The present disclosure relates generally to oil and gas exploration, and in particular to forming and repairing wellbore casings to facilitate oil and gas exploration.
a is a cross-sectional illustration of the assembly of
b is a cross-sectional illustration of the assembly of
Referring to
An end of a tubular support 16 that defines an internal passage 16a and radial passages, 16b and 16c, and includes an external annular recess 16d, an external flange 16e, and an internal flange 16f is coupled to the other end of the tubular support 12. A tubular expansion cone 18 that includes a tapered external expansion surface 18a is received within and is coupled to the external annular recess 16d of the tubular support 16 and an end of the tubular expansion cone abuts an end face of the external sleeve 16e of the tubular support.
A threaded connection 20a of an end of a tubular support 20 that defines an internal passage 20b and radial passages, 20c and 20d, and includes a threaded connection 20e, an external flange 20f, and internal splines 20g at another end is coupled to the threaded connection 12c of the other end of the tubular support 12. In an exemplary embodiment, the external flange 20f of the tubular support 20 abuts the internal flange 16f of the tubular support 16. Rupture discs, 22a and 22b, are received and mounted within the radial passages, 20c and 20d, respectively, of the tubular support 20.
A threaded connection 24a of an end of a tubular stinger 24 that defines an internal passage 24b and includes an external annular recess 24c and an external flange 24d at another end is coupled to the threaded connection 20e of the tubular support 20. An expandable tubular member 26 that defines an internal passage 26a for receiving the tubular supports 12, 14, 16, and 20 mates with and is supported by the external expansion surface 18a of the tubular expansion cone 18 that includes an upper portion 26b having a smaller inside diameter and a lower portion 26c having a larger inside diameter and a threaded connection 26d.
A threaded connection 28a of a shoe 28 that defines internal passages, 28b, 28c, 28d, 28e, and 28f, and includes another threaded connection 28g is coupled to the threaded connection 26d of the lower portion 26c of the expandable tubular member 26. A conventional one-way poppet valve 30 is movably coupled to the shoe 28 and includes a valve element 30a for controllably sealing an opening of the internal passage 28c of the shoe. In an exemplary embodiment, the one-way poppet valve 30 only permits fluidic materials to be exhausted from the apparatus 10.
A threaded connection 32a at an end of a tubular body 32 that defines an internal passage 32b, having a plug valve seat 32ba, upper flow ports, 32c and 32d, and lower flow ports, 32e and 32f, and includes an external flange 32g for sealingly engaging the interior surface of the expandable tubular member 26, external splines 32h for mating with and engaging the internal splines 20g of the tubular support 20, and an internal annular recess 32i is coupled to the threaded connection 28g of the shoe 28. Another end of the tubular body 32 is received within an annulus defined between the interior surface of the other end of the tubular support 20 and the exterior surface of the tubular stinger 24, and sealingly engages the interior surface of the tubular support 20.
A sliding sleeve valve 34 is movably received and supported within the internal passage 32b of the tubular body 32 that defines an internal passage 34a and radial passages, 34b and 34c, and includes collet fingers 34d at one end positioned within the annular recess 32i of the tubular body for releasably engaging the external flange 24d of the tubular stinger 24. The sliding sleeve valve 34 sealingly engages the internal surface of the internal passage 32b of the tubular body 32, and blocks the upper flow ports, 32c and 32d, of the tubular body. A valve guide pin 33 is coupled to the tubular body 32 for engaging the collet fingers 34d of the sliding sleeve valve 34 and thereby guiding and limiting the movement of the sliding sleeve valve.
During operation, as illustrated in
In an exemplary embodiment, as illustrated in
During the continued upward displacement of the tubular support 12, tubular support 14, tubular support 16, tubular expansion cone 18, tubular support 20, and tubular stinger 24 in the direction 44 relative to the expandable tubular member 26, shoe 28, tubular body 32, and sliding sleeve valve 34, the upward movement of the sliding sleeve valve is prevented by the operation of the valve guide pin 33. Consequently, at some point, the collet fingers 34d of the sliding sleeve valve 34 disengage from the external flange 24d of the tubular stinger 24.
In an exemplary embodiment, as illustrated in
Referring to
An end of a tubular support 116 that defines an internal passage 116a and radial passages, 116b and 116c, and includes an external annular recess 116d, an external flange 116e, and an internal flange 116f is coupled to the other end of the tubular support 112. A tubular expansion cone 118 that includes a tapered external expansion surface 118a is received within and is coupled to the external annular recess 116d of the tubular support 116 and an end of the tubular expansion cone abuts an end face of the external sleeve 116e of the tubular support.
A threaded connection 120a of an end of a tubular support 120 that defines an internal passage 120b and radial passages, 120c and 120d, and includes a threaded connection 120e, an external flange 120f, and internal splines 120g at another end is coupled to the threaded connection 112c of the other end of the tubular support 112. In an exemplary embodiment, the external flange 120f of the tubular support 120 abuts the internal flange 116f of the tubular support 116. Rupture discs, 122a and 122b, are received and mounted within the radial passages, 120c and 120d, respectively, of the tubular support 120.
A threaded connection 124a of an end of a tubular stinger 124 that defines an internal passage 124b and includes an external annular recess 124c and an external flange 124d at another end is coupled to the threaded connection 120e of the tubular support 120. An expandable tubular member 126 that defines an internal passage 126a for receiving the tubular supports 112, 114, 116, and 120 mates with and is supported by the external expansion surface 118a of the tubular expansion cone 118 that includes an upper portion 126b having a smaller inside diameter and a lower portion 126c having a larger inside diameter and a threaded connection 126d.
A threaded connection 128a of a shoe 128 that defines internal passages, 128b, 128c, 128d, 128e, and 128f, and includes another threaded connection 128g is coupled to the threaded connection 126d of the lower portion 126c of the expandable tubular member 126. Pins, 129a and 129b, coupled to the shoe 128 and the lower portion 126c of the expandable tubular member 126 prevent disengagement of the threaded connections, 126d and 128a, of the expandable tubular member and shoe. A conventional one-way poppet valve 130 is movably coupled to the shoe 128 and includes a valve element 130a for controllably sealing an opening of the internal passage 128c of the shoe. In an exemplary embodiment, the one-way poppet valve 130 only permits fluidic materials to be exhausted from the apparatus 100.
A threaded connection 132a at an end of a tubular body 132 that defines an internal passage 132b, having a plug valve seat 132ba, upper flow ports, 132c and 132d, and lower flow ports, 132e and 132f, and includes an external flange 132g for sealingly engaging the interior surface of the expandable tubular member 126, external splines 132h for mating with and engaging the internal splines 120g of the tubular support 120, and an internal annular recess 132i is coupled to the threaded connection 128g of the shoe 128. Another end of the tubular body 132 is received within an annulus defined between the interior surface of the other end of the tubular support 120 and the exterior surface of the tubular stinger 124, and sealingly engages the interior surface of the tubular support 120. An annular passage 133 is further defined between the interior surface of the other end of the tubular body 132 and the exterior surface of the tubular stinger 124.
A sliding sleeve valve 134 is movably received and supported within the internal passage 132b of the tubular body 132 that defines an internal passage 134a and radial passages, 134b and 134c, and includes collet fingers 134d at one end positioned within the annular recess 132i of the tubular body for releasably engaging the external flange 124d of the tubular stinger 124. The sliding sleeve valve 134 sealingly engages the internal surface of the internal passage 132b of the tubular body 132, and blocks the upper flow ports, 132c and 132d, of the tubular body. A valve guide pin 135 is coupled to the tubular body 132 for engaging the collet fingers 134d of the sliding sleeve valve 134 and thereby guiding and limiting the movement of the sliding sleeve valve.
During operation, as illustrated in
In an exemplary embodiment, as illustrated in
During the continued upward displacement of the tubular support 112, tubular support 114, tubular support 116, tubular expansion cone 118, tubular support 120, and tubular stinger 124 in the direction 144 relative to the expandable tubular member 126, shoe 128, tubular body 132, and sliding sleeve valve 134, the upward movement of the sliding sleeve valve is prevented by the operation of the valve guide pin 135. Consequently, at some point, the collet fingers 134d of the sliding sleeve valve 134 disengage from the external flange 124d of the tubular stinger 124.
In an exemplary embodiment, as illustrated in
Referring to
An end of a tubular support 216 that defines an internal passage 216a and radial passages, 216b and 216c, and includes an external annular recess 216d, an external flange 216e, and an internal flange 216f is coupled to the other end of the tubular support 212. A tubular expansion cone 218 that includes a tapered external expansion surface 218a is received within and is coupled to the external annular recess 216d of the tubular support 216 and an end of the tubular expansion cone abuts an end face of the external sleeve 216e of the tubular support.
A threaded connection 220a of an end of a tubular support 220 that defines an internal passage 220b and radial passages, 220c and 220d, and includes a threaded connection 220e, an external flange 220f, and internal splines 220g at another end is coupled to the threaded connection 212c of the other end of the tubular support 212. In an exemplary embodiment, the external flange 220f of the tubular support 220 abuts the internal flange 216f of the tubular support 216. Rupture discs, 222a and 222b, are received and mounted within the radial passages, 220c and 220d, respectively, of the tubular support 220.
A threaded connection 224a of an end of a tubular stinger 224 that defines an internal passage 224b and includes an external annular recess 224c and an external flange 224d at another end is coupled to the threaded connection 220e of the tubular support 220. An expandable tubular member 226 that defines an internal passage 226a for receiving the tubular supports 212, 214, 216, and 220 mates with and is supported by the external expansion surface 218a of the tubular expansion cone 218 that includes an upper portion 226b having a smaller inside diameter and a lower portion 226c having a larger inside diameter and a threaded connection 226d.
A threaded connection 228a of a shoe 228 that defines internal passages, 228b, 228c, and 228d, and includes a threaded connection 228e at one end and a threaded connection 228f at another end is coupled to the threaded connection 226d of the lower portion 226c of the expandable tubular member 226. Pins, 230a and 230b, coupled to the shoe 228 and the lower portion 226c of the expandable tubular member 226 prevent disengagement of the threaded connections, 226d and 228a, of the expandable tubular member and shoe. A threaded connection 232a of a shoe insert 232 that defines internal passages 232b and 232c is coupled to the threaded connection 228f of the shoe 228. In an exemplary embodiment, the shoe 228 and/or the shoe insert 232 are fabricated from composite materials in order to reduce the weight and cost of the components.
A conventional one-way poppet valve 234 is movably coupled to the shoe 228 and includes a valve element 234a for controllably sealing an opening of the internal passage 228c of the shoe. In an exemplary embodiment, the one-way poppet valve 234 only permits fluidic materials to be exhausted from the apparatus 200.
A threaded end 236a of a tubular plug seat 236 that defines an internal passage 236b having a plug seat 236ba and lower flow ports, 236c and 236d, is coupled to the threaded connection 228e of the shoe 228. In an exemplary embodiment, the tubular plug seat 236 is fabricated from aluminum in order to reduce weight and cost of the component. A tubular body 238 defines an internal passage 238a, lower flow ports, 238b and 238c, and upper flow ports, 238d and 238e, and includes an internal annular recess 238f at one end that mates with and receives the other end of the tubular plug seat 236, and an internal annular recess 238g and an external flange 238h for sealingly engaging the interior surface of the expandable tubular member 226 at another end. In an exemplary embodiment, the tubular body 238 is fabricated from a composite material in order to reduce weight and cost of the component.
In an exemplary embodiment, as illustrated in
One or more retaining pins 240 couple the other end of the tubular plug seat 236 to the internal annular recess 238f of the tubular body.
An end of a sealing sleeve 242 that defines an internal passage 242a and upper flow ports, 242b and 242c, and includes external splines 242d that mate with and receive the internal splines 220g of the tubular support 220 and an internal annular recess 242e is received within and mates with the internal annular recess 238g at the other end of the tubular body. The other end of the sealing sleeve 242 is received within an annulus defined between the interior surface of the other end of the tubular support 220 and the exterior surface of the tubular stinger 224, and sealingly engages the interior surface of the other end of the tubular support 220. In an exemplary embodiment, the sealing sleeve 242 is fabricated from aluminum in order to reduce weight and cost of the component. One or more retaining pins 243 coupled the end of the sealing sleeve 242 to the internal annular recess 238g at the other end of the tubular body 238. An annular passage 244 is further defined between the interior surface of the other end of the tubular body sealing sleeve 242 and the exterior surface of the tubular stinger 224.
A sliding sleeve valve 246 is movably received and supported within the internal passage 242a of the sealing sleeve 242 that defines an internal passage 246a and radial passages, 246b and 246c, and includes collet fingers 246d at one end positioned within the annular recess 242e of the sealing sleeve for releasably engaging the external flange 224d of the tubular stinger 224. The sliding sleeve valve 246 sealingly engages the internal surface of the internal passage 242a of the sealing sleeve 242, and blocks the upper flow ports, 242b and 242c and 238d and 238e, of the sealing sleeve and the tubular body, respectively. A valve guide pin 248 is coupled to the sealing sleeve 242 for engaging the collet fingers 246d of the sliding sleeve valve 246 and thereby guiding and limiting the movement of the sliding sleeve valve.
During operation, as illustrated in
In an exemplary embodiment, as illustrated in
During the continued upward displacement of the tubular support 212, tubular support 214, tubular support 216, tubular expansion cone 218, tubular support 220, and tubular stinger 224 in the direction 254 relative to the expandable tubular member 226, shoe 228, shoe insert 232, tubular plug seat 236, tubular body 238, sealing sleeve 242, and sliding sleeve valve 236, the upward movement of the sliding sleeve valve is prevented by the operation of the valve guide pin 248. Consequently, at some point, the collet fingers 246d of the sliding sleeve valve 246 disengage from the external flange 224d of the tubular stinger 224.
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, as illustrated in
A sliding sleeve 284 that defines a longitudinally-extending internal passage 284a and a plurality of generally circumferentially-spaced flow ports 284ba, 284bb, 284bc and 284bd, and includes longitudinally-extending channels 284ca and 284cb, generally circumferentially-spaced bores 284da, 284db, 284dc and 284dd, axially-spaced sealing elements 284ea, 284eb, 284ec, 284ed, 284ee and 284ef, and a plug seat 284f, is received within the passage 282a, sealingly engaging the interior surface of the tubular support 282. In an exemplary embodiment, each of the sealing elements 284ea, 284eb, 284ec, 284ed, 284ee and 284ef is an o-ring that extends in an annular channel formed in the exterior surface of the sliding sleeve 284. The sliding sleeve 284 is adapted to move relative to, and slide against the interior surface of, the tubular support 282 under conditions to be described.
Circumferentially-spaced pins 286a, 286b, 286c and 286d extend through the tubular support 282 and into the bores 284da, 284db, 284dc and 284dd, respectively, thereby locking the position of the sliding sleeve 284 relative to the tubular support 282. Protrusions such as, for example, fasteners 288a and 288b, extend through the counterbores 282ha and 282hb, respectively, of the tubular support 282 and into the channels 284ca and 284cb, respectively, to guide and limit the movement of the sliding sleeve 284 relative to the tubular support 282. Moreover, the pins 286a, 286b, 286c and 286d, and the fasteners 288a and 288b, are adapted to prevent the sliding sleeve 284 from rotating about its longitudinal axis, relative to the tubular support 282.
