provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (69) PCT application US 03/04837, filed on Feb. 29, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/363,829, filed on Mar. 13, 2002, (70) U.S. patent application Ser. No. 10/261,927, filed on Oct. 2, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (71) U.S. patent application Ser. No. 10/262,008, filed on Oct. 2, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (72) U.S. patent application Ser. No. 10/261,925, filed on Oct. 2, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (73) U.S. patent application Ser. No. 10/199,524, filed on Jul. 19, 2002, which is a continuation of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (74) PCT application US 03/10144, filed on Mar. 28, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/372,632, filed on Apr. 15, 2002, (75) U.S. provisional patent application Ser. No. 60/412,542, filed on Sep. 20, 2002, (76) PCT application US 03/14153, filed on May 6, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/380,147, filed on May 6, 2002, (77) PCT application US 03/19993, filed on Jun. 24, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/397,284, filed on Jul. 19, 2002, (78) PCT application US 03/13787, filed on May 5, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/387,486, filed on Jun. 10, 2002, (79) PCT application US 03/18530, filed on Jun. 11, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/387,961, filed on Jun. 12, 2002, (80) PCT application US 03/20694, filed on Jul. 1, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/398,061, filed on Jul. 24, 2002, (81) PCT application US 03/20870, filed on Jul. 2, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/399,240, filed on Jul. 29, 2002, (82) U.S. provisional patent application Ser. No. 60/412,487, filed on Sep. 20, 2002, (83) U.S. provisional patent application Ser. No. 60/412,488, filed on Sep. 20, 2002, (84) U.S. patent application Ser. No. 10/280,356, filed on Oct. 25, 2002, which is a continuation of U.S. Pat. No. 6,470,966, which was filed as patent application Ser. No. 09/850,093, filed on May 7, 2001, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (85) U.S. provisional patent application Ser. No. 60/412,177, filed on Sep. 20, 2002, (86) U.S. provisional patent application Ser. No. 60/412,653, filed on Sep. 20, 2002, (87) U.S. provisional patent application Ser. No. 60/405,610, filed on Aug. 23, 2002, (88) U.S. provisional patent application Ser. No. 60/405,394, filed on Aug. 23, 2002, (89) U.S. provisional patent application Ser. No. 60/412,544, filed on Sep. 20, 2002, (90) PCT application US 03/24779, filed on Aug. 8, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/407,442, filed on Aug. 30, 2002, (91) U.S. provisional patent application Ser. No. 60/423,363, filed on Dec. 10, 2002, (92) U.S. provisional patent application Ser. No. 60/412,196, filed on Sep. 20, 2002, (93) U.S. provisional patent application Ser. No. 60/412,187, filed on Sep. 20, 2002, (94) U.S. provisional patent application Ser. No. 60/412,371, filed on Sep. 20, 2002, (95) U.S. patent application Ser. No. 10/382,325, filed on Mar. 5, 2003, which is a continuation of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (96) U.S. patent application Ser. No. 10/624,842, filed on Jul. 22, 2003, which is a divisional of U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, which claims priority from provisional application 60/119,611, filed on Feb. 11, 1999, (97) U.S. provisional patent application Ser. No. 60/431,184, filed on Dec. 5, 2002, (98) U.S. provisional patent application Ser. No. 60/448,526, filed on Feb. 18, 2003, (99) U.S. provisional patent application Ser. No. 60/461,539, filed on Apr. 9, 2003, (100) U.S. provisional patent application Ser. No. 60/462,750, filed on Apr. 14, 2002, (101) U.S. provisional patent application Ser. No. 60/436,106, filed on Dec. 23, 2002, (102) U.S. provisional patent application Ser. No. 60/442,942, filed on Jan. 27, 2003, (103) U.S. provisional patent application Ser. No. 60/442,938, filed on Jan. 27, 2003, (104) U.S. provisional patent application Ser. No. 60/418,687, filed on Apr. 18, 2003, (105) U.S. provisional patent application Ser. No. 60/454,896, filed on Mar. 14, 2003, (106) U.S. provisional patent application Ser. No. 60/450,504, filed on Feb. 26, 2003, (107) U.S. provisional patent application Ser. No. 60/451,152, filed on Mar. 9, 2003, (108) U.S. provisional patent application Ser. No. 60/455,124, filed on Mar. 17, 2003, (109) U.S. provisional patent application Ser. No. 60/453,678, filed on Mar. 3, 2003, (110) U.S. patent application Ser. No. 10/421,682, filed on Apr. 23, 2003, which is a continuation of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (111) U.S. provisional patent application Ser. No. 60/457,965, filed on Mar. 27, 2003, (112) U.S. provisional patent application Ser. No. 60/455,718, filed on Mar. 18, 2003, (113) U.S. Pat. No. 6,550,821, which was filed as patent application Ser. No. 09/811,734, filed on Mar. 19, 2001, (114) U.S. patent application Ser. No. 10/436,467, filed on May 12, 2003, which is a continuation of U.S. Pat. No. 6,604,763, which was filed as application Ser. No. 09/559,122, filed on Apr. 26, 2000, which claims priority from provisional application 60/131,106, filed on Apr. 26, 1999, (115) U.S. provisional patent application Ser. No. 60/459,776, filed on Apr. 2, 2003, (116) U.S. provisional patent application Ser. No. 60/461,094, filed on Apr. 8, 2003, (117) U.S. provisional patent application Ser. No. 60/461,038, filed on Apr. 7, 2003, (118) U.S. provisional patent application Ser. No. 60/463,586, filed on Apr. 17, 2003, (119) U.S. provisional patent application Ser. No. 60/472,240, filed on May 20, 2003, (120) U.S. patent application Ser. No. 10/619,285, filed on Jul. 14, 2003, which is a continuation-in-part of U.S. utility patent application Ser. No. 09/969,922, filed on Oct. 3, 2001, which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (121) U.S. utility patent application Ser. No. 10/418,688, which was filed on Apr. 18, 2003, as a division of U.S. utility patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (122) PCT patent application serial no. PCT/US04/06246, filed on Feb. 26, 2004, (123) PCT patent application Ser. No. PCT/US04/08170, filed on Mar. 15, 2004, (124) PCT patent application Ser. No. PCT/US04/08171, filed on Mar. 15, 2004, (125) PCT patent application Ser. No. PCT/US04/08073, filed on Mar. 18, 2004, (126) PCT patent application Ser. No. PCT/US04/07711, filed on Mar. 11, 2004, (127) PCT patent application Ser. No. PCT/US2004/009434, filed on Mar. 26, 2004, (128) PCT patent application Ser. No. PCT/US2004/010317, filed on Apr. 2, 2004, (129) PCT patent application Ser. No. PCT/US2004/010712, filed on Apr. 7, 2004, (130) PCT patent application Ser. No. PCT/US2004/010762, filed on Apr. 6, 2004, (131) PCT patent application Ser. No. PCT/US2004/011973, filed on Apr. 15, 2004, (132) U.S. provisional patent application Ser. No. 60/495,056, filed on Aug. 14, 2003, (133) U.S. Provisional patent application Ser. No. 60/600,679, filed on Aug. 11, 2004, (134) PCT patent application Ser. No. PCT/US2004/028887, filed on Sep. 7, 2004, (134) PCT patent application Ser. No. PCT/US2004/028888, filed on Sep. 7, 2004, (135) PCT patent application Ser. No. PCT/US2004/029025, filed on Sep. 7, 2004, (136) PCT patent application Ser. No. PCT/US2004/028889, filed on Sep. 7, 2004, (138) PCT patent application Ser. No. PCT/US2004/028831, filed on Sep. 7, 2004, (139) U.S. Provisional patent application Ser. No. 60/631,703, filed on Nov. 30, 2004, the disclosures of which are incorporated herein by reference.
An apparatus for radially expanding and plastically deforming an expandable tubular member has been described that includes a first tubular support defining an internal passage and one or more radial passages; a tubular expansion cone coupled to the first tubular support and comprising an external expansion surface wherein the tubular expansion cone and the first tubular support are adapted to extend within the expandable tubular member so that the expandable tubular member is coupled to the external expansion surface of the tubular expansion cone; a second tubular support coupled to the first tubular support and defining an internal passage; a third tubular support coupled to the second tubular support so that the third tubular support at least partially extends within the second tubular support; and a fourth tubular support coupled to the second tubular support so that the second tubular support at least partially extends within the fourth tubular support; wherein the tubular expansion cone and the first, second, third and fourth tubular supports are movable relative to the expandable tubular member when the first tubular support and the tubular expansion cone extend within the expandable tubular member. In an exemplary embodiment, the apparatus comprises a fifth tubular support defining an internal passage and coupled to the first and second tubular supports, the fifth tubular support extending within the first and second tubular supports. In an exemplary embodiment, the coupling between the tubular expansion cone and the first tubular support defines one or more internal passages in fluid communication with respective ones of the one or more radial passages of the first tubular support.
An apparatus for radially expanding and plastically deforming an expandable tubular member has been described that includes a first tubular support defining an internal passage and one or more radial passages; one or more rupture discs coupled to and positioned within corresponding radial passages of the first tubular support; a tubular expansion cone coupled to the first tubular support and comprising an external expansion surface; the expandable tubular member coupled to the external expansion surface of the tubular expansion cone and defining an internal passage; a second tubular support at least partially extending within the first tubular support and defining an internal passage; and an annular region at least partially defined by the internal surface of first tubular support and the external surface of the second tubular support wherein the internal passage of the second tubular support is in fluid communication with the annular region; wherein, when the one or more rupture discs rupture, the internal passage of the second tubular support is in fluid communication with the internal passage of the expandable tubular member via the annular region and the one or more radial passages of the first tubular support. In an exemplary embodiment, fluidic-material flow from the annular region and to the internal passage of the expandable tubular member via the one or more radial passages of the first tubular support causes the tubular expansion cone and the first tubular support to move relative to the expandable tubular member. In an exemplary embodiment, the second tubular support is coupled to the first tubular support so that the second tubular support moves relative to the expandable tubular member during the movement of the tubular expansion cone and the first tubular support.
A system has been described that includes a tubular member defining an internal passage and adapted to extend within a preexisting structure; and means for radially expanding and plastically deforming the tubular member within the preexisting structure, the means comprising a shoe coupled to the tubular member, the shoe comprising an annular portion at least partially extending into the internal passage of the tubular member and defining an internal passage and a plug seat having an internal shoulder; and a plug element adapted to extend into the internal passage of the annular portion, the plug element defining an increased-diameter portion adapted to sealingly engage the internal shoulder of the plug seat, the plug element comprising a first sealing element extending in an annular channel formed in an external surface of the plug element and adapted to sealingly engage the plug seat; and a second sealing element in a spaced relation from the first sealing element and adapted to sealingly engage the plug seat. In an exemplary embodiment, at least a portion of the plug seat is coated with an erosion-resistant coating. In an exemplary embodiment, the coating is selected from the group consisting of elastomer, hard chromium electroplate, electroless nickel, and high-velocity oxy-fuel coatings. In an exemplary embodiment, the first sealing element is in the form of a friction ring. In an exemplary embodiment, the form of the first sealing element is selected from the group consisting of an elastomeric seal and a composite seal. In an exemplary embodiment, the first sealing element is in the form of an elastomeric D-seal with polyetherether-ketone backups. In an exemplary embodiment, the second sealing element is in the form of a wiper. In an exemplary embodiment, the second sealing element is in the form of a cup-type seal. In an exemplary embodiment, the second sealing element is in the form of a composite cup-type seal. In an exemplary embodiment, the second sealing element is in the form of an elastomeric cup-type seal with polyetherether-ketone backup.
A system has been described that includes a tubular member adapted to extend within a preexisting structure; and means for radially expanding and plastically deforming the tubular member within the preexisting structure; wherein the means comprises a shoe coupled to the tubular member, the shoe comprising a first component composed of a first material having a first material hardness, and a second component coupled to the first component and composed of a second material having a second material hardness. In an exemplary embodiment, the second material hardness is less than the first material hardness. In an exemplary embodiment, the second material hardness is less than the first material hardness so that the drill-out time of the shoe is reduced. In an exemplary embodiment, the first material is an aluminum alloy and the second material is a composite material. In an exemplary embodiment, the first material is an aluminum alloy and the second material is a concrete material.
An apparatus for radially expanding and plastically deforming an expandable tubular member has been described that includes a first tubular support defining an internal passage and one or more radial passages having countersunk portions; a tubular expansion cone coupled to the first tubular support and comprising an external expansion surface; the expandable tubular member coupled to the external expansion surface of the tubular expansion cone and defining an internal passage; one or more rupture discs coupled to and positioned within corresponding radial passages of the first tubular support wherein each of the one or more rupture discs is in the form of an annular body member defining an internal passage and comprises a shoulder defined at an end portion of the annular body member and contacting a wall defined by the countersunk portion of the corresponding radial passage; a threaded connection formed in the external surface of the annular body member and extending within the corresponding radial passage to couple the annular body member to the corresponding radial passage; a sealing element extending around the annular body member and sealingly engaging a surface of the corresponding radial passage, the sealing element axially positioned between the shoulder and the threaded connection; and a rupture element disposed in the internal passage of the annular body member wherein, when the rupture element ruptures, the internal passage of the first tubular support is in fluid communication with the internal passage of the expandable tubular member via the corresponding radial passage.
An apparatus for radially expanding and plastically deforming an expandable tubular member has been described that includes a first tubular support defining an internal passage and one or more radial passages; a tubular expansion cone coupled to the first tubular support and comprising an external expansion surface wherein the tubular expansion cone and the first tubular support are adapted to extend within the expandable tubular member and are moveable relative thereto; a second tubular support coupled to the first tubular support and defining an internal passage; a third tubular support coupled to the second tubular support so that the third tubular support at least partially extends within the second tubular support; and a sealing element comprising: an elastomeric element extending in a first annular channel formed in the external surface of the third tubular support wherein the elastomeric element sealingly engages the internal surface of the second tubular support, and a retainer extending in a second annular channel formed in the elastomeric element and biased against one or more walls of the second annular channel to retain the elastomeric element within the first annular channel. In an exemplary embodiment, the cross-section of the elastomeric element is generally trapezoidally shaped.
An apparatus for radially expanding and plastically deforming an expandable tubular member has been described that includes a first tubular support; a tubular expansion cone coupled to the first tubular support and comprising an external expansion surface; the expandable tubular member coupled to the external expansion surface of the tubular expansion cone wherein the expandable tubular member comprises a first portion and a second portion wherein the inside diameter of the first portion is less than the inside diameter of the second portion, and wherein a dimension is defined between an end of the expandable tubular member corresponding to an end of the first portion and an end of the external expansion surface of the tubular expansion cone having a circumference substantially corresponding to the inside diameter of the second portion; a shoe defining one or more internal passages coupled to the second portion of the expandable tubular member; and means for maintaining the value of the dimension substantially constant when the length of the expandable tubular member is reduced. In exemplary embodiment, a second tubular support is coupled to the first tubular support and the maintaining means comprises a spacer extending around the first tubular support, the spacer having a first configuration in which the expandable tubular member has a first length and is coupled to the shoe via a first threaded connection formed in an end portion of the expandable tubular member corresponding to the end of the second portion; and the spacer is disposed between the tubular expansion cone and an external flange defined by the first tubular support; and a second configuration in which the expandable tubular member has a second length and is coupled to the shoe via a second threaded connection formed in the end portion of the expandable tubular member corresponding to the end of the second portion wherein the second length is less than the first length and the second threaded connection is in the form of recut thread; and the spacer is disposed between the tubular expansion cone and the second tubular support.
A method of radially expanding and plastically deforming an expandable tubular member within a preexisting structure has been described that includes coupling a tubular expansion cone to a first tubular support; coupling a second tubular support to the first tubular support; coupling a third tubular support to the second tubular support so that the third tubular support at least partially extends within the second tubular support; and coupling a fourth tubular support to the second tubular support so that the second tubular support at least partially extends within the fourth tubular support; wherein the tubular expansion cone and the first, second, third and fourth tubular supports are movable relative to the expandable tubular member. In an exemplary embodiment, the method comprises at least partially extending the first tubular support and the tubular expansion cone within the expandable tubular member so that an external expansion surface of the tubular expansion cone is coupled to the expandable tubular member. In an exemplary embodiment, the method comprises displacing the tubular expansion cone and the first, second, third and fourth tubular supports relative to the expandable tubular member. In an exemplary embodiment, the method comprises coupling a fifth tubular support defining an internal passage to the first and second tubular supports so that the fifth tubular support extends within the first and second tubular supports, and so that an annular region is at least partially defined by the external surface of the fifth tubular support and the internal surfaces of the first and second tubular supports, wherein the internal passage of the fifth tubular support is in fluid communication with the annular region. In an exemplary embodiment, the step of displacing comprises injecting a fluidic material into the internal passage of the fifth tubular support to pressurize the internal passage of the fifth tubular support so that the fluidic material flows from the internal. passage of the fifth tubular support and to the annular region. In an exemplary embodiment, the method comprises coupling a shoe to an end of the expandable tubular member; and coupling a fifth tubular support defining an internal passage to the shoe so that the fifth tubular support at least partially extends within the first tubular support, and so that an annular region is at least partially defined by the external surface of the fifth tubular support and the internal surface of the first tubular support, wherein the internal passage of the fifth tubular support is in fluid communication with the annular region. In an exemplary embodiment, the step of displacing comprises injecting a fluidic material into the internal passage of the fifth tubular support to pressurize the internal passage of the fifth tubular support so that the fluidic material flows from the internal passage of the fifth tubular support and to the annular region.
A method of radially expanding and plastically deforming an expandable tubular member within a preexisting structure has been described that includes coupling one or more rupture discs to and positioning the one or more rupture discs within corresponding one or more radial passages defined by a first tubular support; coupling a tubular expansion cone to the first tubular support so that an external expansion surface of the tubular expansion cone is coupled to the expandable tubular member wherein the expandable tubular member defines an internal passage; extending a second tubular support defining an internal passage within the first tubular support so that an annular region is defined by the external surface of the second tubular support and the internal surface of the first tubular support wherein the annular region is in fluid communication with the internal passage of the second tubular support; and displacing the tubular expansion cone and the first tubular support relative to the expandable tubular member wherein the step of displacing comprises permitting fluidic-material flow from the internal passage of the second tubular support and to the internal passage of the expandable tubular member. In exemplary embodiment, the step of displacing comprises pressurizing the internal passage of the second tubular support to a predetermined pressure value so that the one or more rupture discs rupture; wherein the fluidic material flows from the internal passage of the second tubular support and to the internal passage of the expandable tubular member via the annular region and the one or more radial passages. In an exemplary embodiment, wherein the step of pressurizing comprises inserting a plug element into an annular portion of a shoe coupled to an end of the expandable tubular member so that the plug element sealingly engages a plug seat defined by the annular portion; and injecting the fluidic material into the internal passage of the second tubular support. In an exemplary embodiment, the method comprises coupling the second tubular support to the first tubular support wherein the first and second tubular supports are movable relative to the expandable tubular member. In an exemplary embodiment, the method comprises coupling the second tubular support to the annular portion of the shoe wherein, during the step of displacing, the tubular expansion cone moves relative to the second tubular support.
A method has been described that includes inserting an expandable tubular member into a preexisting structure; and radially expanding and plastically deforming the expandable tubular member within the preexisting structure wherein the step of radially expanding and plastically deforming comprises coupling a shoe defining at least one internal passage and a plug seat to the expandable tubular member; and sealingly engaging a plug element with the plug seat so that fluidic-material flow through the at least one internal passage of the shoe is blocked, the step of sealingly engaging the plug element with the plug seat comprising sealingly engaging an increased-diameter portion of the plug element with an internal shoulder defined by the plug seat; sealingly engaging a first sealing element extending in an annular channel formed in an external surface of the plug element with the plug seat; and sealingly engaging a second sealing element in a spaced relation from the first sealing element with the plug seat. In an exemplary embodiment, the method comprises coating the plug seat with an erosion-resistant coating. In an exemplary embodiment, the form of the first sealing element is selected from the group consisting of a friction ring, an elastomeric seal and a composite seal. In an exemplary embodiment, the form of the second sealing element is selected from the group consisting of a wiper and a cup-type seal.
It is understood that variations may be made in the foregoing without departing from the scope of the invention. For example, the teachings of the present invention may be used to provide a wellbore casing, a pipeline or a structural support. Further, the elements and teachings of the various illustrative embodiments may be combined in whole or in part in some or all of the illustrative embodiments. Still further, in several exemplary embodiments, it is understood that one or more of the operational steps in each embodiment may be omitted.
Although illustrative embodiments of the invention have been shown and described, a wide range of modification, changes and substitution is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, all such modifications, changes and substitutions are intended to be included within the scope of this invention as defined in the following claims, and it is appropriate that the claims be construed broadly and in a manner consistent with the scope of the invention. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures.