A one-way poppet valve 290 is coupled to the tubular support 282 and includes a movable valve element 290a for controllably sealing an opening of the internal passage 282a of the tubular support 282. In an exemplary embodiment, the one-way poppet valve 290 only permits fluidic materials to flow through the internal passage 282a of the tubular support 282 in one direction. In an exemplary embodiment, the one-way poppet valve 290 only permits fluidic materials to flow through the internal passage 282a of the tubular support 282 in the downward direction as viewed in
An internal threaded connection 292a of an outer sleeve 292 that defines an internal passage 292b through which the tubular support 282 extends and includes an internal annular recess 292c, is coupled to the external threaded connection 282d of the tubular support 282. As a result, the tubular support 282 is coupled to the outer sleeve 292, with the sealing elements 282ia and 282ib sealingly engaging the interior surface of the outer sleeve 292 above the internal annular recess 292c, and the sealing elements 282ic and 282id sealingly engaging the interior surface of the outer sleeve 292 below the internal annular recess 292c. An annular region 294 is defined between the exterior surface of the tubular support 282 and the interior surface of the outer sleeve 292 defined by the internal annular recess 292c.
Referring to
An end of a tubular support 316 that defines an internal passage 316a and radial passages, 316b and 316c, and includes an external annular recess 316d, an external sleeve 316e, and an internal flange 316f is coupled to the other end of the tubular support 312. A tubular expansion cone 318 that includes a tapered external expansion surface 318a is received within and is coupled to the external annular recess 316d of the tubular support 316 and an end of the tubular expansion cone 318 abuts an end face of the external sleeve 316e of the tubular support 316.
A threaded connection 320a of an end of a tubular support 320 that defines an internal passage 320b having an enlarged-inside-diameter portion 320ba, defines radial passages, 320c and 320d, and includes an external flange 320e, and internal splines 320f at another end is coupled to the threaded connection 312c of the other end of the tubular support 312. In an exemplary embodiment, the external flange 320e of the tubular support 320 abuts the internal flange 316f of the tubular support 316. Rupture discs, 322a and 322b, are received and mounted within the radial passages, 320c and 320d, respectively, of the tubular support 320.
An end of a tubular support 324 defining an internal passage 324a and including an external flange 324b, an external threaded connection 324c at another end, and external splines 324d for mating with and engaging the internal splines 320f of the tubular support 320, extends within the enlarged-inside-diameter portion 320ba of the passage 320b of the tubular support 320, and sealingly engages an interior surface of the tubular support 320. The external threaded connection 324c of the tubular support 324 is coupled to the internal threaded connection 282b of the tubular support 282 of the flow control device 280 so that the other end of the tubular support 324 extends within the internal passage 282a of the tubular support 282. In an exemplary embodiment, the other end of the tubular support 324 is proximate an end of the sliding sleeve 284 of the flow control device 280. In an exemplary embodiment, the other end of the tubular support 324 abuts the end of the sliding sleeve 284 of the flow control device 280.
An expandable tubular member 326 that defines an internal passage 326a for receiving the tubular supports 312, 314, 316, and 320 mates with and is supported by the external expansion surface 318a of the tubular expansion cone 318 that includes an upper portion 326b having a smaller inside diameter and a lower portion 326c having a larger inside diameter and a threaded connection 326d.
A ring 327 through which the other end of the tubular support 324 extends abuts, and is disposed between, the external flange 324b of the tubular support 324 and the end of the tubular support 282 of the flow control device 280 proximate the internal threaded connection 282b. The ring 327 sealingly engages an exterior surface of the tubular support 324 and an interior surface of the expandable tubular member 326.
The external threaded connection 282c of the tubular support 282 of the flow control device 282 is coupled to an internal threaded connection 328a of a shoe 328 that defines internal passages, 328b, 328c, 328d, 328e, 328f, and 328g, and includes another threaded connection 328h that is coupled to the threaded connection 326d of the lower portion 326c of the expandable tubular member 326. As a result, the flow control device 282 is coupled to and extends between the tubular support 324 and the shoe 328. In an exemplary embodiment, the one-way poppet valve 290 of the flow control device 280 only permits fluidic materials to be exhausted from the apparatus 300.
During operation, in an exemplary embodiment, as illustrated in
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, as illustrated in
Continued injection of the fluidic materials 330 into the apparatus, following the general prevention of further axial movement of the sliding sleeve 284 relative to the tubular support 282, continues to pressurize the passages 314a, 320b and 324a, thereby causing the rupture discs 322a and 322b to be ruptured, thereby opening the passages 320c and 320d of the tubular support 320. As a result, the fluidic materials 330 are then conveyed through the passages 320c and 320d, and the passages 316b and 316c, thereby pressurizing a region within the apparatus 300 below the tubular expansion cone 318. As a result, the tubular support 312, the tubular support 314, the tubular support 316, the tubular expansion cone 318 and the tubular support 320 are displaced upwardly in a direction 334, relative to the tubular support 324, the expandable tubular member 326, the ring 327, the shoe 328 and the flow control device 280, thereby radially expanding and plastically deforming the expandable tubular member 326.
In an exemplary embodiment, with continuing reference to
Referring to
An end of a tubular support 416 that defines an internal passage 416a and radial passages, 416b and 416c, and includes an external annular recess 416d, an external sleeve 416e, and an internal flange 416f is coupled to the other end of the tubular support 412. A tubular expansion cone 418 that includes a tapered external expansion surface 418a is received within and is coupled to the external annular recess 416d of the tubular support 416 and an end of the tubular expansion cone 418 abuts an end face of the external sleeve 416e of the tubular support 416.
A threaded connection 420a of an end of a tubular support 420 that defines an internal passage 420b having an enlarged-inside-diameter portion 420ba, defines radial passages, 420c and 420d, and includes an external flange 420e, and internal splines 420f at another end is coupled to the threaded connection 412c of the other end of the tubular support 412. In an exemplary embodiment, the external flange 420e of the tubular support 420 abuts the internal flange 416f of the tubular support 416. Rupture discs, 422a and 422b, are received and mounted within the radial passages, 420c and 420d, respectively, of the tubular support 420.
An end of a tubular support 424 defining an internal passage 424a and including an external flange 424b, an external threaded connection 424c at another end, and external splines 424d for mating with and engaging the internal splines 420f of the tubular support 420, extends within the enlarged-inside-diameter portion 420ba of the passage 420b of the tubular support 420, and sealingly engages an interior surface of the tubular support 420.
A flow control device 426 is coupled to the tubular support 424. More particularly, an internal threaded connection 428a at one end of a tubular support 428 of the flow control device 426 defining an internal passage 428b, a plurality of circumferentially-spaced flow ports 428ca and 428cb at one axial location therealong, and a plurality of circumferentially-spaced flow ports 428da, 428db and 428dc at another axial location therealong, and including an external threaded connection 428e at another end thereof, and an internal shoulder 428f, is coupled to the external threaded connection 424c of the tubular support 424 so that the other end of the tubular support 424 extends within the internal passage 428b of the tubular support 428.
The flow control device 426 further includes a sliding sleeve 430 defining a longitudinally-extending internal passage 430a and a plurality of circumferentially-spaced flow ports 430ba and 430bb, and including generally circumferentially-spaced bores 430ca and 430cb, axially-spaced sealing elements 430da, 430db and 430dc, and a plug seat 430e. The sliding sleeve 430 is received within the internal passage 428b of the tubular support 428, sealingly engaging the interior surface of the tubular support 428. In an exemplary embodiment, each of the sealing elements 430da, 430db and 430dc is an o-ring that extends within an annular channel formed in the exterior surface of the sliding sleeve 430. The sliding sleeve 430 is adapted to move relative to, and slide against the interior surface of, the tubular support 428 under conditions to be described.
Circumferentially-spaced pins 432a and 432b extend through the tubular support 428 and into the bores 430ca and 430cb, respectively, thereby locking the position of the sliding sleeve 430 relative to the tubular support 428 and preventing rotation of the sliding sleeve 430 relative to the tubular support 428.
A one-way poppet valve 434 is coupled to the tubular support 428 and includes a movable valve element 434a for controllably sealing an opening of the internal passage 428b of the tubular support 428. In an exemplary embodiment, the one-way poppet valve 434 only permits fluidic materials to flow through the internal passage 428b of the tubular support 428 in one direction. In an exemplary embodiment, the one-way poppet valve 434 only permits fluidic materials to flow through the internal passage 428b of the tubular support 428 in the downward direction as viewed in
As noted above, the internal threaded connection 428a at one end of a tubular support 428 is coupled to the external threaded connection 424c of the tubular support 424 so that the other end of the tubular support 424 extends within the internal passage 428b of the tubular support 428. In an exemplary embodiment, the other end of the tubular support 424 is proximate an end of the sliding sleeve 430 of the flow control device 426. In an exemplary embodiment, the other end of the tubular support 424 abuts the end of the sliding sleeve 430 of the flow control device 426.
An expandable tubular member 436 that defines an internal passage 436a for receiving the tubular supports 412, 414, 416, and 420 mates with and is supported by the external expansion surface 418a of the tubular expansion cone 418 that includes an upper portion 436b having a smaller inside diameter and a lower portion 436c having a larger inside diameter and an internal threaded connection 436d.
A ring 438 through which the other end of the tubular support 424 extends abuts, and is disposed between, the external flange 424b of the tubular support 424 and the end of the tubular support 428 of the flow control device 426 proximate the internal threaded connection 428a. The ring 428 sealingly engages an exterior surface of the tubular support 424 and an interior surface of the expandable tubular member 436.
The external threaded connection 428e of the tubular support 428 of the flow control device 426 is coupled to an internal threaded connection 440a of a shoe 440 that defines internal passages, 440b, 440c, 440d, 440e, 440f, and 440g, and includes another threaded connection 440h that is coupled to the internal threaded connection 436d of the lower portion 436c of the expandable tubular member 436. As a result, the flow control device 426 is coupled to and extends between the tubular support 424 and the shoe 440. In an exemplary embodiment, the one-way poppet valve 434 of the flow control device 426 only permits fluidic materials to be exhausted from the apparatus 400.
An annular region 442 is radially defined between the exterior surface of the tubular support 428 of the flow control device 426 and the interior surface of the expandable tubular member 436, and is axially defined between the shoe 440 and the ring 438.
During operation, in an exemplary embodiment, as illustrated in
In an exemplary embodiment, as illustrated in
In an exemplary embodiment, as illustrated in
Continued injection of the fluidic materials 444 into the apparatus 400, following the general prevention of further axial movement of the sliding sleeve 430 relative to the tubular support 428 continues to pressurize the passages 414a, 420b and 424a, thereby causing the rupture discs 422a and 422b to be ruptured, thereby opening the passages 420c and 420d of the tubular support 420. As a result, the fluidic materials 444 are then conveyed through the passages 420c and 420d, and the passages 416b and 416c, thereby pressurizing a region within the apparatus 400 below the tubular expansion cone 418. As a result, the tubular support 412, the tubular support 414, the tubular support 416, the tubular expansion cone 418 and the tubular support 420 are displaced upwardly in a direction 448, relative to the tubular support 424, the expandable tubular member 436, the ring 438, the shoe 440 and the flow control device 426, thereby radially expanding and plastically deforming the expandable tubular member 436.
In an exemplary embodiment, with continuing reference to
In several exemplary embodiments, instead of, or in addition to the above-described methods, apparatuses and/or systems for radially expanding and plastically deforming an expandable tubular member, it is understood that the expandable tubular members 26, 126, 226, 326 and/or 436 may be radially expanded and plastically deformed using one or more other methods, apparatuses and/or systems, and/or any combination thereof. In several exemplary embodiments, instead of, or in addition to the above-described methods, apparatuses and/or systems for radially expanding and plastically deforming an expandable tubular member, the flow control devices 280 and/or 426 may be used with one or more other methods, apparatuses and/or systems for radially expanding and plastically deforming an expandable tubular member, and/or any combination thereof, and/or may be used with one or more other flow control methods, apparatuses and/or systems, and/or any combination thereof, in one or more other flow control applications.
An apparatus has been described that includes a flow control device comprising a tubular support defining a first internal passage and comprising one or more first flow ports; a sliding sleeve at least partially received within the first internal passage and sealingly engaging the tubular support, the sliding sleeve defining a second internal passage into which fluidic materials are adapted to be injected, the sliding sleeve comprising one or more second flow ports; a first position in which the first flow ports are aligned with respective ones of the second flow ports; and a second position in which the first flow ports are not aligned with the respective ones of the second flow ports. In an exemplary embodiment, the flow control device further comprises one or more pins extending into the sliding sleeve; wherein, when the sliding sleeve is in the first position, the one or more pins extend from the tubular support and into the sliding sleeve to maintain the sliding sleeve in the first position; and wherein, when the sliding sleeve is in the second position, the one or more pins are sheared to permit the sliding sleeve to move between the first and second positions. In an exemplary embodiment, the flow control device further comprises a valve coupled to the tubular support, the valve comprising a movable valve element for controllably sealing an opening of the first internal passage of the tubular support. In an exemplary embodiment, the apparatus comprises a plug valve element adapted to be seated in the second internal passage of the sliding sleeve of the flow control device. In an exemplary embodiment, the flow control device further comprises a plurality of axially-spaced sealing elements coupled to the sliding sleeve and sealingly engaging the tubular support; and wherein the second flow ports are axially positioned between two of the sealing elements. In an exemplary embodiment, the tubular support further comprises one or more third flow ports axially spaced from the one or more first flow ports. In an exemplary embodiment, the fluid control device further comprises an outer sleeve coupled to the tubular support so that an annular region is defined between the tubular support and the outer sleeve; wherein, when the sliding sleeve is in the first position, the annular region is fluidicly coupled to the second internal passage of the sliding sleeve via the first flow ports and the second flow ports aligned therewith, respectively; and wherein, when the sliding sleeve is in the second position, the annular region is fluidicly isolated from the second internal passage of the sliding sleeve. In an exemplary embodiment, the tubular support further comprises one or more third flow ports axially spaced from the one or more first flow ports; wherein, when the sliding sleeve is in the first position, a portion of the first internal passage of the tubular support is defined by the sliding sleeve; wherein, when the sliding sleeve is in the first position, the annular region is fluidicly coupled to the portion of the first internal passage via the one or more third flow ports; and wherein, when the sliding sleeve is in the second position, the annular region is fluidicly isolated from the portion of the first internal passage. In an exemplary embodiment, the sliding sleeve comprises one or more longitudinally-extending channels; and wherein the fluid control device further comprises one or more protrusions extending from the tubular support and into respective ones of the channels. In an exemplary embodiment, the apparatus comprises a support member coupled to the fluid control device and defining one or more radial passages; an expansion device coupled to the support member and comprising an external expansion surface; one or more rupture discs coupled to and positioned within corresponding radial passages of the support member; an expandable tubular member coupled to the expansion surface of the expansion device, the expandable tubular member comprising a first portion and a second portion, wherein the inside diameter of the first portion is less than the inside diameter of the second portion; and a shoe defining one or more internal passages coupled to the second portion of the expandable tubular member and to the fluid control device.