This application is a CIP of U.S. utility patent application Ser. No. 10/418,687, filed on Apr. 18, 2003, which is a continuation of U.S. utility patent application Ser. No. 09/852,026, filed on May 9, 2001, now U.S. Pat. No. 6,561,227 issued May 13, 2003, which is a division of U.S. utility patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, now U.S. Pat. No. 6,497,289 issued Dec. 24, 2002, which claimed the benefit of the filing date of U.S. provisional patent application Ser. No. 60/111,293, filed on Dec. 7, 1998, the disclosures of which are incorporated herein by reference. This application is related to the following co-pending applications: (1) U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (2) U.S. patent application Ser. No. 09/510,913, filed on Feb. 23, 2000, which claims priority from provisional application 60/121,702, filed on Feb. 25, 1999, (3) U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, which claims priority from provisional application 60/119,611, filed on Feb. 11, 1999, (4) U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (5) U.S. patent application Ser. No. 10/169,434, filed on Jul. 1, 2002, which claims priority from provisional application 60/183,546, filed on Feb. 18, 2000, (6) U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (7) U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (8) U.S. Pat. No. 6,575,240, which was filed as patent application Ser. No. 09/511,941, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,907, filed on Feb. 26, 1999, (9) U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (10) U.S. patent application Ser. No. 09/981,916, filed on Oct. 18, 2001 as a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (11) U.S. Pat. No. 6,604,763, which was filed as application Ser. No. 09/559,122, filed on Apr. 26, 2000, which claims priority from provisional application 60/131,106, filed on Apr. 26, 1999, (12) U.S. patent application Ser. No. 10/030,593, filed on Jan. 8, 2002, which claims priority from provisional application 60/146,203, filed on Jul. 29, 1999, (13) U.S. provisional patent application Ser. No. 60/143,039, filed on Jul. 9, 1999, (14) U.S. patent application Ser. No. 10/111,982, filed on Apr. 30, 2002, which claims priority from provisional patent application Ser. No. 60/162,671, filed on Nov. 1, 1999, (15) U.S. provisional patent application Ser. No. 60/154,047, filed on Sep. 16, 1999, (16) U.S. provisional patent application Ser. No. 60/438,828, filed on Jan. 9, 2003, (17) U.S. Pat. No. 6,564,875, which was filed as application Ser. No. 09/679,907, on Oct. 5, 2000, which claims priority from provisional patent application Ser. No. 60/159,082, filed on Oct. 12, 1999, (18) U.S. patent application Ser. No. 10/089,419, filed on Mar. 27, 2002, which claims priority from provisional patent application Ser. No. 60/159,039, filed on Oct. 12, 1999, (19) U.S. patent application Ser. No. 09/679,906, filed on Oct. 5, 2000, which claims priority from provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (20) U.S. patent application Ser. No. 10/303,992, filed on Nov., 22, 2002, which claims priority from provisional patent application Ser. No. 60/212,359, filed on Jun. 19, 2000, (21) U.S. provisional patent application Ser. No. 60/165,228, filed on Nov. 12, 1999, (22) U.S. provisional patent application Ser. No. 60/455,051, filed on Mar. 14, 2003, (23) PCT application US02/2477, filed on Jun. 26, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/303,711, filed on Jul. 6, 2001, (24) U.S. patent application Ser. No. 10/311,412, filed on Dec. 12, 2002, which claims priority from provisional patent application Ser. No. 60/221,443, filed on Jul. 28, 2000, (25) U.S. patent application Ser. No. 10/, filed on Dec. 18, 2002, which claims priority from provisional patent application Ser. No. 60/221,645, filed on Jul. 28, 2000, (26) U.S. patent application Ser. No. 10/322,947, filed on Jan. 22, 2003, which claims priority from provisional patent application Ser. No. 60/233,638, filed on Sep. 18, 2000, (27) U.S. patent application Ser. No. 10/406,648, filed on Mar. 31, 2003, which claims priority from provisional patent application Ser. No. 60/237,334, filed on Oct. 2, 2000, (28) PCT application US02/04353, filed on Feb. 14, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/270,007, filed on Feb. 20, 2001, (29) U.S. patent application Ser. No. 10/465,835, filed on Jun. 13, 2003, which claims priority from provisional patent application Ser. No. 60/262,434, filed on Jan. 17, 2001, (30) U.S. patent application Ser. No. 10/465,831, filed on Jun. 13, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/259,486, filed on Jan. 3, 2001, (31) U.S. provisional patent application Ser. No. 60/452,303, filed on Mar. 5, 2003, (32) U.S. Pat. No. 6,470,966, which was filed as patent application Ser. No. 09/850,093, filed on May 7, 2001, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (33) U.S. Pat. No. 6,561,227, which was filed as patent application Ser. No. 09/852,026, filed on May 9, 2001, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7. 1998, (34) U.S. patent application Ser. No. 09/852,027, filed on May 9, 2001, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (35) PCT Application US02/25608, filed on Aug. 13, 2002, which claims priority from provisional application 60/318,021, filed on Sep. 7, 2001, (36) PCT Application US02/24399, filed on Aug. 1, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/313,453, filed on Aug. 20, 2001, (37) PCT Application US02/29856, filed on Sep. 19, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/326,886, filed on Oct. 3, 2001, (38) PCT Application US02/20256, filed on Jun. 26, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/303,740, filed on Jun. 6, 2001, (39) U.S. patent application Ser. No. 09/962,469, filed on Sep. 25, 2001, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (40) U.S. patent application Ser. No. 09/962,470, filed on Sep. 25, 2001, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (41) U.S. patent application Ser. No. 09/962,471, filed on Sep. 25, 2001, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (42) U.S. patent application Ser. No. 09/962,467, filed on Sep. 25, 2001, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (43) U.S. patent application Ser. No. 09/962,468, filed on Sep. 25, 2001, which is a divisional of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (44) PCT application US 02/25727, filed on Aug. 14, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/317,985, filed on Sep. 6, 2001, and U.S. provisional patent application Ser. No. 60/318,386, filed on Sep. 10, 2001, (45) PCT application US 02/39425, filed on Dec. 10, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/343,674, filed on Dec. 27, 2001, (46) U.S. utility patent application Ser. No. 09/969,922, filed on Oct. 3, 2001, which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (47) U.S. utility patent application Ser. No. 10/516,467, filed on Dec. 10, 2001, which is a continuation application of U.S. utility patent application Ser. No. 09/969,922, filed on Oct. 3, 2001, which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (48) PCT application US 03/00609, filed on Jan. 9, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/357,372, filed on Feb. 15, 2002, (49) U.S. patent application Ser. No. 10/074,703, filed on Feb. 12, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (50) U.S. patent application Ser. No. 10/074,244, filed on Feb. 12, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (51) U.S. patent application Ser. No. 10/076,660, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (52) U.S. patent application Ser. No. 10/076,661, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (53) U.S. patent application Ser. No. 10/076,659, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (54) U.S. patent application Ser. No. 10/078,928, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (55) U.S. patent application Ser. No. 10/078,922, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (56) U.S. patent application Ser. No. 10/078,921, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (57) U.S. patent application Ser. No. 10/261,928, filed on Oct. 2, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (58) U.S. patent application Ser. No. 10/079,276, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (59) U.S. patent application Ser. No. 10/262,009, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (60) U.S. patent application Ser. No. 10/092,481, filed on Mar. 7, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (61) U.S. patent application Ser. No. 10/261,926, filed on Oct. 2, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (62) PCT application US 02/36157, filed on Nov. 12, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/338,996, filed on Nov. 12, 2001, (63) PCT application US 02/36267, filed on Nov. 12, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/339,013, filed on Nov. 12, 2001, (64) PCT application US 03/11765, filed on Apr. 16, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/383,917, filed on May 29, 2002, (65) PCT application US 03/15020, filed on May 12, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/391,703, filed on Jun. 26, 2002, (66) PCT application US 02/39418, filed on Dec. 10, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/346,309, filed on Jan. 7, 2002, (67) PCT application US 03/06544, filed on Mar. 4, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/372,048, filed on Apr. 12, 2002, (68) U.S. patent application Ser. No. 10/331,718, filed on Dec. 30, 2002, which is a divisional U.S. patent application Ser. No. 09/679,906, filed on Oct. 5, 2000, which claims priority from provisional patent application Ser. No. 60/159,033, filed on Oct. 12, 1999, (69) PCT application US 03/04837, filed on Feb. 29, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/363,829, filed on Mar. 13, 2002, (70) U.S. patent application Ser. No. 10/261,927, filed on Oct. 2, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (71) U.S. patent application Ser. No. 10/262,008, filed on Oct. 2, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (72) U.S. patent application Ser. No. 10/261,925, filed on Oct. 2, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (73) U.S. patent application Ser. No. 10/199,524, filed on Jul. 19, 2002, which is a continuation of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (74) PCT application US 03/10144, filed on Mar. 28, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/372,632, filed on Apr. 15, 2002, (75) U.S. provisional patent application Ser. No. 60/412,542, filed on Sep. 20, 2002, (76) PCT application US 03/14153, filed on May 6, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/380,147, filed on May 6, 2002, (77) PCT application US 03/19993, filed on Jun. 24, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/397,284, filed on Jul. 19, 2002, (78) PCT application US 03/13787, filed on May 5, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/387,486, filed on Jun. 10, 2002, (79) PCT application US 03/18530, filed on Jun. 11, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/387,961, filed on Jun. 12, 2002, (80) PCT application US 03/20694, filed on Jul. 1, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/398,061, filed on Jul. 24, 2002, (81) PCT application US 03/20870, filed on Jul. 2, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/399,240, filed on Jul. 29, 2002, (82) U.S. provisional patent application Ser. No. 60/412,487, filed on Sep. 20, 2002, (83) U.S. provisional patent application Ser. No. 60/412,488, filed on Sep. 20, 2002, (84) U.S. patent application Ser. No. 10/280,356, filed on Oct. 25, 2002, which is a continuation of U.S. Pat. No. 6,470,966, which was filed as patent application Ser. No. 09/850,093, filed on May 7, 2001, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, filed on Dec. 3, 1999, which claims priority from provisional application 60/111,293, filed on Dec. 7, 1998, (85) U.S. provisional patent application Ser. No. 60/412,177, filed on Sep. 20, 2002, (86) U.S. provisional patent application Ser. No. 60/412,653, filed on Sep. 20, 2002, (87) U.S. provisional patent application Ser. No. 60/405,610, filed on Aug. 23, 2002, (88) U.S. provisional patent application Ser. No. 60/405,394, filed on Aug. 23, 2002, (89) U.S. provisional patent application Ser. No. 60/412,544, filed on Sep. 20, 2002, (90) PCT application US 03/24779, filed on Aug. 8, 2003, which claims priority from U.S. provisional patent application Ser. No. 60/407,442, filed on Aug. 30, 2002, (91) U.S. provisional patent application Ser. No. 60/423,363, filed on Dec. 10, 2002, (92) U.S. provisional patent application Ser. No. 60/412,196, filed on Sep. 20, 2002, (93) U.S. provisional patent application Ser. No. 60/412,187, filed on Sep. 20, 2002, (94) U.S. provisional patent application Ser. No. 60/412,371, filed on Sep. 20, 2002, (95) U.S. patent application Ser. No. 10/382,325, filed on Mar. 5, 2003, which is a continuation of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, filed on Jun. 7, 2000, which claims priority from provisional application 60/137,998, filed on Jun. 7, 1999, (96) U.S. patent application Ser. No. 10/624,842, filed on Jul. 22, 2003, which is a divisional of U.S. patent application Ser. No. 09/502,350, filed on Feb. 10, 2000, which claims priority from provisional application 60/119,611, filed on Feb. 11, 1999, (97) U.S. provisional patent application Ser. No. 60/431,184, filed on Dec. 5, 2002, (98) U.S. provisional patent application Ser. No. 60/448,526, filed on Feb. 18, 2003, (99) U.S. provisional patent application Ser. No. 60/461,539, filed on Apr. 9, 2003, (100) U.S. provisional patent application Ser. No. 60/462,750, filed on Apr. 14, 2002, (101) U.S. provisional patent application Ser. No. 60/436,106, filed on Dec. 23, 2002, (102) U.S. provisional patent application Ser. No. 60/442,942, filed on Jan. 27, 2003, (103) U.S. provisional patent application Ser. No. 60/442,938, filed on Jan. 27, 2003, (104) U.S. provisional patent application Ser. No. 60/418,687, filed on Apr. 18, 2003, (105) U.S. provisional patent application Ser. No. 60/454,896, filed on Mar. 14, 2003, (106) U.S. provisional patent application Ser. No. 60/450,504, filed on Feb. 26, 2003, (107) U.S. provisional patent application Ser. No. 60/451,152, filed on Mar. 9, 2003, (108) U.S. provisional patent application Ser. No. 60/455,124, filed on Mar. 17, 2003, (109) U.S. provisional patent application Ser. No. 60/453,678, filed on Mar. 3, 2003, (110) U.S. patent application Ser. No. 10/421,682, filed on Apr. 23, 2003, which is a continuation of U.S. patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (111) U.S. provisional patent application Ser. No. 60/457,965, filed on Mar. 27, 2003, (112) U.S. provisional patent application Ser. No. 60/455,718, filed on Mar. 18, 2003, (113) U.S. Pat. No. 6,550,821, which was filed as patent application Ser. No. 09/811,734, filed on Mar. 19, 2001, (114) U.S. patent application Ser. No. 10/436,467, filed on May 12, 2003, which is a continuation of U.S. Pat. No. 6,604,763, which was filed as application Ser. No. 09/559,122, filed on Apr. 26, 2000, which claims priority from provisional application 60/131,106, filed on Apr. 26, 1999, (115) U.S. provisional patent application Ser. No. 60/459,776, filed on Apr. 2, 2003, (116) U.S. provisional patent application Ser. No. 60/461,094, filed on Apr. 8, 2003, (117) U.S. provisional patent application Ser. No. 60/461,038, filed on Apr. 7, 2003, (118) U.S. provisional patent application Ser. No. 60/463,586, filed on Apr. 17, 2003, (119) U.S. provisional patent application Ser. No. 60/472,240, filed on May 20, 2003, (120) U.S. patent application Ser. No. 10/619,285, filed on Jul. 14, 2003, which is a continuation-in-part of U.S. utility patent application Ser. No. 09/969,922, attorney filed on Oct. 3, 2001, which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, filed on Nov. 15, 1999, which claims priority from provisional application 60/108,558, filed on Nov. 16, 1998, (121) U.S. utility patent application Ser. No. 10/418,688, which was filed on Apr. 18, 2003, as a division of U.S. utility patent application Ser. No. 09/523,468, filed on Mar. 10, 2000, which claims priority from provisional application 60/124,042, filed on Mar. 11, 1999, (122) PCT patent application serial no. PCT/US04/06246, filed on Feb. 26, 2004, (123) PCT patent application Ser. No. PCT/US04/08170, filed on Mar. 15, 2004, (124) PCT patent application Ser. No. PCT/US04/08171, filed on Mar. 15, 2004, (125) PCT patent application Ser. No. PCT/US04/08073, filed on Mar. 18, 2004, (126) PCT patent application Ser. No. PCT/US04/07711, filed on Mar. 11, 2004, (127) PCT patent application Ser. No. PCT/US2004/009434, filed on Mar. 26, 2004, (128) PCT patent application Ser. No. PCT/US2004/010317, filed on Apr. 2, 2004, (129) PCT patent application Ser. No. PCT/US2004/010712, filed on Apr. 7, 2004, (130) PCT patent application Ser. No. PCT/US2004/010762, filed on Apr. 6, 2004, (131) PCT patent application Ser. No. PCT/US2004/011973, filed on Apr. 15, 2004, (132) U.S. provisional patent application Ser. No. 60/495,056, filed on Aug. 14, 2003, (133) U.S. Provisional patent application Ser. No. 60/600,679, filed on Aug. 11, 2004, (134) PCT patent application Ser. No. PCT/US2004/028887, filed on Sep. 7, 2004, (134) PCT patent application Ser. No. PCT/US2004/028888, filed on Sep. 7, 2004, (135) PCT patent application Ser. No. PCT/US2004/029025, filed on Sep. 7, 2004, (136) PCT patent application Ser. No. PCT/US2004/028889, filed on Sep. 7, 2004, (138) PCT patent application Ser. No. PCT/US2004/028831, filed on Sep. 7, 2004, (139) U.S. Provisional patent application Ser. No. 60/631,703, filed on Nov. 30, 2004, the disclosures of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
46818 | Patterson | Mar 1865 | A |
331940 | Bole | Dec 1885 | A |
332184 | Bole | Dec 1885 | A |
341237 | Healey | May 1886 | A |
519805 | Bavier | May 1894 | A |
802880 | Phillips, Jr. | Oct 1905 | A |
806156 | Marshall | Dec 1905 | A |
958517 | Mettler | May 1910 | A |
984449 | Stewart | Feb 1911 | A |
1166040 | Burlingham | Dec 1915 | A |
1233888 | Leonard | Jul 1917 | A |
1494128 | Primrose | May 1924 | A |
1589781 | Anderson | Jun 1926 | A |
1590357 | Feisthamel | Jun 1926 | A |
1597212 | Spengler | Aug 1926 | A |
1613461 | Johnson | Jan 1927 | A |
1756531 | Aldeen et al. | Apr 1930 | A |
1880218 | Simmons | Oct 1932 | A |
1981525 | Price | Nov 1934 | A |
2046870 | Clasen et al. | Jul 1936 | A |
2087185 | Dillom | Jul 1937 | A |
2122757 | Scott | Jul 1938 | A |
2145168 | Flagg | Jan 1939 | A |
2160263 | Fletcher | May 1939 | A |
2187275 | McLennan | Jan 1940 | A |
2204586 | Grau | Jun 1940 | A |
2211173 | Shaffer | Aug 1940 | A |
2214226 | English | Sep 1940 | A |
2226804 | Carroll | Dec 1940 | A |
2246038 | Graham | Jun 1941 | A |
2273017 | Boynton | Feb 1942 | A |
2301495 | Abegg | Nov 1942 | A |
2305282 | Taylor, Jr. et al. | Dec 1942 | A |
2371840 | Otis | Mar 1945 | A |
2383214 | Prout | Aug 1945 | A |
2447629 | Beissinger et al. | Aug 1948 | A |
2500276 | Church | Mar 1950 | A |
2546295 | Boice | Mar 1951 | A |
2583316 | Bannister | Jan 1952 | A |
2609258 | Taylor, Jr. et al. | Nov 1952 | A |
2627891 | Clark | Feb 1953 | A |
2647847 | Black et al. | Aug 1953 | A |
2664952 | Losey | Jan 1954 | A |
2691418 | Connolly | Oct 1954 | A |
2723721 | Corsette | Nov 1955 | A |
2734580 | Layne | Feb 1956 | A |
2796134 | Binkley | Jun 1957 | A |
2812025 | Teague et al. | Nov 1957 | A |
2877822 | Buck | Mar 1959 | A |
2907589 | Knox | Oct 1959 | A |
2919741 | Strock et al. | Jan 1960 | A |
2929741 | Strock et al. | Jan 1960 | A |
3015362 | Moosman | Jan 1962 | A |
3015500 | Barnett | Jan 1962 | A |
3018547 | Marskell | Jan 1962 | A |
3039530 | Condra | Jun 1962 | A |
3067801 | Sortor | Dec 1962 | A |
3067819 | Gore | Dec 1962 | A |
3068563 | Reverman | Dec 1962 | A |
3104703 | Rike et al. | Sep 1963 | A |
3111991 | O'Neal | Nov 1963 | A |
3162245 | Howard et al. | Dec 1964 | A |
3167122 | Lang | Jan 1965 | A |
3175618 | Lang et al. | Mar 1965 | A |
3179168 | Vincent | Apr 1965 | A |
3188816 | Koch | Jun 1965 | A |
3191677 | Kinley | Jun 1965 | A |
3191680 | Vincent | Jun 1965 | A |
3203451 | Vincent | Aug 1965 | A |
3203483 | Vincent | Aug 1965 | A |
3209546 | Lawton | Oct 1965 | A |
3210102 | Joslin | Oct 1965 | A |
3233315 | Levake | Feb 1966 | A |
3245471 | Howard | Apr 1966 | A |
3270817 | Papaila | Sep 1966 | A |
3297092 | Jennings | Jan 1967 | A |
3326293 | Skipper | Jun 1967 | A |
3343252 | Reesor | Sep 1967 | A |
3353599 | Swift | Nov 1967 | A |
3354955 | Berry | Nov 1967 | A |
3358760 | Blagg | Dec 1967 | A |
3358769 | Berry | Dec 1967 | A |
3364993 | Skipper | Jan 1968 | A |
3371717 | Chenoweth | Mar 1968 | A |
3397745 | Owens et al. | Aug 1968 | A |
3412565 | Lindsey et al. | Nov 1968 | A |
3419080 | Lebourg | Dec 1968 | A |
3422902 | Bouchillon | Jan 1969 | A |
3424244 | Kinley | Jan 1969 | A |
3427707 | Nowosadko | Feb 1969 | A |
3463228 | Heam | Aug 1969 | A |
3477506 | Malone | Nov 1969 | A |
3489220 | Kinley | Jan 1970 | A |
3489437 | Duret | Jan 1970 | A |
3498376 | Sizer et al. | Mar 1970 | A |
3504515 | Reardon | Apr 1970 | A |
3508771 | Duret | Apr 1970 | A |
3520049 | Lysenko et al. | Jul 1970 | A |
3528498 | Carothers | Sep 1970 | A |
3532174 | Diamantides et al. | Oct 1970 | A |
3568773 | Chancellor | Mar 1971 | A |
3572777 | Blose et al. | Mar 1971 | A |
3574357 | Alexandru et al. | Apr 1971 | A |
3578081 | Bodine | May 1971 | A |
3579805 | Kast | May 1971 | A |
3581817 | Kammerer, Jr. | Jun 1971 | A |
3605887 | Lambie | Sep 1971 | A |
3631926 | Young | Jan 1972 | A |
3665591 | Kowal | May 1972 | A |
3667547 | Ahlstone | Jun 1972 | A |
3669190 | Sizer et al. | Jun 1972 | A |
3678727 | Jackson | Jul 1972 | A |
3682256 | Stuart | Aug 1972 | A |
3687196 | Mullins | Aug 1972 | A |
3691624 | Kinley | Sep 1972 | A |
3693717 | Wuenschel | Sep 1972 | A |
3704730 | Witzig | Dec 1972 | A |
3709306 | Curington | Jan 1973 | A |
3711123 | Arnold | Jan 1973 | A |
3712376 | Owen et al. | Jan 1973 | A |
3746068 | Deckert et al. | Jul 1973 | A |
3746091 | Owen et al. | Jul 1973 | A |
3746092 | Land | Jul 1973 | A |
3764168 | Kisling, III et al. | Oct 1973 | A |
3776307 | Young | Dec 1973 | A |
3779025 | Godley et al. | Dec 1973 | A |
3780562 | Kinley | Dec 1973 | A |
3781966 | Lieberman | Jan 1974 | A |
3785193 | Kinely et al. | Jan 1974 | A |
3797259 | Kammerer, Jr. | Mar 1974 | A |
3805567 | Agius-Sincero | Apr 1974 | A |
3812912 | Wuenschel | May 1974 | A |
3818734 | Bateman | Jun 1974 | A |
3826124 | Baksay | Jul 1974 | A |
3830294 | Swanson | Aug 1974 | A |
3830295 | Crowe | Aug 1974 | A |
3834742 | McPhillips | Sep 1974 | A |
3848668 | Sizer et al. | Nov 1974 | A |
3866954 | Slator et al. | Feb 1975 | A |
3874446 | Crowe | Apr 1975 | A |
3885298 | Pogonowski | May 1975 | A |
3887006 | Pitts | Jun 1975 | A |
3893718 | Powell | Jul 1975 | A |
3898163 | Mott | Aug 1975 | A |
3915478 | Al et al. | Oct 1975 | A |
3915763 | Jennings et al. | Oct 1975 | A |
3935910 | Gaudy et al. | Feb 1976 | A |
3942824 | Sable | Mar 1976 | A |
3945444 | Knudson | Mar 1976 | A |
3948321 | Owen et al. | Apr 1976 | A |
3963076 | Winslow | Jun 1976 | A |
3970336 | O'Sickey et al. | Jul 1976 | A |
3977473 | Page, Jr. | Aug 1976 | A |
3989280 | Schwarz | Nov 1976 | A |
3997193 | Tsuda et al. | Dec 1976 | A |
3999605 | Braddick | Dec 1976 | A |
4011652 | Black | Mar 1977 | A |
4018634 | Fenci | Apr 1977 | A |
4019579 | Thuse | Apr 1977 | A |
4026583 | Gottlieb | May 1977 | A |
4053247 | Marsh, Jr. | Oct 1977 | A |
4069573 | Rogers, Jr. et al. | Jan 1978 | A |
4076287 | Bill et al. | Feb 1978 | A |
4096913 | Kenneday et al. | Jun 1978 | A |
4098334 | Crowe | Jul 1978 | A |
4099563 | Hutchinson et al. | Jul 1978 | A |
4125937 | Brown et al. | Nov 1978 | A |
4152821 | Scott | May 1979 | A |
4168747 | Youmans | Sep 1979 | A |
4190108 | Webber | Feb 1980 | A |
4204312 | Tooker | May 1980 | A |
4205422 | Hardwick | Jun 1980 | A |
4226449 | Cole | Oct 1980 | A |
4253687 | Maples | Mar 1981 | A |
4257155 | Hunter | Mar 1981 | A |
4274665 | Marsh, Jr. | Jun 1981 | A |
RE30802 | Rogers, Jr. | Nov 1981 | E |
4304428 | Grigorian et al. | Dec 1981 | A |
4328983 | Gibson | May 1982 | A |
4355664 | Cook et al. | Oct 1982 | A |
4358511 | Smith, Jr. et al. | Nov 1982 | A |
4359889 | Kelly | Nov 1982 | A |
4363358 | Ellis | Dec 1982 | A |
4366971 | Lula | Jan 1983 | A |
4368571 | Cooper, Jr. | Jan 1983 | A |
4379471 | Kuenzel | Apr 1983 | A |