A method has been described that includes injecting fluidic materials into a sliding sleeve at least partially received within a tubular support, the tubular support defining an internal passage, a portion of which is at least partially defined by the sliding sleeve; conveying the fluidic materials out of the sliding sleeve and the tubular support; and conveying the fluidic materials into the portion of the internal passage of the tubular support at least partially defined by the sliding sleeve after conveying the fluidic materials out of the sliding sleeve and the tubular support. In an exemplary embodiment, the sliding sleeve comprises one or more first flow ports and the tubular support comprises one or more second flow ports; and wherein conveying the fluidic materials out of the sliding sleeve and the tubular support comprises aligning the one or more first flow ports of the sliding sleeve with respective ones of the one or more second flow ports of the tubular support; and conveying the fluidic materials through the one or more first flow ports and the one or more second flow ports aligned therewith, respectively. In an exemplary embodiment, the method further comprises blocking the flow of fluidic materials through the one or more first flow ports and the one or more second flow ports aligned therewith, respectively. In an exemplary embodiment, the method comprises blocking the flow of fluidic materials through the one or more first flow ports and the one or more second flow ports aligned therewith, respectively, comprises injecting a plug valve element into the sliding sleeve; and causing the plug valve element and the sliding sleeve to move axially in a direction, relative to the tubular support. In an exemplary embodiment, the method further comprises guiding the axial movement of the sliding sleeve, relative to the tubular support, during causing the plug valve element and the sliding sleeve to move axially in the direction, relative to the tubular support. In an exemplary embodiment, the method further comprises preventing any further axial movement of the sliding sleeve in the direction after causing the plug valve element and the sliding sleeve to move axially in the direction, relative to the tubular support. In an exemplary embodiment, the method further comprises locking the sliding sleeve to the tubular support; and unlocking the sliding sleeve from the tubular support. In an exemplary embodiment, locking the sliding sleeve to the tubular support comprises extending one or more pins from the tubular support and into the sliding sleeve; and wherein unlocking the sliding sleeve from the tubular support comprises shearing the one or more pins extending from the tubular support and into the sliding sleeve in response to causing the plug valve element and the sliding sleeve to move axially in the direction, relative to the tubular support. In an exemplary embodiment, the method further comprises fluidicly isolating the internal passage of the sliding sleeve from the portion of the internal passage of the tubular support at least partially defined by the sliding sleeve. In an exemplary embodiment, the method further comprises generally preventing relative rotation between the sliding sleeve and the tubular support. In an exemplary embodiment, an outer sleeve is coupled to the tubular support and an annular region is defined between the tubular support and the outer sleeve; wherein conveying the fluidic materials out of the sliding sleeve and the tubular support comprises conveying the fluidic materials out of the sliding sleeve and the tubular support and into the annular region defined between the tubular support and the outer sleeve; and wherein conveying the fluidic materials into the portion of the internal passage of the tubular support at least partially defined by the sliding sleeve after conveying the fluidic materials out of the sliding sleeve and the tubular support comprises fluidicly coupling the annular region defined between the tubular support and the outer sleeve to the portion of the internal passage of the tubular support at least partially defined by the sliding sleeve. In an exemplary embodiment, the method further comprises coupling an expandable tubular member to the tubular support; positioning the expandable tubular member within a preexisting structure; radially expanding and plastically deforming the expandable tubular member within the preexisting structure. In an exemplary embodiment, the method further comprises injecting fluidic materials into an annulus defined between the expandable tubular member and the preexisting structure. In an exemplary embodiment, the sliding sleeve comprises one or more first flow ports and the tubular support comprises one or more second flow ports; and wherein conveying the fluidic materials out of the sliding sleeve and the tubular support comprises aligning the one or more first flow ports of the sliding sleeve with respective ones of the one or more second flow ports of the tubular support; and conveying the fluidic materials through the one or more first flow ports and the one or more second flow ports aligned therewith, respectively; wherein the method further comprises blocking the flow of fluidic materials through the one or more first flow ports and the one or more second flow ports aligned therewith, respectively; and wherein radially expanding and plastically deforming the expandable tubular member within the preexisting structure comprises coupling one or more other tubular supports to the expandable tubular member and the tubular support within which the sliding sleeve is at least partially received; injecting fluidic material into the one or more other tubular supports after blocking the flow of fluidic materials through the one or more first flow ports and the one or more second flow ports aligned therewith, respectively; sensing the operating pressure of the fluidic material injected into the one or more other tubular supports; and if the sensed operating pressure of the fluidic material injected into the one or more other tubular supports exceeds a predetermined value, then radially expanding and plastically deforming the expandable tubular member within the preexisting structure.
An apparatus has been described that includes a tubular support defining a first internal passage and comprising one or more first flow ports; a sliding sleeve at least partially received within the first internal passage and sealingly engaging the tubular support, the sliding sleeve defining a second internal passage into which fluidic materials are adapted to be injected, the sliding sleeve comprising one or more second flow ports; one or more longitudinally-extending channels; a first position in which the first flow ports are aligned with respective ones of the second flow ports; and a second position in which the first flow ports are not aligned with the respective ones of the second flow ports; one or more protrusions extending from the tubular support and into respective ones of the channels of the sliding sleeve; a valve coupled to the tubular support, the valve comprising a movable valve element for controllably sealing an opening of the first internal passage of the tubular support; one or more pins extending into the sliding sleeve; an outer sleeve coupled to the tubular support so that an annular region is defined between the tubular support and the outer sleeve; a plurality of axially-spaced sealing elements coupled to the sliding sleeve and sealingly engaging the tubular support, wherein the second flow ports are axially positioned between two of the sealing elements; wherein, when the sliding sleeve is in the first position, the annular region is fluidicly coupled to the second internal passage of the sliding sleeve via the first flow ports and the second flow ports aligned therewith, respectively; wherein, when the sliding sleeve is in the second position, the annular region is fluidicly isolated from the second internal passage of the sliding sleeve; wherein, when the sliding sleeve is in the first position, the one or more pins extend from the tubular support and into the sliding sleeve to maintain the sliding sleeve in the first position; wherein, when the sliding sleeve is in the second position, the one or more pins are sheared to permit the sliding sleeve to move between the first and second positions; wherein the tubular support further comprises one or more third flow ports axially spaced from the one or more first flow ports; wherein, when the sliding sleeve is in the first position, a portion of the first internal passage of the tubular support is defined by the sliding sleeve; wherein, when the sliding sleeve is in the first position, the annular region is fluidicly coupled to the portion of the first internal passage via the one or more third flow ports; and wherein, when the sliding sleeve is in the second position, the annular region is fluidicly isolated from the portion of the first internal passage.
A method has been described that includes injecting fluidic materials into a sliding sleeve at least partially received within a tubular support, the tubular support defining an internal passage, a portion of which is at least partially defined by the sliding sleeve, the sliding sleeve comprising one or more first flow ports and the tubular support comprising one or more second flow ports; conveying the fluidic materials out of the sliding sleeve and the tubular support, comprising aligning the one or more first flow ports of the sliding sleeve with respective ones of the one or more second flow ports of the tubular support; and conveying the fluidic materials through the one or more first flow ports and the one or more second flow ports aligned therewith, respectively; conveying the fluidic materials into the portion of the internal passage of the tubular support at least partially defined by the sliding sleeve after conveying the fluidic materials out of the sliding sleeve and the tubular support; blocking the flow of fluidic materials through the one or more first flow ports and the one or more second flow ports aligned therewith, respectively, comprising injecting a plug valve element into the sliding sleeve; and causing the plug valve element and the sliding sleeve to move axially in a direction, relative to the tubular support; guiding the axial movement of the sliding sleeve, relative to the tubular support, during causing the plug valve element and the sliding sleeve to move axially in the direction, relative to the tubular support; preventing any further axial movement of the sliding sleeve in the direction after causing the plug valve element and the sliding sleeve to move axially in the direction, relative to the tubular support; locking the sliding sleeve to the tubular support, comprising extending one or more pins from the tubular support and into the sliding sleeve; unlocking the sliding sleeve from the tubular support, comprising shearing the one or more pins extending from the tubular support and into the sliding sleeve in response to causing the plug valve element and the sliding sleeve to move axially in the direction, relative to the tubular support; generally preventing relative rotation between the sliding sleeve and the tubular support; wherein an outer sleeve is coupled to the tubular support and an annular region is defined between the tubular support and the outer sleeve; wherein conveying the fluidic materials out of the sliding sleeve and the tubular support further comprises conveying the fluidic materials out of the sliding sleeve and the tubular support and into the annular region defined between the tubular support and the outer sleeve; and wherein conveying the fluidic materials into the portion of the internal passage of the tubular support at least partially defined by the sliding sleeve after conveying the fluidic materials out of the sliding sleeve and the tubular support comprises fluidicly coupling the annular region defined between the tubular support and the outer sleeve to the portion of the internal passage of the tubular support at least partially defined by the sliding sleeve.
A system has been described that includes means for injecting fluidic materials into a sliding sleeve at least partially received within a tubular support, the tubular support defining an internal passage, a portion of which is at least partially defined by the sliding sleeve; means for conveying the fluidic materials out of the sliding sleeve and the tubular support; and means for conveying the fluidic materials into the portion of the internal passage of the tubular support at least partially defined by the sliding sleeve after conveying the fluidic materials out of the sliding sleeve and the tubular support. In an exemplary embodiment, the sliding sleeve comprises one or more first flow ports and the tubular support comprises one or more second flow ports; and wherein means for conveying the fluidic materials out of the sliding sleeve and the tubular support comprises means for aligning the one or more first flow ports of the sliding sleeve with respective ones of the one or more second flow ports of the tubular support; and means for conveying the fluidic materials through the one or more first flow ports and the one or more second flow ports aligned therewith, respectively. In an exemplary embodiment, the system further comprises means for blocking the flow of fluidic materials through the one or more first flow ports and the one or more second flow ports aligned therewith, respectively. In an exemplary embodiment, means for blocking the flow of fluidic materials through the one or more first flow ports and the one or more second flow ports aligned therewith, respectively, comprises means for injecting a plug valve element into the sliding sleeve; and means for causing the plug valve element and the sliding sleeve to move axially in a direction, relative to the tubular support. In an exemplary embodiment, the system further comprises means for guiding the axial movement of the sliding sleeve, relative to the tubular support, during causing the plug valve element and the sliding sleeve to move axially in the direction, relative to the tubular support. In an exemplary embodiment, the system further comprises means for preventing any further axial movement of the sliding sleeve in the direction after causing the plug valve element and the sliding sleeve to move axially in the direction, relative to the tubular support. In an exemplary embodiment, the system further comprises means for locking the sliding sleeve to the tubular support; and means for unlocking the sliding sleeve from the tubular support. In an exemplary embodiment, means for locking the sliding sleeve to the tubular support comprises means for extending one or more pins from the tubular support and into the sliding sleeve; and wherein means for unlocking the sliding sleeve from the tubular support comprises means for shearing the one or more pins extending from the tubular support and into the sliding sleeve in response to causing the plug valve element and the sliding sleeve to move axially in the direction, relative to the tubular support. In an exemplary embodiment, the system further comprises means for fluidicly isolating the internal passage of the sliding sleeve from the portion of the internal passage of the tubular support at least partially defined by the sliding sleeve. In an exemplary embodiment, the system further comprises means for generally preventing relative rotation between the sliding sleeve and the tubular support. In an exemplary embodiment, an outer sleeve is coupled to the tubular support and an annular region is defined between the tubular support and the outer sleeve; wherein means for conveying the fluidic materials out of the sliding sleeve and the tubular support comprises means for conveying the fluidic materials out of the sliding sleeve and the tubular support and into the annular region defined between the tubular support and the outer sleeve; and wherein means for conveying the fluidic materials into the portion of the internal passage of the tubular support at least partially defined by the sliding sleeve after conveying the fluidic materials out of the sliding sleeve and the tubular support comprises means for fluidicly coupling the annular region defined between the tubular support and the outer sleeve to the portion of the internal passage of the tubular support at least partially defined by the sliding sleeve. In an exemplary embodiment, the system further comprises means for coupling an expandable tubular member to the tubular support; means for positioning the expandable tubular member within a preexisting structure; means for radially expanding and plastically deforming the expandable tubular member within the preexisting structure. In an exemplary embodiment, the system further comprises means for injecting fluidic materials into an annulus defined between the expandable tubular member and the preexisting structure. In an exemplary embodiment, the sliding sleeve comprises one or more first flow ports and the tubular support comprises one or more second flow ports; and wherein means for conveying the fluidic materials out of the sliding sleeve and the tubular support comprises means for aligning the one or more first flow ports of the sliding sleeve with respective ones of the one or more second flow ports of the tubular support; and means for conveying the fluidic materials through the one or more first flow ports and the one or more second flow ports aligned therewith, respectively; wherein the system further comprises means for blocking the flow of fluidic materials through the one or more first flow ports and the one or more second flow ports aligned therewith, respectively; and wherein means for radially expanding and plastically deforming the expandable tubular member within the preexisting structure comprises means for coupling one or more other tubular supports to the expandable tubular member and the tubular support within which the sliding sleeve is at least partially received; means for injecting fluidic material into the one or more other tubular supports after blocking the flow of fluidic materials through the one or more first flow ports and the one or more second flow ports aligned therewith, respectively; means for sensing the operating pressure of the fluidic material injected into the one or more other tubular supports; and means for if the sensed operating pressure of the fluidic material injected into the one or more other tubular supports exceeds a predetermined value, then radially expanding and plastically deforming the expandable tubular member within the preexisting structure.
An apparatus has been described that includes a flow control device comprising a tubular support defining a first internal passage and comprising one or more first flow ports; a sliding sleeve at least partially received within the first internal passage and sealingly engaging the tubular support, the sliding sleeve defining a second internal passage into which fluidic materials are adapted to be injected, the sliding sleeve comprising one or more second flow ports; a first position in which the first flow ports are aligned with respective ones of the second flow ports to thereby permit the fluidic materials to flow out of the second internal passage; and a second position in which the first flow ports are not aligned with the respective ones of the second flow ports to thereby prevent the fluidic materials from flowing out of the second internal passage; a plurality of axially-spaced sealing elements coupled to the sliding sleeve and sealingly engaging the tubular support, wherein the second flow ports are axially positioned between two of the sealing elements; one or more pins extending into the sliding sleeve; and a valve coupled to the tubular support, the valve comprising a movable valve element for controllably sealing an opening of the first internal passage of the tubular support; a plug valve element adapted to be seated in the second internal passage of the sliding sleeve of the flow control device; a support member coupled to the fluid control device and defining one or more radial passages; an expansion device coupled to the support member and comprising an external expansion surface; one or more rupture discs coupled to and positioned within corresponding radial passages of the support member; an expandable tubular member coupled to the expansion surface of the expansion device, the expandable tubular member comprising a first portion and a second portion, wherein the inside diameter of the first portion is less than the inside diameter of the second portion; and a shoe defining one or more internal passages coupled to the second portion of the expandable tubular member and to the fluid control device; wherein the tubular support of the fluid control device further comprises one or more third flow ports axially spaced from the one or more first flow ports; wherein, when the sliding sleeve is in the first position, the one or more pins extend from the tubular support and into the sliding sleeve to maintain the sliding sleeve in the first position; and wherein, when the sliding sleeve is in the second position, the one or more pins are sheared to permit the sliding sleeve to move between the first and second positions.
A system has been described that includes means for injecting fluidic materials into a sliding sleeve at least partially received within a tubular support, the tubular support defining an internal passage, a portion of which is at least partially defined by the sliding sleeve, the sliding sleeve comprising one or more first flow ports and the tubular support comprising one or more second flow ports; means for conveying the fluidic materials out of the sliding sleeve and the tubular support, comprising means for aligning the one or more first flow ports of the sliding sleeve with respective ones of the one or more second flow ports of the tubular support; and means for conveying the fluidic materials through the one or more first flow ports and the one or more second flow ports aligned therewith, respectively; means for conveying the fluidic materials into the portion of the internal passage of the tubular support at least partially defined by the sliding sleeve after conveying the fluidic materials out of the sliding sleeve and the tubular support; means for blocking the flow of fluidic materials through the one or more first flow ports and the one or more second flow ports aligned therewith, respectively, comprising means for injecting a plug valve element into the sliding sleeve; and means for causing the plug valve element and the sliding sleeve to move axially in a direction, relative to the tubular support; means for guiding the axial movement of the sliding sleeve, relative to the tubular support, during causing the plug valve element and the sliding sleeve to move axially in the direction, relative to the tubular support; means for preventing any further axial movement of the sliding sleeve in the direction after causing the plug valve element and the sliding sleeve to move axially in the direction, relative to the tubular support; means for locking the sliding sleeve to the tubular support, comprising means for extending one or more pins from the tubular support and into the sliding sleeve; means for unlocking the sliding sleeve from the tubular support, comprising means for shearing the one or more pins extending from the tubular support and into the sliding sleeve in response to causing the plug valve element and the sliding sleeve to move axially in the direction, relative to the tubular support; means for generally preventing relative rotation between the sliding sleeve and the tubular support; wherein an outer sleeve is coupled to the tubular support and an annular region is defined between the tubular support and the outer sleeve; wherein means for conveying the fluidic materials out of the sliding sleeve and the tubular support further comprises means for conveying the fluidic materials out of the sliding sleeve and the tubular support and into the annular region defined between the tubular support and the outer sleeve; and wherein means for conveying the fluidic materials into the portion of the internal passage of the tubular support at least partially defined by the sliding sleeve after conveying the fluidic materials out of the sliding sleeve and the tubular support comprises means for fluidicly coupling the annular region defined between the tubular support and the outer sleeve to the portion of the internal passage of the tubular support at least partially defined by the sliding sleeve.