4380347 | Sable | Apr 1983 | A |
4384625 | Roper et al. | May 1983 | A |
4388752 | Vinciguerra et al. | Jun 1983 | A |
4391325 | Baker et al. | Jul 1983 | A |
4393931 | Muse et al. | Jul 1983 | A |
4396061 | Tamplen et al. | Aug 1983 | A |
4397484 | Miller | Aug 1983 | A |
4401325 | Tsuchiya et al. | Aug 1983 | A |
4402372 | Cherrington | Sep 1983 | A |
4407681 | Ina et al. | Oct 1983 | A |
4411435 | McStravick | Oct 1983 | A |
4413395 | Garnier | Nov 1983 | A |
4413682 | Callihan et al. | Nov 1983 | A |
4420866 | Mueller | Dec 1983 | A |
4421169 | Dearth et al. | Dec 1983 | A |
4422317 | Mueller | Dec 1983 | A |
4422507 | Reimert | Dec 1983 | A |
4423889 | Weise | Jan 1984 | A |
4423986 | Skogberg | Jan 1984 | A |
4424865 | Payton, Jr. | Jan 1984 | A |
4429741 | Hyland | Feb 1984 | A |
4440233 | Baugh et al. | Apr 1984 | A |
4442586 | Ridenour | Apr 1984 | A |
4444250 | Keithahn et al. | Apr 1984 | A |
4449713 | Ishido et al. | May 1984 | A |
4458925 | Raulins et al. | Jul 1984 | A |
4462471 | Hipp | Jul 1984 | A |
4467630 | Kelly | Aug 1984 | A |
4468309 | White | Aug 1984 | A |
4469356 | Duret et al. | Sep 1984 | A |
4473245 | Raulins et al. | Sep 1984 | A |
4483399 | Colgate | Nov 1984 | A |
4485847 | Wentzell | Dec 1984 | A |
4491001 | Yoshida | Jan 1985 | A |
4495073 | Beimgraben | Jan 1985 | A |
4501327 | Retz | Feb 1985 | A |
4505017 | Schukei | Mar 1985 | A |
4505987 | Yamada et al. | Mar 1985 | A |
4506432 | Smith | Mar 1985 | A |
4507019 | Thompson | Mar 1985 | A |
4508129 | Brown | Apr 1985 | A |
4508167 | Weinberg et al. | Apr 1985 | A |
4511289 | Herron | Apr 1985 | A |
4513995 | Niehaus et al. | Apr 1985 | A |
4519456 | Cochran | May 1985 | A |
4521258 | Tamehiro et al. | Jun 1985 | A |
4526232 | Hughson et al. | Jul 1985 | A |
4526839 | Herman et al. | Jul 1985 | A |
4527815 | Frick | Jul 1985 | A |
4530231 | Main | Jul 1985 | A |
4531552 | Kim | Jul 1985 | A |
4537429 | Lanriault | Aug 1985 | A |
4538442 | Reed | Sep 1985 | A |
4538840 | DeLange | Sep 1985 | A |
4541655 | Hunter | Sep 1985 | A |
4550782 | Lawson | Nov 1985 | A |
4550937 | Duret | Nov 1985 | A |
4553776 | Dodd | Nov 1985 | A |
4573248 | Hackett | Mar 1986 | A |
4576386 | Benson et al. | Mar 1986 | A |
4581817 | Kelly | Apr 1986 | A |
4582348 | Dearden et al. | Apr 1986 | A |
4590227 | Nakamura et al. | May 1986 | A |
4590995 | Evans | May 1986 | A |
4592577 | Ayres et al. | Jun 1986 | A |
4595063 | Jennings et al. | Jun 1986 | A |
4596913 | Takechi | Jun 1986 | A |
4598938 | Boss et al. | Jul 1986 | A |
4601343 | Lindsey, Jr. et al. | Jul 1986 | A |
4603889 | Welsh | Aug 1986 | A |
4605063 | Ross | Aug 1986 | A |
4611662 | Harrington | Sep 1986 | A |
4614233 | Menard | Sep 1986 | A |
4629218 | Dubois | Dec 1986 | A |
4629224 | Landriault | Dec 1986 | A |
4630849 | Fukui et al. | Dec 1986 | A |
4632944 | Thompson | Dec 1986 | A |
4634317 | Skogberg et al. | Jan 1987 | A |
4635333 | Finch | Jan 1987 | A |
4637436 | Stewart, Jr. et al. | Jan 1987 | A |
4646787 | Rush et al. | Mar 1987 | A |
4649492 | Sinha et al. | Mar 1987 | A |
4651831 | Baugh et al. | Mar 1987 | A |
4651836 | Richards | Mar 1987 | A |
4656779 | Fedeli | Apr 1987 | A |
4660863 | Bailey et al. | Apr 1987 | A |
4662446 | Brisco et al. | May 1987 | A |
4669541 | Bissonnette | Jun 1987 | A |
4674572 | Gallus | Jun 1987 | A |
4676563 | Curlett et al. | Jun 1987 | A |
4682797 | Hildner | Jul 1987 | A |
4685191 | Mueller et al. | Aug 1987 | A |
4685834 | Jordan | Aug 1987 | A |
4693498 | Baugh et al. | Sep 1987 | A |
4711474 | Patrick | Dec 1987 | A |
4714117 | Dech | Dec 1987 | A |
4730851 | Watts | Mar 1988 | A |
4732416 | Dearden et al. | Mar 1988 | A |
4735444 | Skipper | Apr 1988 | A |
4739654 | Pilkington et al. | Apr 1988 | A |
4739916 | Ayres et al. | Apr 1988 | A |
4754781 | Putter | Jul 1988 | A |
4758025 | Frick | Jul 1988 | A |
4762344 | Perkins et al. | Aug 1988 | A |
4776394 | Lynde et al. | Oct 1988 | A |
4778088 | Miller | Oct 1988 | A |
4779445 | Rabe | Oct 1988 | A |
4793382 | Szalvay | Dec 1988 | A |
4796668 | Depret | Jan 1989 | A |
4799544 | Curlett | Jan 1989 | A |
4817710 | Edwards et al. | Apr 1989 | A |
4817712 | Bodine | Apr 1989 | A |
4817716 | Taylor et al. | Apr 1989 | A |
4822081 | Blose | Apr 1989 | A |
4825674 | Tanaka et al. | May 1989 | A |
4826347 | Baril et al. | May 1989 | A |
4827594 | Cartry et al. | May 1989 | A |
4828033 | Frison | May 1989 | A |
4830109 | Wedel | May 1989 | A |
4832382 | Kapgan | May 1989 | A |
4836278 | Stone et al. | Jun 1989 | A |
4836579 | Wester et al. | Jun 1989 | A |
4838349 | Berzin | Jun 1989 | A |
4842082 | Springer | Jun 1989 | A |
4848459 | Blackwell et al. | Jul 1989 | A |
4854338 | Grantham | Aug 1989 | A |
4856592 | Van Bilderbeek et al. | Aug 1989 | A |
4865127 | Koster | Sep 1989 | A |
4871199 | Ridenour et al. | Oct 1989 | A |
4872253 | Carstensen | Oct 1989 | A |
4887646 | Groves | Dec 1989 | A |
4888975 | Soward et al. | Dec 1989 | A |
4892337 | Gunderson et al. | Jan 1990 | A |
4893658 | Kimura et al. | Jan 1990 | A |
4904136 | Matsumoto | Feb 1990 | A |
4907828 | Change | Mar 1990 | A |
4911237 | Melenyzer | Mar 1990 | A |
4913758 | Koster | Apr 1990 | A |
4915177 | Claycomb | Apr 1990 | A |
4915426 | Skipper | Apr 1990 | A |
4917409 | Reeves | Apr 1990 | A |
4919989 | Colangelo | Apr 1990 | A |
4921045 | Richardson | May 1990 | A |
4924949 | Curlett | May 1990 | A |
4930573 | Lane et al. | Jun 1990 | A |
4934038 | Caudill | Jun 1990 | A |
4934312 | Koster et al. | Jun 1990 | A |
4938291 | Lynde et al. | Jul 1990 | A |
4941512 | McParland | Jul 1990 | A |
4941532 | Hurt et al. | Jul 1990 | A |
4942925 | Themig | Jul 1990 | A |
4942926 | Lessi | Jul 1990 | A |
4958691 | Hipp | Sep 1990 | A |
4968184 | Reid | Nov 1990 | A |
4971152 | Koster et al. | Nov 1990 | A |
4976322 | Abdrakhmanov et al. | Dec 1990 | A |
4981250 | Persson | Jan 1991 | A |
4995464 | Watkins et al. | Feb 1991 | A |
5014779 | Meling et al. | May 1991 | A |
5015017 | Geary | May 1991 | A |
5026074 | Hoes et al. | Jun 1991 | A |
5031370 | Jewett | Jul 1991 | A |
5031699 | Artynov et al. | Jul 1991 | A |
5040283 | Pelgrom | Aug 1991 | A |
5044676 | Burton et al. | Sep 1991 | A |
5048871 | Pfeiffer et al. | Sep 1991 | A |
5052483 | Hudson | Oct 1991 | A |
5059043 | Kuhne | Oct 1991 | A |
5064004 | Lundel | Nov 1991 | A |
5079837 | Vanselow | Jan 1992 | A |
5083608 | Abdrakhmanov et al. | Jan 1992 | A |
5093015 | Oldiges | Mar 1992 | A |
5095991 | Milberger | Mar 1992 | A |
5097710 | Palynchuk | Mar 1992 | A |
5101653 | Hermes et al. | Apr 1992 | A |
5105888 | Pollock et al. | Apr 1992 | A |
5107221 | N'Guyen et al. | Apr 1992 | A |
5119661 | Abdrakhmanov et al. | Jun 1992 | A |
5134891 | Canevet | Aug 1992 | A |
5150755 | Cassel et al. | Sep 1992 | A |
5156043 | Ose | Oct 1992 | A |
5156213 | George et al. | Oct 1992 | A |
5156223 | Hipp | Oct 1992 | A |
5174340 | Peterson et al. | Dec 1992 | A |
5174376 | Singeetham | Dec 1992 | A |
5181571 | Mueller et al. | Jan 1993 | A |
5195583 | Toon et al. | Mar 1993 | A |
5197553 | Leturno | Mar 1993 | A |
5209600 | Koster | May 1993 | A |
5226492 | Solaeche P. et al. | Jul 1993 | A |
5242017 | Hailey | Sep 1993 | A |
5249628 | Surjaatmadia | Oct 1993 | A |
5253713 | Gregg et al. | Oct 1993 | A |
RE34467 | Reeves | Dec 1993 | E |
5275242 | Payne | Jan 1994 | A |
5282508 | Ellingsen et al. | Feb 1994 | A |
5286393 | Oldiges et al. | Feb 1994 | A |
5306101 | Rockower et al. | Apr 1994 | A |
5309621 | O'Donnell et al. | May 1994 | A |
5314014 | Tucker | May 1994 | A |
5314209 | Kuhne | May 1994 | A |
5318122 | Murray et al. | Jun 1994 | A |
5318131 | Baker | Jun 1994 | A |
5325923 | Surjaatmadja et al. | Jul 1994 | A |
5326137 | Lorenz et al. | Jul 1994 | A |
5327964 | O'Donnell et al. | Jul 1994 | A |
5330850 | Suzuki et al. | Jul 1994 | A |
5332038 | Tapp et al. | Jul 1994 | A |
5332049 | Tew | Jul 1994 | A |
5333692 | Baugh et al. | Aug 1994 | A |
5335736 | Windsor | Aug 1994 | A |
5337808 | Graham | Aug 1994 | A |
5337823 | Nobileau | Aug 1994 | A |
5337827 | Hromas et al. | Aug 1994 | A |
5339894 | Stotler | Aug 1994 | A |
5343949 | Ross et al. | Sep 1994 | A |
5346007 | Dillon et al. | Sep 1994 | A |
5348087 | Williamson, Jr. | Sep 1994 | A |
5348093 | Wood et al. | Sep 1994 | A |
5348095 | Worrall et al. | Sep 1994 | A |
5348668 | Oldiges et al. | Sep 1994 | A |
5351752 | Wood et al. | Oct 1994 | A |
5360239 | Klementich | Nov 1994 | A |
5360292 | Allen et al. | Nov 1994 | A |
5361836 | Sorem et al. | Nov 1994 | A |
5361843 | Shy et al. | Nov 1994 | A |
5366010 | Zwart | Nov 1994 | A |
5366012 | Lohbeck | Nov 1994 | A |
5368075 | Bäro et al. | Nov 1994 | A |
5370425 | Dougherty et al. | Dec 1994 | A |
5375661 | Daneshy et al. | Dec 1994 | A |
5388648 | Jordan, Jr. | Feb 1995 | A |
5390735 | Williamson, Jr. | Feb 1995 | A |
5390742 | Dines et al. | Feb 1995 | A |
5396957 | Surjaatmadja et al. | Mar 1995 | A |
5400827 | Baro et al. | Mar 1995 | A |
5405171 | Allen et al. | Apr 1995 | A |
5411301 | Moyer et al. | May 1995 | A |
5413180 | Ross et al. | May 1995 | A |
5425559 | Nobileau | Jun 1995 | A |
5426130 | Thurder et al. | Jun 1995 | A |
5431831 | Vincent | Jul 1995 | A |
5435395 | Connell | Jul 1995 | A |
5439320 | Abrams | Aug 1995 | A |
5443129 | Bailey et al. | Aug 1995 | A |
5447201 | Mohn | Sep 1995 | A |
5454419 | Vloedman | Oct 1995 | A |
5456319 | Schmidt et al. | Oct 1995 | A |
5458194 | Brooks | Oct 1995 | A |
5462120 | Gondouin | Oct 1995 | A |
5467822 | Zwart | Nov 1995 | A |
5472055 | Simson et al. | Dec 1995 | A |
5474334 | Eppink | Dec 1995 | A |
5492173 | Kilgore et al. | Feb 1996 | A |
5494106 | Gueguen et al. | Feb 1996 | A |
5507343 | Carlton et al. | Apr 1996 | A |
5511620 | Baugh et al. | Apr 1996 | A |
5524937 | Sides, III et al. | Jun 1996 | A |
5535824 | Hudson | Jul 1996 | A |
5536422 | Oldiges et al. | Jul 1996 | A |
5540281 | Round | Jul 1996 | A |
5554244 | Ruggles et al. | Sep 1996 | A |
5566772 | Coone et al. | Oct 1996 | A |
5567335 | Baessler et al. | Oct 1996 | A |
5576485 | Serata | Nov 1996 | A |
5584512 | Carstensen | Dec 1996 | A |
5606792 | Schafer | Mar 1997 | A |
5611399 | Richard et al. | Mar 1997 | A |
5613557 | Blount et al. | Mar 1997 | A |
5617918 | Cooksey et al. | Apr 1997 | A |
5642560 | Tabuchi et al. | Jul 1997 | A |
5642781 | Richard | Jul 1997 | A |
5662180 | Coffman et al. | Sep 1997 | A |
5664327 | Swars | Sep 1997 | A |
5667011 | Gill et al. | Sep 1997 | A |
5667252 | Schafer et al. | Sep 1997 | A |
5678609 | Washburn | Oct 1997 | A |
5685369 | Ellis et al. | Nov 1997 | A |
5689871 | Carstensen | Nov 1997 | A |
5695008 | Bertet et al. | Dec 1997 | A |
5695009 | Hipp | Dec 1997 | A |
5697442 | Baldridge | Dec 1997 | A |
5697449 | Hennig et al. | Dec 1997 | A |
5718288 | Bertet et al. | Feb 1998 | A |
5738146 | Abe | Apr 1998 | A |
5743335 | Bussear | Apr 1998 | A |
5749419 | Coronado et al. | May 1998 | A |
5749585 | Lembcke | May 1998 | A |
5755895 | Tamehiro et al. | May 1998 | A |
5775422 | Wong et al. | Jul 1998 | A |
5785120 | Smalley et al. | Jul 1998 | A |
5787933 | Russ et al. | Aug 1998 | A |
5791419 | Valisalo | Aug 1998 | A |
5794702 | Nobileau | Aug 1998 | A |
5797454 | Hipp | Aug 1998 | A |
5829520 | Johnson | Nov 1998 | A |
5829524 | Flanders et al. | Nov 1998 | A |
5829797 | Yamamoto et al. | Nov 1998 | A |
5833001 | Song et al. | Nov 1998 | A |
5845945 | Carstensen | Dec 1998 | A |
5849188 | Voll et al. | Dec 1998 | A |
5857524 | Harris | Jan 1999 | A |
5862866 | Springer | Jan 1999 | A |
5875851 | Vick, Jr. et al. | Mar 1999 | A |
5885941 | Sateva et al. | Mar 1999 | A |