It is understood that variations may be made in the foregoing without departing from the scope of the disclosure. In several exemplary embodiments, the teachings of the present illustrative embodiments may be used to provide, form and/or repair a wellbore casing, a pipeline, a structural support and/or any combination thereof. In several exemplary embodiments, the wellbore 36 may be an open wellbore, a cased wellbore and/or any combination thereof.
Any spatial references such as, for example, “upper,” “lower,” “above,” “below,” “between,” “vertical,” “horizontal,” “angular,” “upward,” “downward,” “side-to-side,” “left-to-right,” “right-to-left,” “top-to-bottom,” “bottom-to-top,” “top,” “bottom,” etc., are for the purpose of illustration only and do not limit the specific orientation or location of the structure described above.
In several exemplary embodiments, one or more of the operational steps in each embodiment may be omitted. Moreover, in some instances, some features of the present disclosure may be employed without a corresponding use of the other features. Moreover, one or more of the above-described embodiments and/or variations may be combined in whole or in part with any one or more of the other above-described embodiments and/or variations.
Although several exemplary embodiments have been described in detail above, the embodiments described are exemplary only and are not limiting, and those skilled in the art will readily appreciate that many other modifications, changes and/or substitutions are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of the present disclosure. Accordingly, all such modifications, changes and/or substitutions are intended to be included within the scope of this disclosure as defined in the following claims. In the claims, means-plus-function clauses are intended to cover the structures described herein as performing the recited function and not only structural equivalents, but also equivalent structures.
The present application is a continuation-in-part of U.S. patent application Ser. No. 10/546,548, filed on Aug. 23, 2005, now U.S. Pat. No. 7,438,133, which is (1) a continuation-in-part of U.S. patent application Ser. No. 10/351,160, filed on Jan. 22, 2003, which issued as U.S. Pat. No. 6,976,541 on Dec. 20, 2005; and (2) the U.S. National Stage patent application for International patent application number PCT/US2004/006246, filed on Feb. 26, 2004, which claimed the benefit of the filing date of U.S. provisional patent application No. 60/450,504, filed on Feb. 26, 2003, the entire disclosures of which are incorporate herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
46818 | Patterson | Mar 1865 | A |
331940 | Bole | Dec 1885 | A |
332184 | Bole | Dec 1885 | A |
341237 | Healey | May 1886 | A |
519805 | Bavier | May 1894 | A |
802880 | Phillips, Jr. | Oct 1905 | A |
806156 | Marshall | Dec 1905 | A |
958517 | Mettler | May 1910 | A |
984449 | Stewart | Feb 1911 | A |
1166040 | Burlingham | Dec 1915 | A |
1225005 | Boyd et al. | May 1917 | A |
1233888 | Leonard | Jul 1917 | A |
1358818 | Bering | Nov 1920 | A |
1494128 | Primrose | May 1924 | A |
1589781 | Anderson | Jun 1926 | A |
1590357 | Feisthamel | Jun 1926 | A |
1597212 | Spengler | Aug 1926 | A |
1613461 | Johnson | Jan 1927 | A |
1739932 | Ventresca | Dec 1929 | A |
1756531 | Aldeen et al. | Apr 1930 | A |
1880218 | Simmons | Oct 1932 | A |
1952652 | Brannon | Mar 1934 | A |
1981525 | Price | Nov 1934 | A |
2046870 | Clasen et al. | Jul 1936 | A |
2087185 | Dillon | Jul 1937 | A |
2110913 | Lowrey | Mar 1938 | A |
2122757 | Scott | Jul 1938 | A |
2134311 | Minor et al. | Oct 1938 | A |
2145168 | Flagg | Jan 1939 | A |
2160263 | Fletcher | May 1939 | A |
2293938 | Dunn et al. | Jun 1939 | A |
2187275 | McLennan | Jan 1940 | A |
2204586 | Grau | Jun 1940 | A |
2211173 | Shaffer | Aug 1940 | A |
2214226 | English | Sep 1940 | A |
2226804 | Carroll | Dec 1940 | A |
2273017 | Boynton | Feb 1942 | A |
2301495 | Abegg | Nov 1942 | A |
2305282 | Taylor, Jr. et al. | Dec 1942 | A |
2371840 | Otis | Mar 1945 | A |
2383214 | Prout | Aug 1945 | A |
2407552 | Hoesel | Sep 1946 | A |
2447629 | Beissinger et al. | Aug 1948 | A |
2481637 | Yancey | Sep 1949 | A |
2500276 | Church | Mar 1950 | A |
2546295 | Boice | Mar 1951 | A |
2583316 | Bannister | Jan 1952 | A |
2609258 | Taylor, Jr. et al. | Sep 1952 | A |
2627891 | Clark | Feb 1953 | A |
2647847 | Black et al. | Aug 1953 | A |
2664952 | Losey | Jan 1954 | A |
2691418 | Connolly | Oct 1954 | A |
2695449 | Chauvin | Nov 1954 | A |
2723721 | Corsette | Nov 1955 | A |
2734580 | Layne | Feb 1956 | A |
2735485 | Metcalf, Jr. | Feb 1956 | A |
2796134 | Binkley | Jun 1957 | A |
2812025 | Teague et al. | Nov 1957 | A |
2877822 | Buck | Mar 1959 | A |
2907589 | Knox | Oct 1959 | A |
2919741 | Strock et al. | Jan 1960 | A |
2929741 | Steinberg | Mar 1960 | A |
3010547 | Marskell | Jan 1962 | A |
3015362 | Moosman | Jan 1962 | A |
3015500 | Barnett | Jan 1962 | A |
3039530 | Condra | Jun 1962 | A |
3067801 | Sortor | Dec 1962 | A |
3067819 | Gore | Dec 1962 | A |
3068563 | Reverman | Dec 1962 | A |
3104703 | Rike et al. | Sep 1963 | A |
3111991 | O'Neal | Nov 1963 | A |
3162245 | Howard et al. | Dec 1964 | A |
3167122 | Lang | Jan 1965 | A |
3175618 | Lang et al. | Mar 1965 | A |
3179168 | Vincent | Apr 1965 | A |
3188816 | Koch | Jun 1965 | A |
3191677 | Kinley | Jun 1965 | A |
3191680 | Vincent | Jun 1965 | A |
3203451 | Vincent | Aug 1965 | A |
3203483 | Vincent | Aug 1965 | A |
3209546 | Lawton | Oct 1965 | A |
3210102 | Joslin | Oct 1965 | A |
3233315 | Levake | Feb 1966 | A |
3245471 | Howard | Apr 1966 | A |
3270817 | Papaila | Sep 1966 | A |
3297092 | Jennings | Jan 1967 | A |
3326293 | Skipper | Jun 1967 | A |
3331439 | Sanford | Jul 1967 | A |
3343252 | Reesor | Sep 1967 | A |
3353599 | Swift | Nov 1967 | A |
3354955 | Berry | Nov 1967 | A |
3358760 | Blagg | Dec 1967 | A |
3358769 | Berry | Dec 1967 | A |
3364993 | Skipper | Jan 1968 | A |
3371717 | Chenoweth | Mar 1968 | A |
3397745 | Owens et al. | Aug 1968 | A |
3412565 | Lindsey et al. | Nov 1968 | A |
3419080 | Lebourg | Dec 1968 | A |
3422902 | Bouchillon | Jan 1969 | A |
3424244 | Kinley | Jan 1969 | A |
3427707 | Nowosadko | Feb 1969 | A |
3463228 | Hearn | Aug 1969 | A |
3477506 | Malone | Nov 1969 | A |
3489220 | Kinley | Jan 1970 | A |
3489437 | Duret | Jan 1970 | A |
3498376 | Sizer et al. | Mar 1970 | A |
3504515 | Reardon | Apr 1970 | A |
3508771 | Duret | Apr 1970 | A |
3520049 | Lysenko et al. | Jul 1970 | A |
3528498 | Carothers | Sep 1970 | A |
3532174 | Diamantides | Oct 1970 | A |
3568773 | Chancellor | Mar 1971 | A |
3572777 | Blose et al. | Mar 1971 | A |
3574357 | Alexandru | Apr 1971 | A |
3578081 | Bodine | May 1971 | A |
3579805 | Kast | May 1971 | A |
3581817 | Kammerer | Jun 1971 | A |
3605887 | Lambie | Sep 1971 | A |
3631926 | Young | Jan 1972 | A |
3665591 | Kowal | May 1972 | A |
3667547 | Ahlstone | Jun 1972 | A |
3669190 | Sizer et al. | Jun 1972 | A |
3678727 | Jackson | Jul 1972 | A |
3682256 | Stuart | Aug 1972 | A |
3687196 | Mullins | Aug 1972 | A |
3691624 | Kinley | Sep 1972 | A |
3693717 | Wuenschel | Sep 1972 | A |
3704730 | Witzig | Dec 1972 | A |
3709306 | Curlington | Jan 1973 | A |
3711123 | Arnold | Jan 1973 | A |
3712376 | Owen et al. | Jan 1973 | A |
3746068 | Deckert et al. | Jul 1973 | A |
3746091 | Owen et al. | Jul 1973 | A |
3746092 | Land | Jul 1973 | A |
3764168 | Kisling, III et al. | Oct 1973 | A |
3776307 | Young | Dec 1973 | A |
3779025 | Godley et al. | Dec 1973 | A |
3780562 | Kinley | Dec 1973 | A |
3781966 | Lieberman | Jan 1974 | A |
3785193 | Kinley | Jan 1974 | A |
3789648 | Ames | Feb 1974 | A |
3797259 | Kammerer, Jr. | Mar 1974 | A |
3805567 | Agius Sinerco | Apr 1974 | A |
3812912 | Wuenschel | May 1974 | A |
3818734 | Bateman | Jun 1974 | A |
3826124 | Baksay | Jul 1974 | A |
3830294 | Swanson, Jr. | Aug 1974 | A |
3830295 | Crowe | Aug 1974 | A |
3834742 | McPhillips | Sep 1974 | A |
3848668 | Sizer | Nov 1974 | A |
3866954 | Slator et al. | Feb 1975 | A |
3874446 | Crowe | Apr 1975 | A |
3885298 | Pogonowski | May 1975 | A |
3887006 | Pitts | Jun 1975 | A |
3893718 | Powell | Jul 1975 | A |
3898163 | Mott | Aug 1975 | A |
3915478 | Al et al. | Oct 1975 | A |
3915763 | Jennings | Oct 1975 | A |
3935910 | Gaudy et al. | Feb 1976 | A |
3942824 | Sable | Mar 1976 | A |
3945444 | Knudson | Mar 1976 | A |
3948321 | Owen et al. | Apr 1976 | A |
3963076 | Winslow | Jun 1976 | A |
3970336 | O'Sickey | Jul 1976 | A |
3977076 | Vieira et al. | Aug 1976 | A |
3977473 | Page, Jr. | Aug 1976 | A |
3989280 | Schwarz | Nov 1976 | A |
3997193 | Tsuda et al. | Dec 1976 | A |
3999605 | Braddick | Dec 1976 | A |
4003433 | Goins | Jan 1977 | A |
4011652 | Black | Mar 1977 | A |
4018634 | Fencl | Apr 1977 | A |
4019579 | Thuse | Apr 1977 | A |
4026583 | Gottlieb | May 1977 | A |
4047568 | Aulenbacher | Sep 1977 | A |
4053247 | Marsh, Jr. | Oct 1977 | A |
4064941 | Smith | Dec 1977 | A |
4068711 | Aulenbacher | Jan 1978 | A |
4069573 | Rogers, Jr. et al. | Jan 1978 | A |
4076287 | Bill et al. | Feb 1978 | A |
4096913 | Kenneday et al. | Jun 1978 | A |
4098334 | Crowe | Jul 1978 | A |
4099563 | Hutchison | Jul 1978 | A |
4118954 | Jenkins | Oct 1978 | A |
4125937 | Brown et al. | Nov 1978 | A |
4152821 | Scott | May 1979 | A |
4168747 | Youmans | Sep 1979 | A |
4190108 | Webber | Feb 1980 | A |
4204312 | Tooker | May 1980 | A |
4205422 | Hardwick | Jun 1980 | A |
4226449 | Cole | Oct 1980 | A |
4253687 | Maples | Mar 1981 | A |
4257155 | Hunter | Mar 1981 | A |
4274665 | Marsh, Jr. | Jun 1981 | A |
RE30802 | Rogers, Jr. et al. | Nov 1981 | E |
4304428 | Grigorian et al. | Dec 1981 | A |
4328983 | Gibson | May 1982 | A |
4355664 | Cook | Oct 1982 | A |
4358511 | Smith, Jr. et al. | Nov 1982 | A |
4359889 | Kelly | Nov 1982 | A |
4363358 | Ellis | Dec 1982 | A |
4366971 | Lula | Jan 1983 | A |
4368571 | Cooper, Jr. | Jan 1983 | A |
4379471 | Kuenzel | Apr 1983 | A |
4380347 | Sable | Apr 1983 | A |
4384625 | Roper | May 1983 | A |
4388752 | Vinciguerra et al. | Jun 1983 | A |
4391325 | Baker et al. | Jul 1983 | A |
4393931 | Muse et al. | Jul 1983 | A |
4396061 | Tamplen et al. | Aug 1983 | A |
4397484 | Miller | Aug 1983 | A |
4401325 | Tsuchiya et al. | Aug 1983 | A |
4402372 | Cherrington | Sep 1983 | A |
4407681 | Ina et al. | Oct 1983 | A |
4411435 | McStravick | Oct 1983 | A |
4413395 | Garnier | Nov 1983 | A |
4413682 | Callihan et al. | Nov 1983 | A |
4420866 | Mueller | Dec 1983 | A |
4421169 | Dearth et al. | Dec 1983 | A |
4422317 | Mueller | Dec 1983 | A |
4422507 | Reimert | Dec 1983 | A |
4423889 | Weise | Jan 1984 | A |
4423986 | Skogberg | Jan 1984 | A |
4424865 | Payton, Jr. | Jan 1984 | A |
4429741 | Hyland | Feb 1984 | A |
4440233 | Baugh et al. | Apr 1984 | A |
4442586 | Ridenour | Apr 1984 | A |
4444250 | Keithahm et al. | Apr 1984 | A |
4449713 | Ishido et al. | May 1984 | A |
4458925 | Raulins et al. | Jul 1984 | A |
4462471 | Hipp | Jul 1984 | A |
4467630 | Kelly | Aug 1984 | A |
4468309 | White | Aug 1984 | A |
4469356 | Duret et al. | Sep 1984 | A |
4473245 | Raulins et al. | Sep 1984 | A |
4483399 | Colgate | Nov 1984 | A |
4485847 | Wentzell | Dec 1984 | A |
4491001 | Yoshida et al. | Jan 1985 | A |
4495073 | Beimgraben | Jan 1985 | A |
4501327 | Retz | Feb 1985 | A |
4505017 | Schukei | Mar 1985 | A |
4505987 | Yamada | Mar 1985 | A |
4506432 | Smith | Mar 1985 | A |
4507019 | Thompson | Mar 1985 | A |
4508129 | Brown | Apr 1985 | A |
4508167 | Weinberg et al. | Apr 1985 | A |
4511289 | Herron | Apr 1985 | A |
4513995 | Niehaus et al. | Apr 1985 | A |
4519456 | Cochran | May 1985 | A |
4521258 | Tamehiro et al. | Jun 1985 | A |
4526232 | Hughson et al. | Jul 1985 | A |
4526839 | Herman et al. | Jul 1985 | A |
4527815 | Frick | Jul 1985 | A |
4530231 | Main | Jul 1985 | A |
4531552 | Kim | Jul 1985 | A |
4537429 | Landriault | Aug 1985 | A |
4538442 | Reed | Sep 1985 | A |
4538840 | DeLange | Sep 1985 | A |
4541655 | Hunter | Sep 1985 | A |
4550782 | Lawson | Nov 1985 | A |
4550937 | Duret | Nov 1985 | A |
4553776 | Dodd | Nov 1985 | A |
4573248 | Hackett | Mar 1986 | A |
4573540 | Dellinger et al. | Mar 1986 | A |
4576386 | Benson et al. | Mar 1986 | A |
4581817 | Kelly | Apr 1986 | A |
4582348 | Dearden et al. | Apr 1986 | A |
4590227 | Nakamura et al. | May 1986 | A |
4590995 | Evans | May 1986 | A |
4592577 | Ayres | Jun 1986 | A |
4595063 | Jennings et al. | Jun 1986 | A |
4596913 | Takechi et al. | Jun 1986 | A |
4598938 | Boss et al. | Jul 1986 | A |
4601343 | Lindsey, Jr. et al. | Jul 1986 | A |
4603889 | Welsh | Aug 1986 | A |
4605063 | Ross | Aug 1986 | A |
4611662 | Harrington | Sep 1986 | A |
4614233 | Menard | Sep 1986 | A |
4627488 | Szarka | Dec 1986 | A |
4629218 | Dubois | Dec 1986 | A |
4629224 | Landriault | Dec 1986 | A |
4630849 | Fukui | Dec 1986 | A |
4632944 | Thompson | Dec 1986 | A |
4634317 | Skogberg et al. | Jan 1987 | A |
4635333 | Finch | Jan 1987 | A |
4637436 | Stewart, Jr. et al. | Jan 1987 | A |
4646787 | Rush et al. | Mar 1987 | A |
4649492 | Sinha et al. | Mar 1987 | A |
4651831 | Baugh | Mar 1987 | A |
4651836 | Richards | Mar 1987 | A |
4656779 | Fedeli et al. | Apr 1987 | A |
4660863 | Bailey et al. | Apr 1987 | A |
4662446 | Brisco et al. | May 1987 | A |
4669541 | Bissonnette | Jun 1987 | A |
4674572 | Gallus | Jun 1987 | A |
4676563 | Curlett | Jun 1987 | A |
4682797 | Hildner | Jul 1987 | A |
4685191 | Mueller et al. | Aug 1987 | A |
4685834 | Jordan | Aug 1987 | A |
4693498 | Baugh et al. | Sep 1987 | A |
4703802 | Bryan et al. | Nov 1987 | A |
4711474 | Patrick | Dec 1987 | A |
4714117 | Dech | Dec 1987 | A |
4730851 | Watts | Mar 1988 | A |
4732416 | Deaden et al. | Mar 1988 | A |
4735444 | Skipper | Apr 1988 | A |
4739654 | Pilkington et al. | Apr 1988 | A |
4739916 | Ayres et al. | Apr 1988 | A |
4751836 | Breese | Jun 1988 | A |
4754781 | Jan de Putter | Jul 1988 | A |
4758025 | Frick | Jul 1988 | A |
4762344 | Perkins et al. | Aug 1988 | A |
4776394 | Lynde et al. | Oct 1988 | A |
4778088 | Miller | Oct 1988 | A |
4779445 | Rabe | Oct 1988 | A |
4793382 | Szalvay | Dec 1988 | A |
4796668 | Depret | Jan 1989 | A |
4799544 | Curlett | Jan 1989 | A |
4817710 | Edwards et al. | Apr 1989 | A |
4817712 | Bodine | Apr 1989 | A |
4817716 | Taylor et al. | Apr 1989 | A |
4822081 | Blose | Apr 1989 | A |
4825674 | Tanaka et al. | May 1989 | A |
4826347 | Baril et al. | May 1989 | A |
4827594 | Cartry et al. | May 1989 | A |
4828033 | Frison | May 1989 | A |
4830109 | Wedel | May 1989 | A |
4832382 | Kapgan | May 1989 | A |
4836278 | Stone et al. | Jun 1989 | A |
4836579 | Wester et al. | Jun 1989 | A |
4838349 | Berzin | Jun 1989 | A |
4842082 | Springer | Jun 1989 | A |
4848459 | Blackwell et al. | Jul 1989 | A |
4854338 | Grantham | Aug 1989 | A |
4856592 | Van Bilderbeek et al. | Aug 1989 | A |
4865127 | Koster | Sep 1989 | A |
4871199 | Ridenour et al. | Oct 1989 | A |
4872253 | Carstensen | Oct 1989 | A |
4887646 | Groves | Dec 1989 | A |
4888975 | Soward | Dec 1989 | A |
4892337 | Gunderson et al. | Jan 1990 | A |
4893658 | Kimura et al. | Jan 1990 | A |
4904136 | Matsumoto | Feb 1990 | A |
4907828 | Chang | Mar 1990 | A |
4911237 | Melenyzer | Mar 1990 | A |
4913758 | Koster | Apr 1990 | A |
4915177 | Claycomb | Apr 1990 | A |
4915426 | Skipper | Apr 1990 | A |
4917409 | Reeves | Apr 1990 | A |
4919989 | Colangelo | Apr 1990 | A |
4921045 | Richardson | May 1990 | A |
4924949 | Curlett | May 1990 | A |
4930573 | Lane et al. | Jun 1990 | A |
4934038 | Caudill | Jun 1990 | A |
4934312 | Koster et al. | Jun 1990 | A |
4938291 | Lynde et al. | Jul 1990 | A |
4941512 | McParland | Jul 1990 | A |
4941532 | Hurt et al. | Jul 1990 | A |
4942925 | Themig | Jul 1990 | A |
4942926 | Lessi | Jul 1990 | A |
4949745 | McKeon | Aug 1990 | A |
4958691 | Hipp | Sep 1990 | A |
4968184 | Reid | Nov 1990 | A |
4971152 | Koster et al. | Nov 1990 | A |
4976322 | Abdrakhmanov et al. | Dec 1990 | A |
4981250 | Persson | Jan 1991 | A |
4995464 | Watkins et al. | Feb 1991 | A |
5014779 | Meling et al. | May 1991 | A |
5015017 | Geary | May 1991 | A |
5026074 | Hoes et al. | Jun 1991 | A |
5031370 | Jewett | Jul 1991 | A |
5031699 | Artynov et al. | Jul 1991 | A |
5040283 | Pelgrom | Aug 1991 | A |
5044676 | Burton et al. | Sep 1991 | A |
5048871 | Pfeiffer et al. | Sep 1991 | A |
5052483 | Hudson | Oct 1991 | A |
5059043 | Kuhne | Oct 1991 | A |
5064004 | Lundell | Nov 1991 | A |
5074355 | Lennon | Dec 1991 | A |
5079837 | Vanselow | Jan 1992 | A |
5083608 | Abdrakhmanov et al. | Jan 1992 | A |
5093015 | Oldiges | Mar 1992 | A |
5095991 | Milberger | Mar 1992 | A |
5097710 | Palynchuk | Mar 1992 | A |
5101653 | Hermes et al. | Apr 1992 | A |
5105888 | Pollock et al. | Apr 1992 | A |
5107221 | N'Guyen et al. | Apr 1992 | A |
5119661 | Abdrakhmanov et al. | Jun 1992 | A |
5134891 | Canevet et al. | Aug 1992 | A |
5150755 | Cassel et al. | Sep 1992 | A |
5156043 | Ose | Oct 1992 | A |
5156213 | George et al. | Oct 1992 | A |
5156223 | Hipp | Oct 1992 | A |
5174340 | Peterson et al. | Dec 1992 | A |
5174376 | Singeetham | Dec 1992 | A |
5181571 | Mueller et al. | Jan 1993 | A |
5195583 | Toon et al. | Mar 1993 | A |
5197553 | Leturno | Mar 1993 | A |
5209600 | Koster | May 1993 | A |
5226492 | Solaeche et al. | Jul 1993 | A |
5242017 | Hailey | Sep 1993 | A |
5249628 | Surjaatmadia | Oct 1993 | A |
5253713 | Gregg et al. | Oct 1993 | A |
5265675 | Hearn et al. | Nov 1993 | A |
RE34467 | Reeves | Dec 1993 | E |
5273075 | Skaer | Dec 1993 | A |
5275242 | Payne | Jan 1994 | A |
5282508 | Ellingsen et al. | Feb 1994 | A |
5282652 | Werner | Feb 1994 | A |
5286393 | Oldiges et al. | Feb 1994 | A |
5297629 | Barrington et al. | Mar 1994 | A |
5306101 | Rockower et al. | Apr 1994 | A |
5309621 | O'Donnell et al. | May 1994 | A |
5314014 | Tucker | May 1994 | A |
5314209 | Kuhne | May 1994 | A |
5318122 | Murray et al. | Jun 1994 | A |
5318131 | Baker | Jun 1994 | A |
5325923 | Surjaatmadja et al. | Jul 1994 | A |
5326137 | Lorenz et al. | Jul 1994 | A |
5327964 | O'Donnell et al. | Jul 1994 | A |
5330850 | Suzuki et al. | Jul 1994 | A |
5332038 | Tapp et al. | Jul 1994 | A |
5332049 | Tew | Jul 1994 | A |
5333692 | Baugh et al. | Aug 1994 | A |
5335736 | Windsor | Aug 1994 | A |
5337808 | Graham | Aug 1994 | A |
5337823 | Nobileau | Aug 1994 | A |
5337827 | Hromas et al. | Aug 1994 | A |
5339894 | Stotler | Aug 1994 | A |
5343949 | Ross et al. | Sep 1994 | A |
5346007 | Dillon | Sep 1994 | A |
5348087 | Williamson, Jr. | Sep 1994 | A |
5348093 | Wood et al. | Sep 1994 | A |
5348095 | Worrall et al. | Sep 1994 | A |
5348668 | Oldiges et al. | Sep 1994 | A |
5351752 | Wood et al. | Oct 1994 | A |
5360239 | Klementich | Nov 1994 | A |
5360292 | Allen et al. | Nov 1994 | A |
5361836 | Sorem et al. | Nov 1994 | A |
5361843 | Shy et al. | Nov 1994 | A |
5366010 | Zwart | Nov 1994 | A |
5366012 | Lohbeck | Nov 1994 | A |
5368075 | Baro et al. | Nov 1994 | A |
5370425 | Dougherty et al. | Dec 1994 | A |
5375661 | Daneshy et al. | Dec 1994 | A |
5377753 | Haberman et al. | Jan 1995 | A |
5388648 | Jordan, Jr. | Feb 1995 | A |
5390735 | Williamson, Jr. | Feb 1995 | A |
5390742 | Dines et al. | Feb 1995 | A |
5396957 | Surjaatmadja et al. | Mar 1995 | A |
5400827 | Baro et al. | Mar 1995 | A |
5405171 | Allen et al. | Apr 1995 | A |
5411301 | Moyer et al. | May 1995 | A |
5413180 | Ross et al. | May 1995 | A |
5419595 | Yamamoto et al. | May 1995 | A |
5425559 | Nobileau | Jun 1995 | A |
5426130 | Thurber et al. | Jun 1995 | A |
5431831 | Vincent | Jul 1995 | A |
5435395 | Connell | Jul 1995 | A |
5439320 | Abrams | Aug 1995 | A |
5443129 | Bailey et al. | Aug 1995 | A |
5447201 | Mohn | Sep 1995 | A |
5454419 | Vloedman | Oct 1995 | A |
5456319 | Schmidt et al. | Oct 1995 | A |
5458194 | Brooks | Oct 1995 | A |
5462120 | Gondouin | Oct 1995 | A |
5467822 | Zwart | Nov 1995 | A |
5472055 | Simson et al. | Dec 1995 | A |
5474334 | Eppink | Dec 1995 | A |
5492173 | Kilgore et al. | Feb 1996 | A |
5494106 | Gueguen et al. | Feb 1996 | A |
5498809 | Emert et al. | Mar 1996 | A |
5507343 | Carlton et al. | Apr 1996 | A |
5511620 | Baugh et al. | Apr 1996 | A |
5513703 | Mills et al. | May 1996 | A |
5524937 | Sides, III et al. | Jun 1996 | A |
5535824 | Hudson | Jul 1996 | A |
5536422 | Oldiges et al. | Jul 1996 | A |
5540281 | Round | Jul 1996 | A |
5554244 | Ruggles et al. | Sep 1996 | A |
5566772 | Coone et al. | Oct 1996 | A |
5567335 | Baessler et al. | Oct 1996 | A |
5576485 | Serata | Nov 1996 | A |
5584512 | Carstensen | Dec 1996 | A |
5606792 | Schafer | Mar 1997 | A |
5611399 | Richard et al. | Mar 1997 | A |
5613557 | Blount et al. | Mar 1997 | A |
5617918 | Cooksey et al. | Apr 1997 | A |
5642560 | Tabuchi et al. | Jul 1997 | A |
5642781 | Richard | Jul 1997 | A |
5662180 | Coffman et al. | Sep 1997 | A |
5664327 | Swars | Sep 1997 | A |
5667011 | Gill et al. | Sep 1997 | A |
5667252 | Schafer et al. | Sep 1997 | A |
5678609 | Washburn | Oct 1997 | A |
5685369 | Ellis et al. | Nov 1997 | A |
5689871 | Carstensen | Nov 1997 | A |
5695008 | Bertet et al. | Dec 1997 | A |