5895079 | Carstensen et al. | Apr 1999 | A |
5901789 | Donnelly et al. | May 1999 | A |
5918677 | Head | Jul 1999 | A |
5924745 | Campbell | Jul 1999 | A |
5931511 | DeLange et al. | Aug 1999 | A |
5933945 | Thomeer et al. | Aug 1999 | A |
5944100 | Hipp | Aug 1999 | A |
5944107 | Ohmer | Aug 1999 | A |
5944108 | Baugh et al. | Aug 1999 | A |
5951207 | Chen | Sep 1999 | A |
5957195 | Bailey et al. | Sep 1999 | A |
5964288 | Leighton et al. | Oct 1999 | A |
5971443 | Noel et al. | Oct 1999 | A |
5975587 | Wood et al. | Nov 1999 | A |
5979560 | Nobileau | Nov 1999 | A |
5984369 | Crook et al. | Nov 1999 | A |
5984568 | Lohbeck | Nov 1999 | A |
6009611 | Adams et al. | Jan 2000 | A |
6012521 | Zunkel et al. | Jan 2000 | A |
6012522 | Donnelly et al. | Jan 2000 | A |
6012523 | Campbell et al. | Jan 2000 | A |
6012874 | Groneck et al. | Jan 2000 | A |
6015012 | Reddick | Jan 2000 | A |
6017168 | Fraser et al. | Jan 2000 | A |
6021850 | Woo et al. | Feb 2000 | A |
6024181 | Richardson et al. | Feb 2000 | A |
6027145 | Tsuru et al. | Feb 2000 | A |
6029748 | Forsyth et al. | Feb 2000 | A |
6035954 | Hipp | Mar 2000 | A |
6044906 | Saltel | Apr 2000 | A |
6047505 | Willow | Apr 2000 | A |
6047774 | Allen | Apr 2000 | A |
6050341 | Metcalf | Apr 2000 | A |
6050346 | Hipp | Apr 2000 | A |
6056059 | Ohmer | May 2000 | A |
6056324 | Reimert et al. | May 2000 | A |
6062324 | Hipp | May 2000 | A |
6065500 | Metcalfe | May 2000 | A |
6070671 | Cumming et al. | Jun 2000 | A |
6073332 | Turner | Jun 2000 | A |
6073692 | Wood et al. | Jun 2000 | A |
6073698 | Schultz et al. | Jun 2000 | A |
6074133 | Kelsey | Jun 2000 | A |
6078031 | Bliault et al. | Jun 2000 | A |
6079495 | Ohmer | Jun 2000 | A |
6085838 | Vercaemer et al. | Jul 2000 | A |
6089320 | LaGrange | Jul 2000 | A |
6098717 | Bailey et al. | Aug 2000 | A |
6102119 | Raines | Aug 2000 | A |
6109355 | Reid | Aug 2000 | A |
6112818 | Campbell | Sep 2000 | A |
6131265 | Bird | Oct 2000 | A |
6135208 | Gano et al. | Oct 2000 | A |
6138761 | Freeman et al. | Oct 2000 | A |
6142230 | Smalley et al. | Nov 2000 | A |
6155613 | Quadflieg et al. | Dec 2000 | A |
6158785 | Beaulier et al. | Dec 2000 | A |
6158963 | Hollis | Dec 2000 | A |
6167970 | Stout | Jan 2001 | B1 |
6182775 | Hipp | Feb 2001 | B1 |
6183013 | Mackenzie et al. | Feb 2001 | B1 |
6183573 | Fujiwara et al. | Feb 2001 | B1 |
6196336 | Fincher et al. | Mar 2001 | B1 |
6216509 | Lotspaih et al. | Apr 2001 | B1 |
6220306 | Omura et al. | Apr 2001 | B1 |
6226855 | Maine | May 2001 | B1 |
6231086 | Tierling | May 2001 | B1 |
6237967 | Yamamoto et al. | May 2001 | B1 |
6250385 | Montaron | Jun 2001 | B1 |
6253846 | Nazzai et al. | Jul 2001 | B1 |
6253850 | Nazzai et al. | Jul 2001 | B1 |
6263966 | Haut et al. | Jul 2001 | B1 |
6263968 | Freeman et al. | Jul 2001 | B1 |
6263972 | Richard et al. | Jul 2001 | B1 |
6267181 | Rhein-Knudsen et al. | Jul 2001 | B1 |
6273634 | Lohbeck | Aug 2001 | B1 |
6275556 | Kinney et al. | Aug 2001 | B1 |
6283211 | Vloedman | Sep 2001 | B1 |
6286558 | Quigley et al. | Sep 2001 | B1 |
6302211 | Nelson et al. | Oct 2001 | B1 |
6311792 | Scott et al. | Nov 2001 | B1 |
6315040 | Donnelly | Nov 2001 | B1 |
6315043 | Farrant et al. | Nov 2001 | B1 |
6318457 | Den Boer et al. | Nov 2001 | B1 |
6318465 | Coon et al. | Nov 2001 | B1 |
6322109 | Campbell et al. | Nov 2001 | B1 |
6325148 | Trahan et al. | Dec 2001 | B1 |
6328113 | Cook | Dec 2001 | B1 |
6334351 | Tsuchiya | Jan 2002 | B1 |
6343495 | Cheppe et al. | Feb 2002 | B1 |
6343657 | Baugh et al. | Feb 2002 | B1 |
6345373 | Chakradhar et al. | Feb 2002 | B1 |
6345431 | Greig | Feb 2002 | B1 |
6352112 | Mills | Mar 2002 | B1 |
6354373 | Vercaemer et al. | Mar 2002 | B1 |
6390720 | LeBegue et al. | May 2002 | B1 |
6405761 | Shimizu et al. | Jun 2002 | B1 |
6406063 | Pfeiffer | Jun 2002 | B1 |
6409175 | Evans et al. | Jun 2002 | B1 |
6419025 | Lohbeck et al. | Jul 2002 | B1 |
6419026 | MacKenzie et al. | Jul 2002 | B1 |
6419033 | Hahn et al. | Jul 2002 | B1 |
6419147 | Daniel | Jul 2002 | B1 |
6425444 | Metcalfe et al. | Jul 2002 | B1 |
6431277 | Cox et al. | Aug 2002 | B1 |
6443247 | Wardley | Sep 2002 | B1 |
6446724 | Baugh et al. | Sep 2002 | B2 |
6447025 | Smith | Sep 2002 | B1 |
6450261 | Baugh | Sep 2002 | B1 |
6454013 | Metcalfe | Sep 2002 | B1 |
6454024 | Nackerud | Sep 2002 | B1 |
6457532 | Simpson | Oct 2002 | B1 |
6457533 | Metcalfe | Oct 2002 | B1 |
6457749 | Heijnen | Oct 2002 | B1 |
6460615 | Heijnen | Oct 2002 | B1 |
6464008 | Roddy et al. | Oct 2002 | B1 |
6464014 | Bemat | Oct 2002 | B1 |
6470966 | Cook et al. | Oct 2002 | B2 |
6470996 | Kyle et al. | Oct 2002 | B1 |
6478092 | Voll et al. | Nov 2002 | B2 |
6491108 | Slup et al. | Dec 2002 | B1 |
6497289 | Cook et al. | Dec 2002 | B1 |
6513243 | Bignucolo et al. | Feb 2003 | B1 |
6516887 | Nguyen et al. | Feb 2003 | B2 |
6517126 | Peterson et al. | Feb 2003 | B1 |
6527049 | Metcalfe et al. | Mar 2003 | B2 |
6543545 | Chatterji et al. | Apr 2003 | B1 |
6543552 | Metcalfe et al. | Apr 2003 | B1 |
6550539 | Maguire et al. | Apr 2003 | B2 |
6550821 | DeLange et al. | Apr 2003 | B2 |
6557640 | Cook et al. | May 2003 | B1 |
6557906 | Carcagno | May 2003 | B1 |
6561227 | Cook et al. | May 2003 | B2 |
6561279 | MacKenzie et al. | May 2003 | B2 |
6564875 | Bullock | May 2003 | B1 |
6568471 | Cook et al. | May 2003 | B1 |
6568488 | Wentworth et al. | May 2003 | B2 |
6575240 | Haut et al. | Jun 2003 | B1 |
6578630 | Simpson et al. | Jun 2003 | B2 |
6585053 | Coon | Jul 2003 | B2 |
6585299 | Quadflieg et al. | Jul 2003 | B1 |
6591905 | Coon | Jul 2003 | B2 |
6598677 | Baugh et al. | Jul 2003 | B1 |
6598678 | Simpson | Jul 2003 | B1 |
6604763 | Ring et al. | Aug 2003 | B1 |
6607220 | Sivley, IV | Aug 2003 | B2 |
6609735 | DeLange et al. | Aug 2003 | B1 |
6619696 | Baugh et al. | Sep 2003 | B2 |
6622797 | Sivley, IV | Sep 2003 | B2 |
6629567 | Lauritzen et al. | Oct 2003 | B2 |
6631759 | Cook et al. | Oct 2003 | B2 |
6631760 | Cook et al. | Oct 2003 | B2 |
6631765 | Baugh et al. | Oct 2003 | B2 |
6631769 | Cook et al. | Oct 2003 | B2 |
6634431 | Cook et al. | Oct 2003 | B2 |
6640895 | Murray | Nov 2003 | B2 |
6640903 | Cook et al. | Nov 2003 | B1 |
6648075 | Badrak et al. | Nov 2003 | B2 |
6659509 | Goto et al. | Dec 2003 | B2 |
6662876 | Lauritzen | Dec 2003 | B2 |
6668937 | Murray | Dec 2003 | B1 |
6672759 | Feger | Jan 2004 | B2 |
6679328 | Davis et al. | Jan 2004 | B2 |
6681862 | Freeman | Jan 2004 | B2 |
6684947 | Cook et al. | Feb 2004 | B2 |
6688397 | McClurkin et al. | Feb 2004 | B2 |
6695012 | Ring et al. | Feb 2004 | B1 |
6695065 | Simpson et al. | Feb 2004 | B2 |
6698517 | Simpson | Mar 2004 | B2 |
6701598 | Chen et al. | Mar 2004 | B2 |
6702030 | Simpson | Mar 2004 | B2 |
6705395 | Cook et al. | Mar 2004 | B2 |
6708767 | Harrall et al. | Mar 2004 | B2 |
6712154 | Cook et al. | Mar 2004 | B2 |
6712401 | Coulon et al. | Mar 2004 | B2 |
6719064 | Price-Smith et al. | Apr 2004 | B2 |
6722427 | Gano et al. | Apr 2004 | B2 |
6722437 | Vercaemer et al. | Apr 2004 | B2 |
6722443 | Metcalfe | Apr 2004 | B1 |
6725917 | Metcalfe | Apr 2004 | B2 |
6725919 | Cook et al. | Apr 2004 | B2 |
6725934 | Coronado et al. | Apr 2004 | B2 |
6725939 | Richard | Apr 2004 | B2 |
6732806 | Mauldin et al. | May 2004 | B2 |
6739392 | Cook et al. | May 2004 | B2 |
6745845 | Cook et al. | Jun 2004 | B2 |
6755447 | Galle, Jr. et al. | Jun 2004 | B2 |
6758278 | Cook et al. | Jul 2004 | B2 |
6772841 | Gano | Aug 2004 | B2 |
6796380 | Xu | Sep 2004 | B2 |
6814147 | Baugh | Nov 2004 | B2 |
6817633 | Brill et al. | Nov 2004 | B2 |
6820690 | Vercaemer et al. | Nov 2004 | B2 |
6823937 | Cook et al. | Nov 2004 | B1 |
6832649 | Bode et al. | Dec 2004 | B2 |
6834725 | Whanger et al. | Dec 2004 | B2 |
6843322 | Burtner et al. | Jan 2005 | B2 |
6857473 | Cook et al. | Feb 2005 | B2 |
6880632 | Tom et al. | Apr 2005 | B2 |
6892819 | Cook et al. | May 2005 | B2 |
6902000 | Simpson et al. | Jun 2005 | B2 |
6907652 | Heijnen | Jun 2005 | B1 |
6923261 | Metcalfe et al. | Aug 2005 | B2 |
6935429 | Badrack | Aug 2005 | B2 |
6935430 | Harrell et al. | Aug 2005 | B2 |
6966370 | Cook et al. | Nov 2005 | B2 |
6976539 | Metcalfe et al. | Dec 2005 | B2 |
6976541 | Brisco et al. | Dec 2005 | B2 |
7000953 | Berghaus | Feb 2006 | B2 |
7007760 | Lohbeck | Mar 2006 | B2 |
7021390 | Cook et al. | Apr 2006 | B2 |
7036582 | Cook et al. | May 2006 | B2 |
7044221 | Cook et al. | May 2006 | B2 |
7048062 | Ring et al. | May 2006 | B2 |
7066284 | Wylie et al. | Jun 2006 | B2 |
7077211 | Cook et al. | Jul 2006 | B2 |
7077213 | Cook et al. | Jul 2006 | B2 |
7086475 | Cook | Aug 2006 | B2 |
7100684 | Cook et al. | Sep 2006 | B2 |
7100685 | Cook et al. | Sep 2006 | B2 |
7108061 | Cook et al. | Sep 2006 | B2 |
7108072 | Cook et al. | Sep 2006 | B2 |
7121337 | Cook et al. | Oct 2006 | B2 |
7121352 | Cook et al. | Oct 2006 | B2 |
7124821 | Metcalfe et al. | Oct 2006 | B2 |
7124823 | Oosterling | Oct 2006 | B2 |
7124826 | Simpson | Oct 2006 | B2 |
7146702 | Cook et al. | Dec 2006 | B2 |
7147053 | Cook et al. | Dec 2006 | B2 |
7159665 | Cook et al. | Jan 2007 | B2 |
7159667 | Cook et al. | Jan 2007 | B2 |
7168496 | Cook et al. | Jan 2007 | B2 |
7168499 | Cook et al. | Jan 2007 | B2 |
7172019 | Cook et al. | Feb 2007 | B2 |
7172021 | Brisco et al. | Feb 2007 | B2 |
7172024 | Cook et al. | Feb 2007 | B2 |
7174964 | Cook et al. | Feb 2007 | B2 |
20010002626 | Frank et al. | Jun 2001 | A1 |
20010020532 | Baugh et al. | Sep 2001 | A1 |
20010045284 | Simpson et al. | Nov 2001 | A1 |
20010045289 | Cook et al. | Nov 2001 | A1 |
20010047870 | Cook et al. | Dec 2001 | A1 |
20020011339 | Murray | Jan 2002 | A1 |
20020014339 | Ross | Feb 2002 | A1 |
20020020524 | Gano | Feb 2002 | A1 |
20020020531 | Ohmer | Feb 2002 | A1 |
20020033261 | Metcalfe | Mar 2002 | A1 |
20020060068 | Cook et al. | May 2002 | A1 |
20020062956 | Murray et al. | May 2002 | A1 |
20020066576 | Cook et al. | Jun 2002 | A1 |
20020066578 | Broome | Jun 2002 | A1 |
20020070023 | Turner et al. | Jun 2002 | A1 |
20020070031 | Voll et al. | Jun 2002 | A1 |
20020079101 | Baugh et al. | Jun 2002 | A1 |
20020084070 | Voll et al. | Jul 2002 | A1 |
20020092654 | Coronado et al. | Jul 2002 | A1 |
20020108756 | Harrall et al. | Aug 2002 | A1 |
20020139540 | Lauritzen | Oct 2002 | A1 |
20020144822 | Hackworth et al. | Oct 2002 | A1 |
20020148612 | Cook et al. | Oct 2002 | A1 |
20020185274 | Simpson et al. | Dec 2002 | A1 |
20020189816 | Cook et al. | Dec 2002 | A1 |
20020195252 | Maguire et al. | Dec 2002 | A1 |
20020195256 | Metcalfe et al. | Dec 2002 | A1 |
20030024708 | Ring et al. | Feb 2003 | A1 |
20030024711 | Simpson et al. | Feb 2003 | A1 |
20030034177 | Chitwood et al. | Feb 2003 | A1 |
20030042022 | Lauritzen et al. | Mar 2003 | A1 |
20030047322 | Maguire et al. | Mar 2003 | A1 |
20030047323 | Jackson et al. | Mar 2003 | A1 |
20030056991 | Hahn et al. | Mar 2003 | A1 |
20030066655 | Cook et al. | Apr 2003 | A1 |
20030067166 | Maguire | Apr 2003 | A1 |
20030075337 | Sivley, IV | Apr 2003 | A1 |
20030075338 | Sivley, IV | Apr 2003 | A1 |
20030075339 | Gano et al. | Apr 2003 | A1 |
20030094277 | Cook et al. | May 2003 | A1 |
20030094278 | Cook et al. | May 2003 | A1 |
20030094279 | Ring et al. | May 2003 | A1 |
20030098154 | Cook et al. | May 2003 | A1 |
20030098162 | Cook | May 2003 | A1 |
20030107217 | Daigle et al. | Jun 2003 | A1 |
20030111234 | McClurkin et al. | Jun 2003 | A1 |
20030116318 | Metcalfe | Jun 2003 | A1 |
20030116325 | Cook et al. | Jun 2003 | A1 |
20030121558 | Cook et al. | Jul 2003 | A1 |
20030121655 | Lauritzen et al. | Jul 2003 | A1 |