5695009 | Hipp | Dec 1997 | A |
5697442 | Baldridge | Dec 1997 | A |
5697449 | Hennig et al. | Dec 1997 | A |
5718288 | Bertet et al. | Feb 1998 | A |
5738146 | Abe | Apr 1998 | A |
5743335 | Bussear | Apr 1998 | A |
5749419 | Coronado et al. | May 1998 | A |
5749585 | Lembcke | May 1998 | A |
5755895 | Tamehiro et al. | May 1998 | A |
5775422 | Wong et al. | Jul 1998 | A |
5785120 | Smalley et al. | Jul 1998 | A |
5787933 | Russ et al. | Aug 1998 | A |
5791409 | Flanders | Aug 1998 | A |
5791419 | Valisalo | Aug 1998 | A |
5794702 | Nobileau | Aug 1998 | A |
5794840 | Hohl et al. | Aug 1998 | A |
5797454 | Hipp | Aug 1998 | A |
5829520 | Johnson | Nov 1998 | A |
5829524 | Flanders et al. | Nov 1998 | A |
5829797 | Yamamoto et al. | Nov 1998 | A |
5833001 | Song et al. | Nov 1998 | A |
5845945 | Carstensen | Dec 1998 | A |
5849188 | Voll et al. | Dec 1998 | A |
5857524 | Harris et al. | Jan 1999 | A |
5862866 | Springer | Jan 1999 | A |
5875851 | Vick, Jr. et al. | Mar 1999 | A |
5885941 | Sateva et al. | Mar 1999 | A |
5887476 | Damsohn et al. | Mar 1999 | A |
5895079 | Carstensen et al. | Apr 1999 | A |
5899268 | Lynde et al. | May 1999 | A |
5901594 | Wasson | May 1999 | A |
5901789 | Donnelly et al. | May 1999 | A |
5918677 | Head | Jul 1999 | A |
5924745 | Campbell | Jul 1999 | A |
5931511 | DeLange et al. | Aug 1999 | A |
5933945 | Thomeer et al. | Aug 1999 | A |
5944100 | Hipp | Aug 1999 | A |
5944107 | Ohmer | Aug 1999 | A |
5944108 | Baugh et al. | Aug 1999 | A |
5951207 | Chen | Sep 1999 | A |
5957195 | Bailey et al. | Sep 1999 | A |
5964288 | Leighton et al. | Oct 1999 | A |
5971443 | Noel et al. | Oct 1999 | A |
5975587 | Wood et al. | Nov 1999 | A |
5979560 | Nobileau | Nov 1999 | A |
5984369 | Crook et al. | Nov 1999 | A |
5984568 | Lohbeck et al. | Nov 1999 | A |
5985053 | Hara et al. | Nov 1999 | A |
6009611 | Adams et al. | Jan 2000 | A |
6012521 | Zunkel et al. | Jan 2000 | A |
6012522 | Donnelly et al. | Jan 2000 | A |
6012523 | Campbell et al. | Jan 2000 | A |
6012874 | Groneck et al. | Jan 2000 | A |
6013724 | Mizutani | Jan 2000 | A |
6015012 | Reddick | Jan 2000 | A |
6017168 | Fraser, Jr. et al. | Jan 2000 | A |
6021850 | Wood et al. | Feb 2000 | A |
6024181 | Richardson et al. | Feb 2000 | A |
6027145 | Tsuru et al. | Feb 2000 | A |
6029748 | Forsyth et al. | Feb 2000 | A |
6035954 | Hipp | Mar 2000 | A |
6044906 | Saltel | Apr 2000 | A |
6047505 | Willow | Apr 2000 | A |
6047774 | Allen | Apr 2000 | A |
6050341 | Metcalf | Apr 2000 | A |
6050346 | Hipp | Apr 2000 | A |
6056059 | Ohmer | May 2000 | A |
6056324 | Reimert et al. | May 2000 | A |
6062324 | Hipp | May 2000 | A |
6065500 | Metcalfe | May 2000 | A |
6070671 | Cumming et al. | Jun 2000 | A |
6073332 | Turner | Jun 2000 | A |
6073692 | Wood et al. | Jun 2000 | A |
6073698 | Schultz et al. | Jun 2000 | A |
6074133 | Kelsey | Jun 2000 | A |
6078031 | Bliault et al. | Jun 2000 | A |
6079495 | Ohmer | Jun 2000 | A |
6085838 | Vercaemer et al. | Jul 2000 | A |
6089320 | LaGrange | Jul 2000 | A |
6098717 | Bailey et al. | Aug 2000 | A |
6102119 | Raines | Aug 2000 | A |
6109355 | Reid | Aug 2000 | A |
6112818 | Campbell | Sep 2000 | A |
6131265 | Bird | Oct 2000 | A |
6135208 | Gano et al. | Oct 2000 | A |
6138761 | Freeman et al. | Oct 2000 | A |
6142230 | Smalley et al. | Nov 2000 | A |
6148915 | Mullen | Nov 2000 | A |
6155613 | Quadflieg et al. | Dec 2000 | A |
6158785 | Beaulier et al. | Dec 2000 | A |
6158963 | Hollis et al. | Dec 2000 | A |
6167970 | Stout | Jan 2001 | B1 |
6182775 | Hipp | Feb 2001 | B1 |
6183013 | Mackenzie et al. | Feb 2001 | B1 |
6183573 | Fujiwara et al. | Feb 2001 | B1 |
6189616 | Gano et al. | Feb 2001 | B1 |
6196336 | Fincher et al. | Mar 2001 | B1 |
6216509 | Lotspaih et al. | Apr 2001 | B1 |
6220306 | Omura et al. | Apr 2001 | B1 |
6226855 | Maine | May 2001 | B1 |
6231086 | Tierling | May 2001 | B1 |
6237967 | Yamamoto et al. | May 2001 | B1 |
6250385 | Montaron | Jun 2001 | B1 |
6253846 | Nazzai et al. | Jul 2001 | B1 |
6253850 | Nazzai et al. | Jul 2001 | B1 |
6263966 | Haut et al. | Jul 2001 | B1 |
6263968 | Freeman et al. | Jul 2001 | B1 |
6263972 | Richardson et al. | Jul 2001 | B1 |
6267181 | Rhein-Knudsen et al. | Jul 2001 | B1 |
6273634 | Lohbeck | Aug 2001 | B1 |
6275556 | Kinney et al. | Aug 2001 | B1 |
6283211 | Vloedman | Sep 2001 | B1 |
6286558 | Quigley et al. | Sep 2001 | B1 |
6286614 | Gano et al. | Sep 2001 | B1 |
6302211 | Nelson et al. | Oct 2001 | B1 |
6311792 | Scott et al. | Nov 2001 | B1 |
6315040 | Donnelly | Nov 2001 | B1 |
6315043 | Farrant et al. | Nov 2001 | B1 |
6318457 | Den Boer et al. | Nov 2001 | B1 |
6318465 | Coon et al. | Nov 2001 | B1 |
6322109 | Campbell et al. | Nov 2001 | B1 |
6325148 | Trahan et al. | Dec 2001 | B1 |
6328113 | Cook | Dec 2001 | B1 |
6334351 | Tsuchiya | Jan 2002 | B1 |
6343495 | Cheppe et al. | Feb 2002 | B1 |
6343657 | Baugh et al. | Feb 2002 | B1 |
6345373 | Chakradhar et al. | Feb 2002 | B1 |
6345431 | Greig | Feb 2002 | B1 |
6349521 | McKeon et al. | Feb 2002 | B1 |
6352112 | Mills | Mar 2002 | B1 |
6354373 | Vercaemer et al. | Mar 2002 | B1 |
6357485 | Quigley | Mar 2002 | B2 |
6390720 | LeBegue et al. | May 2002 | B1 |
6405761 | Shimizu et al. | Jun 2002 | B1 |
6406063 | Pfeiffer | Jun 2002 | B1 |
6409175 | Evans et al. | Jun 2002 | B1 |
6419025 | Lohbeck | Jul 2002 | B1 |
6419026 | MacKenzie et al. | Jul 2002 | B1 |
6419033 | Hahn et al. | Jul 2002 | B1 |
6419147 | Daniel | Jul 2002 | B1 |
6425444 | Metcalfe et al. | Jul 2002 | B1 |
6431277 | Cox et al. | Aug 2002 | B1 |
6443247 | Wardley | Sep 2002 | B1 |
6446323 | Metcalfe et al. | Sep 2002 | B1 |
6446724 | Baugh et al. | Sep 2002 | B2 |
6447025 | Smith | Sep 2002 | B1 |
6450261 | Baugh | Sep 2002 | B1 |
6454013 | Metcalfe | Sep 2002 | B1 |
6454024 | Nackerud | Sep 2002 | B1 |
6457532 | Simpson | Oct 2002 | B1 |
6457533 | Metcalfe | Oct 2002 | B1 |
6457749 | Heijnen | Oct 2002 | B1 |
6460615 | Heijnen | Oct 2002 | B1 |
6461999 | Fanta | Oct 2002 | B1 |
6464008 | Roddy et al. | Oct 2002 | B1 |
6464014 | Bernat | Oct 2002 | B1 |
6470966 | Cook et al. | Oct 2002 | B2 |
6470996 | Kyle et al. | Oct 2002 | B1 |
6478091 | Gano | Nov 2002 | B1 |
6478092 | Voll et al. | Nov 2002 | B2 |
6491108 | Slup | Dec 2002 | B1 |
6497289 | Cook et al. | Dec 2002 | B1 |
6513243 | Bignucolo et al. | Feb 2003 | B1 |
6516887 | Nguyen et al. | Feb 2003 | B2 |
6517126 | Peterson et al. | Feb 2003 | B1 |
6527049 | Metcalfe et al. | Mar 2003 | B2 |
6543545 | Chatterji et al. | Apr 2003 | B1 |
6543552 | Metcalfe et al. | Apr 2003 | B1 |
6550539 | Maguire et al. | Apr 2003 | B2 |
6550821 | DeLange et al. | Apr 2003 | B2 |
6557460 | Hester | May 2003 | B2 |
6557640 | Cook et al. | May 2003 | B1 |
6557906 | Carcagno | May 2003 | B1 |
6561227 | Cook et al. | May 2003 | B2 |
6561279 | MacKenzie et al. | May 2003 | B2 |
6564875 | Bullock | May 2003 | B1 |
6568471 | Cook et al. | May 2003 | B1 |
6568488 | Wentworth et al. | May 2003 | B2 |
6575240 | Cook et al. | Jun 2003 | B1 |
6575250 | Wijsman | Jun 2003 | B1 |
6578630 | Simpson et al. | Jun 2003 | B2 |
6585053 | Coon | Jul 2003 | B2 |
6585299 | Quadflieg et al. | Jul 2003 | B1 |
6591905 | Coon | Jul 2003 | B2 |
6598677 | Baugh et al. | Jul 2003 | B1 |
6598678 | Simpson et al. | Jul 2003 | B1 |
6604763 | Cook et al. | Aug 2003 | B1 |
6607220 | Sivley, IV | Aug 2003 | B2 |
6609735 | DeLange | Aug 2003 | B1 |
6619696 | Baugh et al. | Sep 2003 | B2 |
6622797 | Sivley, IV | Sep 2003 | B2 |
6629567 | Lauritzen et al. | Oct 2003 | B2 |
6631759 | Cook et al. | Oct 2003 | B2 |
6631760 | Cook et al. | Oct 2003 | B2 |
6631765 | Baugh et al. | Oct 2003 | B2 |
6631769 | Cook et al. | Oct 2003 | B2 |
6634431 | Cook et al. | Oct 2003 | B2 |
6640895 | Murray | Nov 2003 | B2 |
6640903 | Cook et al. | Nov 2003 | B1 |
6648075 | Badrak et al. | Nov 2003 | B2 |
6659509 | Goto et al. | Dec 2003 | B2 |
6662876 | Lauritzen | Dec 2003 | B2 |
6668930 | Hoffman | Dec 2003 | B2 |
6668937 | Murray | Dec 2003 | B1 |
6672759 | Feger | Jan 2004 | B2 |
6679328 | Davis et al. | Jan 2004 | B2 |
6681862 | Freeman | Jan 2004 | B2 |
6684947 | Cook et al. | Feb 2004 | B2 |
6688397 | McClurkin et al. | Feb 2004 | B2 |
6695012 | Ring et al. | Feb 2004 | B1 |
6695065 | Simpson | Feb 2004 | B2 |
6698517 | Simpson | Mar 2004 | B2 |
6701598 | Chen et al. | Mar 2004 | B2 |
6702030 | Simpson | Mar 2004 | B2 |
6705395 | Cook et al. | Mar 2004 | B2 |
6708767 | Harrall et al. | Mar 2004 | B2 |
6712154 | Cook et al. | Mar 2004 | B2 |
6712401 | Coulon et al. | Mar 2004 | B2 |
6719064 | Price-Smith et al. | Apr 2004 | B2 |
6722427 | Gano et al. | Apr 2004 | B2 |
6722437 | Vercaemer et al. | Apr 2004 | B2 |
6722443 | Metcalfe | Apr 2004 | B1 |
6723683 | Crossman | Apr 2004 | B2 |
6725917 | Metcalfe | Apr 2004 | B2 |
6725919 | Cook et al. | Apr 2004 | B2 |
6725934 | Coronado et al. | Apr 2004 | B2 |
6725939 | Richard | Apr 2004 | B2 |
6732806 | Mauldin et al. | May 2004 | B2 |
6739392 | Cook et al. | May 2004 | B2 |
6745845 | Cook et al. | Jun 2004 | B2 |
6749954 | Toyooka | Jun 2004 | B2 |
6755447 | Galle, Jr. et al. | Jun 2004 | B2 |
6758278 | Cook et al. | Jul 2004 | B2 |
6772841 | Gano | Aug 2004 | B2 |
6796380 | Xu | Sep 2004 | B2 |
6814147 | Baugh | Nov 2004 | B2 |
6817633 | Brill et al. | Nov 2004 | B2 |
6820690 | Vercaemer et al. | Nov 2004 | B2 |
6823937 | Cook et al. | Nov 2004 | B1 |
6826937 | Su | Dec 2004 | B2 |
6832649 | Bode et al. | Dec 2004 | B2 |
6834725 | Whanger et al. | Dec 2004 | B2 |
6843319 | Tran et al. | Jan 2005 | B2 |
6843322 | Burtner | Jan 2005 | B2 |
6857473 | Cook et al. | Feb 2005 | B2 |
6880632 | Tom et al. | Apr 2005 | B2 |
6892819 | Cook et al. | May 2005 | B2 |
6902000 | Simpson | Jun 2005 | B2 |
6907652 | Heijnen | Jun 2005 | B1 |
6923261 | Metcalfe et al. | Aug 2005 | B2 |
6935429 | Badrak | Aug 2005 | B2 |
6935430 | Harrall et al. | Aug 2005 | B2 |
6966370 | Cook et al. | Nov 2005 | B2 |
6968618 | Cook et al. | Nov 2005 | B2 |
6976539 | Metcalfe et al. | Dec 2005 | B2 |
6976541 | Brisco et al. | Dec 2005 | B2 |
6977096 | LeClaire | Dec 2005 | B2 |
7000953 | Berghaus | Feb 2006 | B2 |
7007760 | Lohbeck | Mar 2006 | B2 |
7011161 | Ring et al. | Mar 2006 | B2 |
7021390 | Cook et al. | Apr 2006 | B2 |
7036582 | Cook et al. | May 2006 | B2 |
7040396 | Cook et al. | May 2006 | B2 |
7044218 | Cook et al. | May 2006 | B2 |
7044221 | Cook et al. | May 2006 | B2 |
7048062 | Ring et al. | May 2006 | B2 |
7048067 | Cook et al. | May 2006 | B1 |
7055608 | Cook et al. | Jun 2006 | B2 |
7063142 | Cook et al. | Jun 2006 | B2 |