20030121669 | Cook et al. | Jul 2003 | A1 |
20030140673 | Marr et al. | Jul 2003 | A1 |
20030150608 | Smith, Jr. et al. | Aug 2003 | A1 |
20030168222 | Maguire et al. | Sep 2003 | A1 |
20030173090 | Cook et al. | Sep 2003 | A1 |
20030192705 | Cook et al. | Oct 2003 | A1 |
20030221841 | Burtner et al. | Dec 2003 | A1 |
20030222455 | Cook et al. | Dec 2003 | A1 |
20040011534 | Simonds et al. | Jan 2004 | A1 |
20040045616 | Cook et al. | Mar 2004 | A1 |
20040045718 | Brisco et al. | Mar 2004 | A1 |
20040060706 | Stephenson | Apr 2004 | A1 |
20040065446 | Tran et al. | Apr 2004 | A1 |
20040069499 | Cook et al. | Apr 2004 | A1 |
20040112589 | Cook et al. | Jun 2004 | A1 |
20040112606 | Lewis et al. | Jun 2004 | A1 |
20040118574 | Cook et al. | Jun 2004 | A1 |
20040123983 | Cook et al. | Jul 2004 | A1 |
20040123988 | Cook et al. | Jul 2004 | A1 |
20040129431 | Jackson | Jul 2004 | A1 |
20040149431 | Wylie et al. | Aug 2004 | A1 |
20040159446 | Haugen et al. | Aug 2004 | A1 |
20040174017 | Brill et al. | Sep 2004 | A1 |
20040188099 | Cook et al. | Sep 2004 | A1 |
20040194278 | Brill et al. | Oct 2004 | A1 |
20040194966 | Zimmerman | Oct 2004 | A1 |
20040216873 | Frost, Jr. et al. | Nov 2004 | A1 |
20040221996 | Burge | Nov 2004 | A1 |
20040228679 | Reavis et al. | Nov 2004 | A1 |
20040231839 | Ellington et al. | Nov 2004 | A1 |
20040231855 | Cook et al. | Nov 2004 | A1 |
20040238181 | Cook et al. | Dec 2004 | A1 |
20040244968 | Cook et al. | Dec 2004 | A1 |
20040262014 | Cook et al. | Dec 2004 | A1 |
20050011641 | Cook et al. | Jan 2005 | A1 |
20050015963 | Costa et al. | Jan 2005 | A1 |
20050028988 | Cook et al. | Feb 2005 | A1 |
20050039910 | Lohbeck | Feb 2005 | A1 |
20050039928 | Cook et al. | Feb 2005 | A1 |
20050045324 | Cook et al. | Mar 2005 | A1 |
20050045341 | Cook et al. | Mar 2005 | A1 |
20050045342 | Luke et al. | Mar 2005 | A1 |
20050056433 | Watson et al. | Mar 2005 | A1 |
20050056434 | Ring et al. | Mar 2005 | A1 |
20050077051 | Cook et al. | Apr 2005 | A1 |
20050081358 | Cook et al. | Apr 2005 | A1 |
20050087337 | Brisco et al. | Apr 2005 | A1 |
20050098323 | Cook et al. | May 2005 | A1 |
20050103502 | Watson et al. | May 2005 | A1 |
20050123639 | Ring et al. | Jun 2005 | A1 |
20050133225 | Oosterling | Jun 2005 | A1 |
20050138790 | Cook et al. | Jun 2005 | A1 |
20050144771 | Cook et al. | Jul 2005 | A1 |
20050144772 | Cook et al. | Jul 2005 | A1 |
20050144777 | Cook et al. | Jul 2005 | A1 |
20050150098 | Cook et al. | Jul 2005 | A1 |
20050150660 | Cook et al. | Jul 2005 | A1 |
20050161228 | Cook et al. | Jul 2005 | A1 |
20050166387 | Cook et al. | Aug 2005 | A1 |
20050166388 | Cook et al. | Aug 2005 | A1 |
20050173108 | Cook et al. | Aug 2005 | A1 |
20050175473 | Cook et al. | Aug 2005 | A1 |
20050183863 | Cook et al. | Aug 2005 | A1 |
20050205253 | Cook et al. | Sep 2005 | A1 |
20050217768 | Asahi et al. | Oct 2005 | A1 |
20050217865 | Ring et al. | Oct 2005 | A1 |
20050217866 | Watson et al. | Oct 2005 | A1 |
20050223535 | Cook et al. | Oct 2005 | A1 |
20050224225 | Cook et al. | Oct 2005 | A1 |
20050230102 | Cook et al. | Oct 2005 | A1 |
20050230103 | Cook et al. | Oct 2005 | A1 |
20050230104 | Cook et al. | Oct 2005 | A1 |
20050230123 | Cook et al. | Oct 2005 | A1 |
20050236159 | Cook et al. | Oct 2005 | A1 |
20050236163 | Cook et al. | Oct 2005 | A1 |
20050244578 | Van Egmond et al. | Nov 2005 | A1 |
20050246883 | Alliot et al. | Nov 2005 | A1 |
20050247453 | Shuster et al. | Nov 2005 | A1 |
20050265788 | Renkema | Dec 2005 | A1 |
20050269107 | Cook et al. | Dec 2005 | A1 |
20060027371 | Gorrara | Feb 2006 | A1 |
20060032640 | Costa et al. | Feb 2006 | A1 |
20060048948 | Noel | Mar 2006 | A1 |
20060054330 | Metcalfe et al. | Mar 2006 | A1 |
20060065403 | Watson et al. | Mar 2006 | A1 |
20060065406 | Shuster et al. | Mar 2006 | A1 |
20060096762 | Brisco | May 2006 | A1 |
20060102360 | Brisco et al. | May 2006 | A1 |
20060112768 | Shuster et al. | Jun 2006 | A1 |
20060113086 | Costa et al. | Jun 2006 | A1 |
20060162937 | Costa et al. | Jul 2006 | A1 |
20060163460 | Brisco | Jul 2006 | A1 |
20060196679 | Brisco et al. | Sep 2006 | A1 |
20060207760 | Watson et al. | Sep 2006 | A1 |
20060208488 | Costa | Sep 2006 | A1 |
20060213668 | Cook et al. | Sep 2006 | A1 |
20060219414 | Shuster | Oct 2006 | A1 |
20060225892 | Watson et al. | Oct 2006 | A1 |
20060243444 | Brisco | Nov 2006 | A1 |
20060266527 | Brisco et al. | Nov 2006 | A1 |
20060272826 | Shuster et al. | Dec 2006 | A1 |
20070012456 | Cook | Jan 2007 | A1 |
20070017572 | Cook | Jan 2007 | A1 |
20070029095 | Brisco | Feb 2007 | A1 |
20070034383 | Shuster et al. | Feb 2007 | A1 |
20070039742 | Costa | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
767364 | Feb 2004 | AU |
773168 | May 2004 | AU |
770008 | Jul 2004 | AU |
770359 | Jul 2004 | AU |
771884 | Aug 2004 | AU |
776580 | Jan 2005 | AU |
780123 | Mar 2005 | AU |
2001269810 | Aug 2005 | AU |
782901 | Sep 2005 | AU |
783245 | Oct 2005 | AU |
2001294802 | Oct 2005 | AU |
2001283026 | Jul 2006 | AU |
2002239857 | Aug 2006 | AU |
2001292695 | Oct 2006 | AU |
736288 | Jun 1966 | CA |
771462 | Nov 1967 | CA |
1171310 | Jul 1984 | CA |
2292171 | Jun 2000 | CA |
2497854 | Jun 2000 | CA |
2298139 | Aug 2000 | CA |
2234386 | Mar 2003 | CA |
2414449 | Sep 2006 | CA |
2398001 | Oct 2006 | CA |
2289811 | Jan 2007 | CA |
174521 | Apr 1953 | DE |
2458188 | Dec 1980 | DE |
203767 | Nov 1983 | DE |
233607 | Mar 1986 | DE |
278517 | May 1990 | DE |
0084940 | Aug 1983 | EP |
0272511 | Dec 1987 | EP |
0294264 | May 1988 | EP |
0553566 | Dec 1992 | EP |
0633391 | Jan 1995 | EP |
0713953 | Nov 1995 | EP |
0823534 | Feb 1998 | EP |
0881354 | Dec 1998 | EP |
0881359 | Dec 1998 | EP |
0899420 | Mar 1999 | EP |
0937861 | Aug 1999 | EP |
0952305 | Oct 1999 | EP |
0952306 | Oct 1999 | EP |
1141515 | Oct 2001 | EP |
1152120 | Nov 2001 | EP |
1152120 | Nov 2001 | EP |
1235972 | Sep 2002 | EP |
1555386 | Jul 2005 | EP |
1325596 | Jun 1962 | FR |
2583398 | Dec 1986 | FR |
2717855 | Sep 1995 | FR |
2741907 | Jun 1997 | FR |
2771133 | May 1999 | FR |
2780751 | Jan 2000 | FR |
2841626 | Jan 2004 | FR |
557823 | Dec 1943 | GB |
788150 | Dec 1957 | GB |
851096 | Oct 1960 | GB |
961750 | Jun 1964 | GB |
1000383 | Oct 1965 | GB |
1062610 | Mar 1967 | GB |
1111536 | May 1968 | GB |
1448304 | Sep 1976 | GB |
1460864 | Jan 1977 | GB |
1520552 | Aug 1978 | GB |
1542847 | Mar 1979 | GB |
1563740 | Mar 1980 | GB |
1582767 | Jan 1981 | GB |
2058877 | Apr 1981 | GB |
2108228 | May 1983 | GB |
2115860 | Sep 1983 | GB |
2125876 | Mar 1984 | GB |
2211573 | Jul 1989 | GB |
2216926 | Oct 1989 | GB |
2243191 | Oct 1991 | GB |
2256910 | Dec 1992 | GB |
2257184 | Jun 1993 | GB |
2305682 | Apr 1997 | GB |
2325949 | May 1998 | GB |
2322655 | Sep 1998 | GB |
2326896 | Jan 1999 | GB |
2329916 | Apr 1999 | GB |
2329918 | Apr 1999 | GB |
2331103 | May 1999 | GB |
2336383 | Oct 1999 | GB |
2355738 | Apr 2000 | GB |
2343691 | May 2000 | GB |
2344606 | Jun 2000 | GB |
2345308 | Jul 2000 | GB |
2368865 | Jul 2000 | GB |
2346165 | Aug 2000 | GB |
2346632 | Aug 2000 | GB |
2347445 | Sep 2000 | GB |
2347446 | Sep 2000 | GB |
2347950 | Sep 2000 | GB |
2347952 | Sep 2000 | GB |
2348223 | Sep 2000 | GB |
2348657 | Oct 2000 | GB |
2357099 | Dec 2000 | GB |
2356651 | May 2001 | GB |
2350137 | Aug 2001 | GB |
2361724 | Oct 2001 | GB |
2365898 | Feb 2002 | GB |
2359837 | Apr 2002 | GB |
2370301 | Jun 2002 | GB |
2371064 | Jul 2002 | GB |
2371574 | Jul 2002 | GB |
2373524 | Sep 2002 | GB |
2367842 | Oct 2002 | GB |
2374098 | Oct 2002 | GB |
2374622 | Oct 2002 | GB |
2375560 | Nov 2002 | GB |
2380213 | Apr 2003 | GB |
2380503 | Apr 2003 | GB |
2381019 | Apr 2003 | GB |
2343691 | May 2003 | GB |
2382364 | May 2003 | GB |
2382828 | Jun 2003 | GB |
2344606 | Aug 2003 | GB |
2347950 | Aug 2003 | GB |
2380213 | Aug 2003 | GB |
2380214 | Aug 2003 | GB |
2380215 | Aug 2003 | GB |
2348223 | Sep 2003 | GB |
2347952 | Oct 2003 | GB |
2348657 | Oct 2003 | GB |
2384800 | Oct 2003 | GB |
2384801 | Oct 2003 | GB |
2384802 | Oct 2003 | GB |
2384803 | Oct 2003 | GB |
2384804 | Oct 2003 | GB |
2384805 | Oct 2003 | GB |
2384806 | Oct 2003 | GB |
2384807 | Oct 2003 | GB |
2384808 | Oct 2003 | GB |
2385353 | Oct 2003 | GB |
2385354 | Oct 2003 | GB |
2385355 | Oct 2003 | GB |
2385356 | Oct 2003 | GB |
2385357 | Oct 2003 | GB |
2385358 | Oct 2003 | GB |
2385359 | Oct 2003 | GB |
2385360 | Oct 2003 | GB |
2385361 | Oct 2003 | GB |
2385362 | Oct 2003 | GB |
2385363 | Oct 2003 | GB |
2385619 | Oct 2003 | GB |
2385620 | Oct 2003 | GB |
2385621 | Oct 2003 | GB |
2385622 | Oct 2003 | GB |
2385623 | Oct 2003 | GB |
2387405 | Oct 2003 | GB |
2387861 | Oct 2003 | GB |
2388134 | Nov 2003 | GB |
2388860 | Nov 2003 | GB |
2355738 | Dec 2003 | GB |
2374622 | Dec 2003 | GB |
2388391 | Dec 2003 | GB |
2388392 | Dec 2003 | GB |
2388393 | Dec 2003 | GB |
2388394 | Dec 2003 | GB |
2388395 | Dec 2003 | GB |
2391028 | Jan 2004 | GB |
2356651 | Feb 2004 | GB |
2368865 | Feb 2004 | GB |
2388860 | Feb 2004 | GB |
2388861 | Feb 2004 | GB |
2388862 | Feb 2004 | GB |
2391886 | Feb 2004 | GB |
2390628 | Mar 2004 | GB |
2391033 | Mar 2004 | GB |
2392686 | Mar 2004 | GB |
2393199 | Mar 2004 | GB |
2373524 | Apr 2004 | GB |
2390387 | Apr 2004 | GB |
2392686 | Apr 2004 | GB |
2392691 | Apr 2004 | GB |
2391575 | May 2004 | GB |
2394979 | May 2004 | GB |
2395506 | May 2004 | GB |
2392932 | Jun 2004 | GB |
2395734 | Jun 2004 | GB |
2396635 | Jun 2004 | GB |
2396639 | Jun 2004 | GB |
2396640 | Jun 2004 | GB |
2396641 | Jun 2004 | GB |
2396642 | Jun 2004 | GB |
2396643 | Jun 2004 | GB |
2396644 | Jun 2004 | GB |
2396646 | Jun 2004 | GB |
2373468 | Jul 2004 | GB |
2396869 | Jul 2004 | GB |
2397261 | Jul 2004 | GB |
2397262 | Jul 2004 | GB |
2397263 | Jul 2004 | GB |
2397264 | Jul 2004 | GB |
2397265 | Jul 2004 | GB |
2398087 | Aug 2004 | GB |
2398317 | Aug 2004 | GB |
2398318 | Aug 2004 | GB |
2398319 | Aug 2004 | GB |
2398320 | Aug 2004 | GB |
2398321 | Aug 2004 | GB |
2398322 | Aug 2004 | GB |
2398323 | Aug 2004 | GB |
2398326 | Aug 2004 | GB |
2382367 | Sep 2004 | GB |
2396641 | Sep 2004 | GB |
2396643 | Sep 2004 | GB |
2397261 | Sep 2004 | GB |
2397262 | Sep 2004 | GB |
2397263 | Sep 2004 | GB |
2397264 | Sep 2004 | GB |
2397265 | Sep 2004 | GB |
2399120 | Sep 2004 | GB |
2399579 | Sep 2004 | GB |
2399580 | Sep 2004 | GB |
2399848 | Sep 2004 | GB |
2399849 | Sep 2004 | GB |
2399850 | Sep 2004 | GB |
2384502 | Oct 2004 | GB |
2396644 | Oct 2004 | GB |
2400126 | Oct 2004 | GB |
2400393 | Oct 2004 | GB |
2400624 | Oct 2004 | GB |
2396640 | Nov 2004 | GB |
2396642 | Nov 2004 | GB |
2401136 | Nov 2004 | GB |
2401137 | Nov 2004 | GB |
2401138 | Nov 2004 | GB |
2401630 | Nov 2004 | GB |
2401631 | Nov 2004 | GB |
2401632 | Nov 2004 | GB |
2401633 | Nov 2004 | GB |
2401634 | Nov 2004 | GB |
2401635 | Nov 2004 | GB |
2401636 | Nov 2004 | GB |
2401637 | Nov 2004 | GB |
2401638 | Nov 2004 | GB |
2401639 | Nov 2004 | GB |
2381019 | Dec 2004 | GB |
2382368 | Dec 2004 | GB |
2394979 | Dec 2004 | GB |
2401136 | Dec 2004 | GB |
2401137 | Dec 2004 | GB |
2401138 | Dec 2004 | GB |
2403970 | Jan 2005 | GB |
2403971 | Jan 2005 | GB |
2403972 | Jan 2005 | GB |
2400624 | Feb 2005 | GB |
2404402 | Feb 2005 | GB |
2404676 | Feb 2005 | GB |
2404680 | Feb 2005 | GB |
2384807 | Mar 2005 | GB |
2388134 | Mar 2005 | GB |
2398320 | Mar 2005 | GB |
2398323 | Mar 2005 | GB |
2399120 | Mar 2005 | GB |
2399848 | Mar 2005 | GB |
2399849 | Mar 2005 | GB |
2405893 | Mar 2005 | GB |
2406117 | Mar 2005 | GB |
2406118 | Mar 2005 | GB |
2406119 | Mar 2005 | GB |
2406120 | Mar 2005 | GB |
2406125 | Mar 2005 | GB |