7063149 | Simpson et al. | Jun 2006 | B2 |
7066284 | Wylie et al. | Jun 2006 | B2 |
7077211 | Cook et al. | Jul 2006 | B2 |
7077213 | Cook et al. | Jul 2006 | B2 |
7086475 | Cook | Aug 2006 | B2 |
7100684 | Cook et al. | Sep 2006 | B2 |
7100685 | Cook et al. | Sep 2006 | B2 |
7108061 | Cook et al. | Sep 2006 | B2 |
7108072 | Cook et al. | Sep 2006 | B2 |
7114559 | Sonnier et al. | Oct 2006 | B2 |
7121337 | Cook et al. | Oct 2006 | B2 |
7121352 | Cook et al. | Oct 2006 | B2 |
7124821 | Metcalfe et al. | Oct 2006 | B2 |
7124823 | Oosterling | Oct 2006 | B2 |
7124826 | Simpson | Oct 2006 | B2 |
7146702 | Cook et al. | Dec 2006 | B2 |
7147053 | Cook et al. | Dec 2006 | B2 |
7159665 | Cook et al. | Jan 2007 | B2 |
7159667 | Cook et al. | Jan 2007 | B2 |
7164964 | Stacklies | Jan 2007 | B2 |
7168496 | Cook et al. | Jan 2007 | B2 |
7168499 | Cook et al. | Jan 2007 | B2 |
7172019 | Cook et al. | Feb 2007 | B2 |
7172021 | Brisco et al. | Feb 2007 | B2 |
7172024 | Cook et al. | Feb 2007 | B2 |
7174964 | Cook et al. | Feb 2007 | B2 |
7185710 | Cook et al. | Mar 2007 | B2 |
7191841 | Sivley, IV | Mar 2007 | B2 |
7225879 | Wylie et al. | Jun 2007 | B2 |
7231985 | Cook et al. | Jun 2007 | B2 |
7234531 | Kendziora | Jun 2007 | B2 |
7234968 | Lottmann et al. | Jun 2007 | B2 |
7240728 | Cook et al. | Jul 2007 | B2 |
7240729 | Cook et al. | Jul 2007 | B2 |
20010002626 | Frank et al. | Jun 2001 | A1 |
20010018354 | Pigni | Aug 2001 | A1 |
20010020532 | Baugh et al. | Sep 2001 | A1 |
20010045284 | Simpson et al. | Nov 2001 | A1 |
20010045289 | Cook et al. | Nov 2001 | A1 |
20010047870 | Cook et al. | Dec 2001 | A1 |
20020011339 | Murray | Jan 2002 | A1 |
20020014339 | Ross | Feb 2002 | A1 |
20020020524 | Gano | Feb 2002 | A1 |
20020020531 | Ohmer | Feb 2002 | A1 |
20020033261 | Metcalfe | Mar 2002 | A1 |
20020060068 | Cook et al. | May 2002 | A1 |
20020062956 | Murray et al. | May 2002 | A1 |
20020066576 | Cook et al. | Jun 2002 | A1 |
20020066578 | Broome | Jun 2002 | A1 |
20020070023 | Turner et al. | Jun 2002 | A1 |
20020070031 | Voll et al. | Jun 2002 | A1 |
20020079101 | Baugh et al. | Jun 2002 | A1 |
20020084070 | Voll et al. | Jul 2002 | A1 |
20020092654 | Coronado et al. | Jul 2002 | A1 |
20020108756 | Harrall et al. | Aug 2002 | A1 |
20020139540 | Lauritzen | Oct 2002 | A1 |
20020144822 | Hackworth et al. | Oct 2002 | A1 |
20020148612 | Cook et al. | Oct 2002 | A1 |
20020185274 | Simpson et al. | Dec 2002 | A1 |
20020189816 | Cook et al. | Dec 2002 | A1 |
20020195252 | Maguire et al. | Dec 2002 | A1 |
20020195256 | Metcalfe et al. | Dec 2002 | A1 |
20030024708 | Ring et al. | Feb 2003 | A1 |
20030024711 | Simpson et al. | Feb 2003 | A1 |
20030034177 | Chitwood et al. | Feb 2003 | A1 |
20030042022 | Lauritzen et al. | Mar 2003 | A1 |
20030047322 | Maguire et al. | Mar 2003 | A1 |
20030047323 | Jackson et al. | Mar 2003 | A1 |
20030056991 | Hahn et al. | Mar 2003 | A1 |
20030066655 | Cook et al. | Apr 2003 | A1 |
20030067166 | Sivley, IV | Apr 2003 | A1 |
20030075337 | Maguire | Apr 2003 | A1 |
20030075338 | Sivley, IV | Apr 2003 | A1 |
20030075339 | Gano et al. | Apr 2003 | A1 |
20030094277 | Cook et al. | May 2003 | A1 |
20030094278 | Cook et al. | May 2003 | A1 |
20030094279 | Ring et al. | May 2003 | A1 |
20030098154 | Cook et al. | May 2003 | A1 |
20030098162 | Cook | May 2003 | A1 |
20030107217 | Daigle et al. | Jun 2003 | A1 |
20030111234 | McClurkin et al. | Jun 2003 | A1 |
20030116318 | Metcalfe | Jun 2003 | A1 |
20030116325 | Cook et al. | Jun 2003 | A1 |
20030121558 | Cook et al. | Jul 2003 | A1 |
20030121655 | Lauritzen et al. | Jul 2003 | A1 |
20030121669 | Cook et al. | Jul 2003 | A1 |
20030140673 | Marr et al. | Jul 2003 | A1 |
20030150608 | Smith et al. | Aug 2003 | A1 |
20030159764 | Goto | Aug 2003 | A1 |
20030168222 | Maguire et al. | Sep 2003 | A1 |
20030173090 | Cook et al. | Sep 2003 | A1 |
20030192705 | Cook et al. | Oct 2003 | A1 |
20030221841 | Burtner et al. | Dec 2003 | A1 |
20030222455 | Cook et al. | Dec 2003 | A1 |
20040011534 | Simonds et al. | Jan 2004 | A1 |
20040045616 | Cook et al. | Mar 2004 | A1 |
20040045718 | Brisco et al. | Mar 2004 | A1 |
20040055758 | Brezinski et al. | Mar 2004 | A1 |
20040060706 | Stephenson | Apr 2004 | A1 |
20040065446 | Tran et al. | Apr 2004 | A1 |
20040069499 | Cook et al. | Apr 2004 | A1 |
20040112589 | Cook et al. | Jun 2004 | A1 |
20040112606 | Lewis et al. | Jun 2004 | A1 |
20040112610 | Tran et al. | Jun 2004 | A1 |
20040118574 | Cook et al. | Jun 2004 | A1 |
20040123983 | Cook et al. | Jul 2004 | A1 |
20040123988 | Cook et al. | Jul 2004 | A1 |
20040129431 | Jackson | Jul 2004 | A1 |
20040159446 | Haugen et al. | Aug 2004 | A1 |
20040174017 | Brill et al. | Sep 2004 | A1 |
20040188099 | Cook et al. | Sep 2004 | A1 |
20040194278 | Brill et al. | Oct 2004 | A1 |
20040194966 | Zimmerman | Oct 2004 | A1 |
20040195826 | Goto | Oct 2004 | A1 |
20040216506 | Simpson et al. | Nov 2004 | A1 |
20040216873 | Frost, Jr. et al. | Nov 2004 | A1 |
20040221996 | Burge | Nov 2004 | A1 |
20040228679 | Reavis et al. | Nov 2004 | A1 |
20040231839 | Ellington et al. | Nov 2004 | A1 |
20040231843 | Simpson et al. | Nov 2004 | A1 |
20040231855 | Cook et al. | Nov 2004 | A1 |
20040238181 | Cook et al. | Dec 2004 | A1 |
20040244968 | Cook et al. | Dec 2004 | A1 |
20040251034 | Kendziora et al. | Dec 2004 | A1 |
20040262014 | Cook et al. | Dec 2004 | A1 |
20050011641 | Cook et al. | Jan 2005 | A1 |
20050015963 | Costa et al. | Jan 2005 | A1 |
20050028988 | Cook et al. | Feb 2005 | A1 |
20050039910 | Lohbeck | Feb 2005 | A1 |
20050039928 | Cook et al. | Feb 2005 | A1 |
20050045324 | Cook et al. | Mar 2005 | A1 |
20050045341 | Cook et al. | Mar 2005 | A1 |
20050045342 | Luke et al. | Mar 2005 | A1 |
20050056433 | Ring et al. | Mar 2005 | A1 |
20050056434 | Watson et al. | Mar 2005 | A1 |
20050077051 | Cook et al. | Apr 2005 | A1 |
20050081358 | Cook et al. | Apr 2005 | A1 |
20050087337 | Brisco et al. | Apr 2005 | A1 |
20050098323 | Cook et al. | May 2005 | A1 |
20050103502 | Watson et al. | May 2005 | A1 |
20050123639 | Ring et al. | Jun 2005 | A1 |
20050133225 | Oosterling | Jun 2005 | A1 |
20050138790 | Cook et al. | Jun 2005 | A1 |
20050144771 | Cook et al. | Jul 2005 | A1 |
20050144772 | Cook et al. | Jul 2005 | A1 |
20050144777 | Cook et al. | Jul 2005 | A1 |
20050150098 | Cook et al. | Jul 2005 | A1 |
20050150660 | Cook et al. | Jul 2005 | A1 |
20050161228 | Cook et al. | Jul 2005 | A1 |
20050166387 | Cook et al. | Aug 2005 | A1 |
20050166388 | Cook et al. | Aug 2005 | A1 |
20050172473 | Cook et al. | Aug 2005 | A1 |
20050173108 | Cook | Aug 2005 | A1 |
20050183863 | Cook et al. | Aug 2005 | A1 |
20050205253 | Cook et al. | Sep 2005 | A1 |
20050217768 | Asahi et al. | Oct 2005 | A1 |
20050217865 | Ring | Oct 2005 | A1 |
20050217866 | Watson et al. | Oct 2005 | A1 |
20050223535 | Cook et al. | Oct 2005 | A1 |
20050224225 | Cook et al. | Oct 2005 | A1 |
20050230102 | Cook et al. | Oct 2005 | A1 |
20050230103 | Cook et al. | Oct 2005 | A1 |
20050230104 | Cook et al. | Oct 2005 | A1 |
20050230123 | Waddell et al. | Oct 2005 | A1 |
20050236159 | Costa et al. | Oct 2005 | A1 |
20050236163 | Cook et al. | Oct 2005 | A1 |
20050244578 | Van Egmond et al. | Nov 2005 | A1 |
20050246883 | Alliot et al. | Nov 2005 | A1 |
20050247453 | Shuster et al. | Nov 2005 | A1 |
20050265788 | Renkema | Dec 2005 | A1 |
20050269107 | Cook et al. | Dec 2005 | A1 |
20060027371 | Gorrara | Feb 2006 | A1 |
20060032640 | Costa et al. | Feb 2006 | A1 |
20060048948 | Noel | Mar 2006 | A1 |
20060054330 | Ring et al. | Mar 2006 | A1 |
20060065403 | Watson et al. | Mar 2006 | A1 |
20060065406 | Shuster et al. | Mar 2006 | A1 |
20060096762 | Brisco | May 2006 | A1 |
20060102360 | Brisco | May 2006 | A1 |
20060112768 | Shuster et al. | Jun 2006 | A1 |
20060113086 | Costa et al. | Jun 2006 | A1 |
20060162937 | Costa et al. | Jul 2006 | A1 |
20060163460 | Kerstan et al. | Jul 2006 | A1 |
20060196679 | Brisco et al. | Sep 2006 | A1 |
20060207760 | Watson et al. | Sep 2006 | A1 |
20060208488 | Costa | Sep 2006 | A1 |
20060213668 | Cook et al. | Sep 2006 | A1 |
20060219414 | Shuster | Oct 2006 | A1 |
20060225892 | Watson et al. | Oct 2006 | A1 |
20060243444 | Brisco et al. | Nov 2006 | A1 |
20060266527 | Brisco et al. | Nov 2006 | A1 |
20060272826 | Shuster et al. | Dec 2006 | A1 |
20070012456 | Cook et al. | Jan 2007 | A1 |
20070017572 | Cook et al. | Jan 2007 | A1 |
20070034383 | Shuster et al. | Feb 2007 | A1 |
20070039742 | Costa | Feb 2007 | A1 |
20070131431 | Shuster et al. | Jun 2007 | A1 |
20070154270 | Waddell et al. | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
01269810 | Jun 2000 | AU |
767364 | Jun 2000 | AU |
770008 | Aug 2000 | AU |
770359 | Aug 2000 | AU |
771884 | Aug 2000 | AU |
776580 | Jan 2001 | AU |
782901 | Apr 2001 | AU |
783245 | May 2001 | AU |
773168 | Jul 2001 | AU |
780123 | Aug 2001 | AU |
01283026 | Feb 2002 | AU |
01292695 | Mar 2002 | AU |
01294802 | Apr 2002 | AU |
02239857 | Sep 2002 | AU |
736288 | Jun 1966 | CA |
771462 | Nov 1967 | CA |
1171310 | Jul 1984 | CA |
2289811 | Nov 1999 | CA |
2292171 | Jun 2000 | CA |
2497854 | Jun 2000 | CA |
2298139 | Aug 2000 | CA |
2414449 | Feb 2002 | CA |
2419806 | Apr 2002 | CA |
2453034 | Jan 2003 | CA |
2234386 | Mar 2003 | CA |
2398001 | Apr 2003 | CA |
2466685 | Mar 2004 | CA |
2249139 | Jan 2007 | CA |
174521 | Sep 1952 | DE |
2458188 | Jun 1975 | DE |
203767 | Nov 1983 | DE |
233607 | Mar 1986 | DE |
278517 | May 1990 | DE |
0084940 | Aug 1983 | EP |
0272511 | Jun 1988 | EP |
0294264 | Dec 1988 | EP |
0553566 | Aug 1993 | EP |
620289 | Oct 1994 | EP |
0633391 | Jan 1995 | EP |
0713953 | Nov 1995 | EP |
0823534 | Feb 1998 | EP |
0881354 | Dec 1998 | EP |
0881359 | Dec 1998 | EP |
0899420 | Mar 1999 | EP |
0937861 | Jun 1999 | EP |
0952305 | Oct 1999 | EP |
0952306 | Oct 1999 | EP |
1141515 | Jun 2000 | EP |
1235972 | May 2001 | EP |
1106778 | Jun 2001 | EP |
1152119 | Nov 2001 | EP |
1152120 | Nov 2001 | EP |
1152120 | Jun 2002 | EP |
1306519 | May 2003 | EP |
1505251 | Feb 2005 | EP |
1505251 | Feb 2005 | EP |
1555386 | Jul 2005 | EP |
1505251 | Feb 2007 | EP |
1325596 | Mar 1963 | FR |
2583398 | Dec 1986 | FR |
2771133 | May 1990 | FR |
2717855 | Sep 1995 | FR |
2741907 | Jun 1997 | FR |
2780751 | Jan 2000 | FR |
2841626 | Jan 2004 | FR |
2275705 | Mar 1942 | GB |
557823 | Dec 1943 | GB |
788150 | Dec 1957 | GB |
851096 | Oct 1960 | GB |
961750 | Jun 1964 | GB |
1000383 | Oct 1965 | GB |
1008383 | Oct 1965 | GB |
1062610 | Mar 1967 | GB |
1111536 | May 1968 | GB |
1520552 | Aug 1976 | GB |