2406126 | Mar 2005 | GB |
2410518 | Mar 2005 | GB |
2406599 | Apr 2005 | GB |
2389597 | May 2005 | GB |
2399119 | May 2005 | GB |
2399580 | May 2005 | GB |
2401630 | May 2005 | GB |
2401631 | May 2005 | GB |
2401632 | May 2005 | GB |
2401633 | May 2005 | GB |
2401634 | May 2005 | GB |
2401635 | May 2005 | GB |
2401636 | May 2005 | GB |
2401637 | May 2005 | GB |
2401638 | May 2005 | GB |
2401639 | May 2005 | GB |
2408278 | May 2005 | GB |
2399579 | Jun 2005 | GB |
2409216 | Jun 2005 | GB |
2409218 | Jun 2005 | GB |
2401893 | Jul 2005 | GB |
2414749 | Jul 2005 | GB |
2414750 | Jul 2005 | GB |
2414751 | Jul 2005 | GB |
2398362 | Aug 2005 | GB |
2403970 | Aug 2005 | GB |
2403971 | Aug 2005 | GB |
2403972 | Aug 2005 | GB |
2380503 | Oct 2005 | GB |
2382828 | Oct 2005 | GB |
2398317 | Oct 2005 | GB |
2398318 | Oct 2005 | GB |
2398319 | Oct 2005 | GB |
2398321 | Oct 2005 | GB |
2398322 | Oct 2005 | GB |
2412681 | Oct 2005 | GB |
2412682 | Oct 2005 | GB |
2413136 | Oct 2005 | GB |
2414493 | Nov 2005 | GB |
2409217 | Dec 2005 | GB |
2410518 | Dec 2005 | GB |
2415003 | Dec 2005 | GB |
2415219 | Dec 2005 | GB |
2395506 | Jan 2006 | GB |
2412681 | Jan 2006 | GB |
2412682 | Jan 2006 | GB |
2415979 | Jan 2006 | GB |
2415983 | Jan 2006 | GB |
2415987 | Jan 2006 | GB |
2415988 | Jan 2006 | GB |
2416177 | Jan 2006 | GB |
2416361 | Jan 2006 | GB |
2416556 | Feb 2006 | GB |
2416794 | Feb 2006 | GB |
2416795 | Feb 2006 | GB |
2417273 | Feb 2006 | GB |
2417275 | Feb 2006 | GB |
2418216 | Mar 2006 | GB |
2418217 | Mar 2006 | GB |
2418690 | Apr 2006 | GB |
2418941 | Apr 2006 | GB |
2418942 | Apr 2006 | GB |
2418943 | Apr 2006 | GB |
2418944 | Apr 2006 | GB |
2419907 | May 2006 | GB |
2419913 | May 2006 | GB |
2400126 | Jun 2006 | GB |
2414749 | Jun 2006 | GB |
2420810 | Jun 2006 | GB |
2421257 | Jun 2006 | GB |
2421258 | Jun 2006 | GB |
2421259 | Jun 2006 | GB |
2421262 | Jun 2006 | GB |
2421529 | Jun 2006 | GB |
2422164 | Jul 2006 | GB |
2406599 | Aug 2006 | GB |
2418690 | Aug 2006 | GB |
2418944 | Aug 2006 | GB |
2421257 | Aug 2006 | GB |
2421258 | Aug 2006 | GB |
2421259 | Aug 2006 | GB |
2422859 | Aug 2006 | GB |
2422860 | Aug 2006 | GB |
2423317 | Aug 2006 | GB |
2404676 | Sep 2006 | GB |
2414493 | Sep 2006 | GB |
2418941 | Sep 2006 | GB |
2418942 | Sep 2006 | GB |
2418943 | Sep 2006 | GB |
2424077 | Sep 2006 | GB |
2405893 | Oct 2006 | GB |
2417273 | Oct 2006 | GB |
2418216 | Oct 2006 | GB |
2419907 | Oct 2006 | GB |
2422860 | Oct 2006 | GB |
2406125 | Nov 2006 | GB |
2415004 | Dec 2006 | GB |
2422859 | Dec 2006 | GB |
2423317 | Dec 2006 | GB |
2426993 | Dec 2006 | GB |
2427636 | Jan 2007 | GB |
2427885 | Jan 2007 | GB |
2427886 | Jan 2007 | GB |
2408277 | May 2008 | GB |
P01.012.1972005 | Jan 2005 | ID |
044.3922005 | Sep 2005 | ID |
09.046.28042006 | Aug 2006 | ID |
208458 | Oct 1985 | JP |
6475715 | Mar 1989 | JP |
102875 | Apr 1995 | JP |
11-169975 | Jun 1999 | JP |
94068 | Apr 2000 | JP |
107870 | Apr 2000 | JP |
162192 | Jun 2000 | JP |
2001-47161 | Feb 2001 | JP |
9001081 | Dec 1991 | NL |
113267 | May 1998 | RO |
1786241 | Jan 1993 | RU |
1804543 | Mar 1993 | RU |
1810482 | Apr 1993 | RU |
1818459 | May 1993 | RU |
2016345 | Jul 1994 | RU |
1295799 | Feb 1995 | RU |
2039214 | Jul 1995 | RU |
2056201 | Mar 1996 | RU |
2064357 | Jul 1996 | RU |
2068940 | Nov 1996 | RU |
2068943 | Nov 1996 | RU |
2079633 | May 1997 | RU |
2083798 | Jul 1997 | RU |
2091655 | Sep 1997 | RU |
2095179 | Nov 1997 | RU |
2105128 | Feb 1998 | RU |
2108445 | Apr 1998 | RU |
2144128 | Jan 2000 | RU |
350833 | Sep 1972 | SU |
511468 | Sep 1976 | SU |
607950 | May 1978 | SU |
612004 | May 1978 | SU |
620582 | Jul 1978 | SU |
641070 | Jan 1979 | SU |
909114 | May 1979 | SU |
832049 | May 1981 | SU |
853089 | Aug 1981 | SU |
874952 | Oct 1981 | SU |
894169 | Jan 1982 | SU |
899850 | Jan 1982 | SU |
907220 | Feb 1982 | SU |
953172 | Aug 1982 | SU |
959878 | Sep 1982 | SU |
976019 | Nov 1982 | SU |
976020 | Nov 1982 | SU |
989038 | Jan 1983 | SU |
1002514 | Mar 1983 | SU |
1041671 | Sep 1983 | SU |
1051222 | Oct 1983 | SU |
1086118 | Apr 1984 | SU |
1077803 | Jul 1984 | SU |
1158400 | May 1985 | SU |
1212575 | Feb 1986 | SU |
1250637 | Aug 1986 | SU |
1324722 | Jul 1987 | SU |
1411434 | Jul 1988 | SU |
1430498 | Oct 1988 | SU |
1432190 | Oct 1988 | SU |
1601330 | Oct 1990 | SU |
1627663 | Feb 1991 | SU |
1659621 | Jun 1991 | SU |
1663179 | Jul 1991 | SU |
1663180 | Jul 1991 | SU |
1677225 | Sep 1991 | SU |
1677248 | Sep 1991 | SU |
1686123 | Oct 1991 | SU |
1686124 | Oct 1991 | SU |
1686125 | Oct 1991 | SU |
1698413 | Dec 1991 | SU |
1710694 | Feb 1992 | SU |
1730429 | Apr 1992 | SU |
1745873 | Jul 1992 | SU |
1747673 | Jul 1992 | SU |
1749267 | Jul 1992 | SU |
WO8100132 | Jan 1981 | WO |
WO9005598 | Mar 1990 | WO |
WO9201859 | Feb 1992 | WO |
WO9208875 | May 1992 | WO |
WO9325799 | Dec 1993 | WO |
WO9325800 | Dec 1993 | WO |
WO9421887 | Sep 1994 | WO |
WO9425655 | Nov 1994 | WO |
WO9503476 | Feb 1995 | WO |
WO9601937 | Jan 1996 | WO |
WO9621083 | Jul 1996 | WO |
WO9626350 | Aug 1996 | WO |
WO9637681 | Nov 1996 | WO |
WO9706346 | Feb 1997 | WO |
WO9711306 | Mar 1997 | WO |
WO9717524 | May 1997 | WO |
WO9717526 | May 1997 | WO |
WO9717527 | May 1997 | WO |
WO9720130 | Jun 1997 | WO |
WO9721901 | Jun 1997 | WO |
WO9735084 | Sep 1997 | WO |
WO9800626 | Jan 1998 | WO |
WO9807957 | Feb 1998 | WO |
WO9809053 | Mar 1998 | WO |
WO9822690 | May 1998 | WO |
WO9826152 | Jun 1998 | WO |
WO9842947 | Oct 1998 | WO |
WO9849423 | Nov 1998 | WO |
WO9902818 | Jan 1999 | WO |
WO9904135 | Jan 1999 | WO |
WO9906670 | Feb 1999 | WO |
WO9908827 | Feb 1999 | WO |
WO9908828 | Feb 1999 | WO |
WO9918328 | Apr 1999 | WO |
WO9923354 | May 1999 | WO |
WO9925524 | May 1999 | WO |
WO9925951 | May 1999 | WO |
WO9935368 | Jul 1999 | WO |
WO9943923 | Sep 1999 | WO |
WO0001926 | Jan 2000 | WO |
WO0004271 | Jan 2000 | WO |
WO0008301 | Feb 2000 | WO |
WO0026500 | May 2000 | WO |
WO0026501 | May 2000 | WO |
WO0026502 | May 2000 | WO |
WO0031375 | Jun 2000 | WO |
WO0037766 | Jun 2000 | WO |
WO0037767 | Jun 2000 | WO |
WO0037768 | Jun 2000 | WO |
WO0037771 | Jun 2000 | WO |
WO0037772 | Jun 2000 | WO |
WO0039432 | Jul 2000 | WO |
WO0046484 | Aug 2000 | WO |
WO0050727 | Aug 2000 | WO |
WO0050732 | Aug 2000 | WO |
WO0050733 | Aug 2000 | WO |
WO0077431 | Dec 2000 | WO |
WO0104520 | Jan 2001 | WO |
WO0104535 | Jan 2001 | WO |
WO0118354 | Mar 2001 | WO |
WO0121929 | Mar 2001 | WO |
WO0126860 | Apr 2001 | WO |
WO0133037 | May 2001 | WO |
WO0138693 | May 2001 | WO |
WO0160545 | Aug 2001 | WO |
WO0183943 | Nov 2001 | WO |
WO0198623 | Dec 2001 | WO |
WO0201102 | Jan 2002 | WO |
WO0210550 | Feb 2002 | WO |
WO0210551 | Feb 2002 | WO |
WO 0220941 | Mar 2002 | WO |
WO0223007 | Mar 2002 | WO |
WO0225059 | Mar 2002 | WO |
WO0229199 | Apr 2002 | WO |
WO0238343 | May 2002 | WO |
WO0240825 | May 2002 | WO |
WO02053867 | Jul 2002 | WO |
WO02053867 | Jul 2002 | WO |
WO02059456 | Aug 2002 | WO |
WO02066783 | Aug 2002 | WO |
WO02068792 | Sep 2002 | WO |
WO02073000 | Sep 2002 | WO |
WO02075107 | Sep 2002 | WO |
WO02077411 | Oct 2002 | WO |
WO02081863 | Oct 2002 | WO |
WO02081864 | Oct 2002 | WO |
WO02086285 | Oct 2002 | WO |
WO02086286 | Oct 2002 | WO |
WO02090713 | Nov 2002 | WO |
WO02095181 | Nov 2002 | WO |
WO02103150 | Dec 2002 | WO |
WO03004819 | Jan 2003 | WO |
WO03004819 | Jan 2003 | WO |
WO03004820 | Jan 2003 | WO |
WO03004820 | Jan 2003 | WO |
WO03008756 | Jan 2003 | WO |
WO03012255 | Feb 2003 | WO |
WO03016669 | Feb 2003 | WO |
WO03016669 | Feb 2003 | WO |
WO03023178 | Mar 2003 | WO |
WO03023178 | Mar 2003 | WO |
WO03023179 | Mar 2003 | WO |
WO03023179 | Mar 2003 | WO |
WO03029607 | Apr 2003 | WO |
WO03029608 | Apr 2003 | WO |
WO03036018 | May 2003 | WO |
WO03042486 | May 2003 | WO |
WO03042486 | May 2003 | WO |
WO03042487 | May 2003 | WO |
WO03042487 | May 2003 | WO |
WO03042489 | May 2003 | WO |
WO03048520 | Jun 2003 | WO |
WO03048521 | Jun 2003 | WO |
WO03055616 | Jul 2003 | WO |
WO03058022 | Jul 2003 | WO |
WO03058022 | Jul 2003 | WO |
WO03059549 | Jul 2003 | WO |
WO03064813 | Aug 2003 | WO |
WO03069115 | Aug 2003 | WO |
WO03071086 | Aug 2003 | WO |
WO03071086 | Aug 2003 | WO |
WO03078785 | Sep 2003 | WO |
WO03078785 | Sep 2003 | WO |
WO03086675 | Oct 2003 | WO |
WO03086675 | Oct 2003 | WO |
WO03089161 | Oct 2003 | WO |
WO03089161 | Oct 2003 | WO |
WO03093623 | Nov 2003 | WO |
WO03093623 | Nov 2003 | WO |
WO03102365 | Dec 2003 | WO |
WO03104601 | Dec 2003 | WO |
WO03104601 | Dec 2003 | WO |
WO03106130 | Dec 2003 | WO |
WO03106130 | Dec 2003 | WO |
WO2004003337 | Jan 2004 | WO |
WO2004009950 | Jan 2004 | WO |
WO2004010039 | Jan 2004 | WO |
WO2004010039 | Jan 2004 | WO |
WO2004011776 | Feb 2004 | WO |
WO2004011776 | Feb 2004 | WO |
WO2004018823 | Mar 2004 | WO |
WO2004018823 | Mar 2004 | WO |
WO2004018824 | Mar 2004 | WO |
WO2004018824 | Mar 2004 | WO |
WO2004020895 | Mar 2004 | WO |
WO2004020895 | Mar 2004 | WO |
WO2004023014 | Mar 2004 | WO |
WO2004023014 | Mar 2004 | WO |
WO2004026017 | Apr 2004 | WO |
WO2004026017 | Apr 2004 | WO |
WO2004026073 | Apr 2004 | WO |
WO2004026073 | Apr 2004 | WO |
WO2004026500 | Apr 2004 | WO |
WO2004026500 | Apr 2004 | WO |
WO2004027200 | Apr 2004 | WO |
WO2004027200 | Apr 2004 | WO |
WO2004027204 | Apr 2004 | WO |
WO2004027204 | Apr 2004 | WO |
WO2004027205 | Apr 2004 | WO |
WO2004027205 | Apr 2004 | WO |
WO2004027392 | Apr 2004 | WO |
WO2004027786 | Apr 2004 | WO |
WO2004027786 | Apr 2004 | WO |
WO2004053434 | Jun 2004 | WO |
WO2004053434 | Jun 2004 | WO |
WO2004057715 | Jul 2004 | WO |
WO2004057715 | Jul 2004 | WO |
WO2004067961 | Aug 2004 | WO |
WO2004067961 | Aug 2004 | WO |
WO2004072436 | Aug 2004 | WO |
WO2004074622 | Sep 2004 | WO |
WO2004074622 | Sep 2004 | WO |
WO2004076798 | Sep 2004 | WO |
WO2004076798 | Sep 2004 | WO |
WO2004081436 | Sep 2004 | WO |
WO2004083591 | Sep 2004 | WO |
WO2004083591 | Sep 2004 | WO |
WO2004083592 | Sep 2004 | WO |
WO2004083592 | Sep 2004 | WO |
WO2004083593 | Sep 2004 | WO |
WO2004083594 | Sep 2004 | WO |
WO2004083594 | Sep 2004 | WO |
WO2004085790 | Oct 2004 | WO |
WO2004089608 | Oct 2004 | WO |
WO2004089608 | Oct 2004 | WO |
WO2004092527 | Oct 2004 | WO |
WO2004092528 | Oct 2004 | WO |
WO2004092528 | Oct 2004 | WO |
WO2004092530 | Oct 2004 | WO |
WO2004092530 | Oct 2004 | WO |
WO2004094766 | Nov 2004 | WO |
WO2004094766 | Nov 2004 | WO |
WO2005017303 | Feb 2005 | WO |
WO2005021921 | Mar 2005 | WO |
WO2005021921 | Mar 2005 | WO |
WO2005021922 | Mar 2005 | WO |
WO2005021922 | Mar 2005 | WO |
WO2005024141 | Mar 2005 | WO |
WO2005024170 | Mar 2005 | WO |
WO2005024170 | Mar 2005 | WO |
WO2005024171 | Mar 2005 | WO |
WO2005028803 | Mar 2005 | WO |
WO2005071212 | Apr 2005 | WO |
WO2005079186 | Sep 2005 | WO |
WO2005079186 | Sep 2005 | WO |
WO2005081803 | Sep 2005 | WO |
WO2005086614 | Sep 2005 | WO |
WO2006014333 | Feb 2006 | WO |
WO2006020723 | Feb 2006 | WO |
WO2006020726 | Feb 2006 | WO |
WO2006020734 | Feb 2006 | WO |
WO2006020809 | Feb 2006 | WO |
WO2006020810 | Feb 2006 | WO |
WO2006020827 | Feb 2006 | WO |
WO2006020827 | Feb 2006 | WO |
WO2006020913 | Feb 2006 | WO |
WO2006020913 | Feb 2006 | WO |
WO2006020960 | Feb 2006 | WO |
WO2006033720 | Mar 2006 | WO |
WO2006060387 | Jun 2006 | WO |
WO2006079072 | Jul 2006 | WO |
WO2006020810 | Aug 2006 | WO |
WO2006088743 | Aug 2006 | WO |
WO2006102171 | Sep 2006 | WO |
WO2006102556 | Sep 2006 | WO |
WO2006020734 | Nov 2006 | WO |
WO2006020810 | Nov 2006 | WO |
WO2007014339 | Feb 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20050161228 A1 | Jul 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10418687 | Apr 2003 | US |
Child | 11084788 | US |