1448304 | Sep 1976 | GB |
1460864 | Jan 1977 | GB |
1542847 | Mar 1979 | GB |
1563740 | Mar 1980 | GB |
1582767 | Jan 1981 | GB |
2058877 | Apr 1981 | GB |
2108228 | May 1983 | GB |
2115860 | Sep 1983 | GB |
2124275 | Feb 1984 | GB |
2125876 | Mar 1984 | GB |
2194978 | Mar 1988 | GB |
2211446 | Jul 1989 | GB |
2211573 | Jul 1989 | GB |
2216926 | Oct 1989 | GB |
2243191 | Oct 1991 | GB |
2256910 | Dec 1992 | GB |
2257184 | Jan 1993 | GB |
2275705 | Sep 1994 | GB |
2279383 | Jan 1995 | GB |
2305682 | Apr 1997 | GB |
2322655 | Sep 1998 | GB |
2325949 | Dec 1998 | GB |
2326896 | Jan 1999 | GB |
2329916 | Apr 1999 | GB |
2331103 | May 1999 | GB |
2329918 | Jul 1999 | GB |
2336383 | Oct 1999 | GB |
2343691 | May 2000 | GB |
2344606 | Jun 2000 | GB |
2345308 | Jul 2000 | GB |
2346165 | Aug 2000 | GB |
2346632 | Aug 2000 | GB |
2347445 | Sep 2000 | GB |
2347446 | Sep 2000 | GB |
2347950 | Sep 2000 | GB |
2347952 | Sep 2000 | GB |
2348223 | Sep 2000 | GB |
2348657 | Oct 2000 | GB |
2348661 | Oct 2000 | GB |
2350137 | Nov 2000 | GB |
2355738 | Dec 2000 | GB |
2356651 | May 2001 | GB |
2357099 | Jun 2001 | GB |
2359837 | Sep 2001 | GB |
2361724 | Oct 2001 | GB |
2365898 | Feb 2002 | GB |
2367842 | Apr 2002 | GB |
2368865 | May 2002 | GB |
2370301 | Jun 2002 | GB |
2371064 | Jul 2002 | GB |
2371574 | Jul 2002 | GB |
2373524 | Sep 2002 | GB |
2374098 | Oct 2002 | GB |
2374622 | Oct 2002 | GB |
2375560 | Nov 2002 | GB |
2380213 | Apr 2003 | GB |
2380503 | Apr 2003 | GB |
2381019 | Apr 2003 | GB |
2343691 | May 2003 | GB |
2382364 | May 2003 | GB |
2382607 | Jun 2003 | GB |
2382828 | Jun 2003 | GB |
2344606 | Aug 2003 | GB |
2347950 | Aug 2003 | GB |
2380213 | Aug 2003 | GB |
2380214 | Aug 2003 | GB |
2380215 | Aug 2003 | GB |
2384807 | Aug 2003 | GB |
2348223 | Sep 2003 | GB |
2347952 | Oct 2003 | GB |
2348657 | Oct 2003 | GB |
2358358 | Oct 2003 | GB |
2358359 | Oct 2003 | GB |
2384800 | Oct 2003 | GB |
2384801 | Oct 2003 | GB |
2384802 | Oct 2003 | GB |
2384803 | Oct 2003 | GB |
2384804 | Oct 2003 | GB |
2384805 | Oct 2003 | GB |
2384806 | Oct 2003 | GB |
2384807 | Oct 2003 | GB |
2384808 | Oct 2003 | GB |
2385353 | Oct 2003 | GB |
2385354 | Oct 2003 | GB |
2385355 | Oct 2003 | GB |
2385356 | Oct 2003 | GB |
2385357 | Oct 2003 | GB |
2385360 | Oct 2003 | GB |
2385361 | Oct 2003 | GB |
2385362 | Oct 2003 | GB |
2385363 | Oct 2003 | GB |
2385619 | Oct 2003 | GB |
2385620 | Oct 2003 | GB |
2385621 | Oct 2003 | GB |
2385622 | Oct 2003 | GB |
2385623 | Oct 2003 | GB |
2387405 | Oct 2003 | GB |
2387861 | Oct 2003 | GB |
2388134 | Nov 2003 | GB |
2388860 | Nov 2003 | GB |
2355738 | Dec 2003 | GB |
2374622 | Dec 2003 | GB |
2388391 | Dec 2003 | GB |
2388392 | Dec 2003 | GB |
2388393 | Dec 2003 | GB |
2388394 | Dec 2003 | GB |
2388395 | Dec 2003 | GB |
2391028 | Jan 2004 | GB |
2356651 | Feb 2004 | GB |
2368865 | Feb 2004 | GB |
2388860 | Feb 2004 | GB |
2388861 | Feb 2004 | GB |
2388862 | Feb 2004 | GB |
2391886 | Feb 2004 | GB |
2390628 | Mar 2004 | GB |
2391033 | Mar 2004 | GB |
2392686 | Mar 2004 | GB |
2393199 | Mar 2004 | GB |
2373524 | Apr 2004 | GB |
2390387 | Apr 2004 | GB |
2392686 | Apr 2004 | GB |
2392691 | Apr 2004 | GB |
2391575 | May 2004 | GB |
2394979 | May 2004 | GB |
2395506 | May 2004 | GB |
2392932 | Jun 2004 | GB |
2395734 | Jun 2004 | GB |
2396634 | Jun 2004 | GB |
2396635 | Jun 2004 | GB |
2396640 | Jun 2004 | GB |
2396641 | Jun 2004 | GB |
2396642 | Jun 2004 | GB |
2396643 | Jun 2004 | GB |
2396644 | Jun 2004 | GB |
2396646 | Jun 2004 | GB |
2373468 | Jul 2004 | GB |
2396689 | Jul 2004 | GB |
2397261 | Jul 2004 | GB |
2397262 | Jul 2004 | GB |
2397263 | Jul 2004 | GB |
2397264 | Jul 2004 | GB |
2397265 | Jul 2004 | GB |
2398087 | Aug 2004 | GB |
2398317 | Aug 2004 | GB |
2398318 | Aug 2004 | GB |
2398319 | Aug 2004 | GB |
2398320 | Aug 2004 | GB |
2398321 | Aug 2004 | GB |
2398322 | Aug 2004 | GB |
2398323 | Aug 2004 | GB |
2398326 | Aug 2004 | GB |
2382367 | Sep 2004 | GB |
2396641 | Sep 2004 | GB |
2396643 | Sep 2004 | GB |
2397261 | Sep 2004 | GB |
2397262 | Sep 2004 | GB |
2397263 | Sep 2004 | GB |
2397264 | Sep 2004 | GB |
2397265 | Sep 2004 | GB |
2399120 | Sep 2004 | GB |
2399579 | Sep 2004 | GB |
2399580 | Sep 2004 | GB |
2399837 | Sep 2004 | GB |
2399848 | Sep 2004 | GB |
2399849 | Sep 2004 | GB |
2399850 | Sep 2004 | GB |
2384502 | Oct 2004 | GB |
2396644 | Oct 2004 | GB |
2400126 | Oct 2004 | GB |
2400393 | Oct 2004 | GB |
2400624 | Oct 2004 | GB |
2396640 | Nov 2004 | GB |
2396642 | Nov 2004 | GB |
2401136 | Nov 2004 | GB |
2401137 | Nov 2004 | GB |
2401138 | Nov 2004 | GB |
2401630 | Nov 2004 | GB |
2401631 | Nov 2004 | GB |
2401632 | Nov 2004 | GB |
2401634 | Nov 2004 | GB |
2401635 | Nov 2004 | GB |
2401636 | Nov 2004 | GB |
2401637 | Nov 2004 | GB |
2401638 | Nov 2004 | GB |
2401639 | Nov 2004 | GB |
4401633 | Nov 2004 | GB |
2381019 | Dec 2004 | GB |
2382368 | Dec 2004 | GB |
2401136 | Dec 2004 | GB |
2401137 | Dec 2004 | GB |
2401138 | Dec 2004 | GB |
2403970 | Jan 2005 | GB |
2403971 | Jan 2005 | GB |
2403972 | Jan 2005 | GB |
2040402 | Feb 2005 | GB |
2400624 | Feb 2005 | GB |
2404676 | Feb 2005 | GB |
2404677 | Feb 2005 | GB |
2404680 | Feb 2005 | GB |
2388134 | Mar 2005 | GB |
2398320 | Mar 2005 | GB |
2398323 | Mar 2005 | GB |
2399120 | Mar 2005 | GB |
2399848 | Mar 2005 | GB |
2399849 | Mar 2005 | GB |
2405893 | Mar 2005 | GB |
2406117 | Mar 2005 | GB |
2406118 | Mar 2005 | GB |
2406119 | Mar 2005 | GB |
2406120 | Mar 2005 | GB |
2406125 | Mar 2005 | GB |
2406599 | Apr 2005 | GB |
2389597 | May 2005 | GB |
2399119 | May 2005 | GB |
2399580 | May 2005 | GB |
2401630 | May 2005 | GB |
2401631 | May 2005 | GB |
2401632 | May 2005 | GB |
2401633 | May 2005 | GB |
2401634 | May 2005 | GB |
2401635 | May 2005 | GB |
2401636 | May 2005 | GB |
2401637 | May 2005 | GB |
2401638 | May 2005 | GB |
2401639 | May 2005 | GB |
2407593 | May 2005 | GB |
2408277 | May 2005 | GB |
2408278 | May 2005 | GB |
2399579 | Jun 2005 | GB |
2409216 | Jun 2005 | GB |
2409218 | Jun 2005 | GB |
2401893 | Jul 2005 | GB |
2410280 | Jul 2005 | GB |
2390622 | Aug 2005 | GB |
2398326 | Aug 2005 | GB |
2403970 | Aug 2005 | GB |
2403971 | Aug 2005 | GB |
2403972 | Aug 2005 | GB |
2410518 | Aug 2005 | GB |
2380503 | Oct 2005 | GB |
2398317 | Oct 2005 | GB |
2398318 | Oct 2005 | GB |
2398319 | Oct 2005 | GB |
2398321 | Oct 2005 | GB |
2398322 | Oct 2005 | GB |
2400393 | Oct 2005 | GB |
2412681 | Oct 2005 | GB |
2412682 | Oct 2005 | GB |
2394979 | Nov 2005 | GB |
2414493 | Nov 2005 | GB |
2409217 | Dec 2005 | GB |
2410518 | Dec 2005 | GB |
2414749 | Dec 2005 | GB |
2414750 | Dec 2005 | GB |
2414751 | Dec 2005 | GB |
2415003 | Dec 2005 | GB |
2415215 | Dec 2005 | GB |
2415219 | Dec 2005 | GB |
2395506 | Jan 2006 | GB |
2412681 | Jan 2006 | GB |
2412682 | Jan 2006 | GB |
2415979 | Jan 2006 | GB |
2415982 | Jan 2006 | GB |
2415983 | Jan 2006 | GB |
2415987 | Jan 2006 | GB |
2415988 | Jan 2006 | GB |
2416177 | Jan 2006 | GB |
2416361 | Jan 2006 | GB |
2408278 | Feb 2006 | GB |
2416556 | Feb 2006 | GB |
2416794 | Feb 2006 | GB |
2416795 | Feb 2006 | GB |
2417273 | Feb 2006 | GB |
2417275 | Feb 2006 | GB |
2406126 | Mar 2006 | GB |
2418216 | Mar 2006 | GB |
2418217 | Mar 2006 | GB |
2418690 | Apr 2006 | GB |
2418941 | Apr 2006 | GB |
2418942 | Apr 2006 | GB |
2418943 | Apr 2006 | GB |
2418944 | Apr 2006 | GB |
2419907 | May 2006 | GB |
2419913 | May 2006 | GB |
2400126 | Jun 2006 | GB |
2414749 | Jun 2006 | GB |
2420810 | Jun 2006 | GB |
2421257 | Jun 2006 | GB |
2421258 | Jun 2006 | GB |
2421259 | Jun 2006 | GB |
2421262 | Jun 2006 | GB |
2421529 | Jun 2006 | GB |
2422164 | Jul 2006 | GB |
2406599 | Aug 2006 | GB |
2414493 | Aug 2006 | GB |
2418690 | Aug 2006 | GB |
2418944 | Aug 2006 | GB |
2421257 | Aug 2006 | GB |
2421258 | Aug 2006 | GB |
2421259 | Aug 2006 | GB |
2422859 | Aug 2006 | GB |
2422860 | Aug 2006 | GB |
2423317 | Aug 2006 | GB |
2404676 | Sep 2006 | GB |
2418941 | Sep 2006 | GB |
2418942 | Sep 2006 | GB |
2418943 | Sep 2006 | GB |
2424077 | Sep 2006 | GB |
2405893 | Oct 2006 | GB |
2413136 | Oct 2006 | GB |
2417273 | Oct 2006 | GB |
2418216 | Oct 2006 | GB |
2418217 | Oct 2006 | GB |
2419907 | Oct 2006 | GB |
2422860 | Oct 2006 | GB |
2406125 | Nov 2006 | GB |
2415004 | Dec 2006 | GB |
2422859 | Dec 2006 | GB |
2423317 | Dec 2006 | GB |
2426993 | Dec 2006 | GB |
2427636 | Jan 2007 | GB |
2427885 | Jan 2007 | GB |
2427886 | Jan 2007 | GB |
2429482 | Feb 2007 | GB |
2410280 | Apr 2007 | GB |
2412178 | May 2007 | GB |
2415215 | May 2007 | GB |
H3-HC.02.P01.012.197 | Aug 2004 | ID |
044392 | Sep 2005 | ID |
046.2804 | Aug 2006 | ID |
208458 | Oct 1985 | JP |
6475715 | Mar 1989 | JP |
102875 | Apr 1995 | JP |
11-169975 | Jun 1999 | JP |
94068 | Apr 2000 | JP |
107870 | Apr 2000 | JP |
162192 | Jun 2000 | JP |
2001-47161 | Feb 2001 | JP |
9001081 | Dec 1991 | NL |
113267 | May 1998 | RO |
1786241 | Jan 1993 | RU |
1804543 | Mar 1993 | RU |
1810482 | Apr 1993 | RU |
1818459 | May 1993 | RU |
2016345 | Jul 1994 | RU |
1295799 | Feb 1995 | RU |
2039214 | Jul 1995 | RU |
2056201 | Mar 1996 | RU |
2064357 | Jul 1996 | RU |
2068940 | Nov 1996 | RU |
2068943 | Nov 1996 | RU |
2079633 | May 1997 | RU |
2083798 | Jul 1997 | RU |
2091655 | Sep 1997 | RU |
2095179 | Nov 1997 | RU |
2105128 | Feb 1998 | RU |
2108445 | Apr 1998 | RU |
2144128 | Jan 2000 | RU |
350833 | Sep 1972 | SU |
511468 | Sep 1976 | SU |
607950 | May 1978 | SU |
612004 | Jun 1978 | SU |
620582 | Aug 1978 | SU |
641070 | Jan 1979 | SU |
909114 | May 1979 | SU |
874952 | Jun 1979 | SU |
832049 | May 1981 | SU |
976019 | May 1981 | SU |
976020 | May 1981 | SU |
853089 | Aug 1981 | SU |
894169 | Dec 1981 | SU |
899850 | Jan 1982 | SU |
907220 | Feb 1982 | SU |
953172 | Aug 1982 | SU |
959878 | Sep 1982 | SU |
989038 | Jan 1983 | SU |
1002514 | Mar 1983 | SU |
1041671 | Sep 1983 | SU |
1051222 | Oct 1983 | SU |
1077803 | Mar 1984 | SU |
1086118 | Apr 1984 | SU |
1158400 | May 1985 | SU |
1212575 | Feb 1986 | SU |
1250637 | Aug 1986 | SU |
1324722 | Jul 1987 | SU |
1411434 | Jul 1988 | SU |
1430498 | Oct 1988 | SU |
1432190 | Oct 1988 | SU |
1601330 | Oct 1990 | SU |
1627663 | Feb 1991 | SU |
1659621 | Jun 1991 | SU |
1663179 | Jul 1991 | SU |
1663180 | Jul 1991 | SU |
1677225 | Sep 1991 | SU |
1677248 | Sep 1991 | SU |
1686123 | Oct 1991 | SU |
1686124 | Oct 1991 | SU |
1686125 | Oct 1991 | SU |
1698413 | Dec 1991 | SU |
1710694 | Feb 1992 | SU |
1730429 | Apr 1992 | SU |
1745873 | Jul 1992 | SU |
1747673 | Jul 1992 | SU |
1749267 | Jul 1992 | SU |
WO 8100132 | Jan 1981 | WO |
WO 9005598 | May 1990 | WO |
WO 9201859 | Feb 1992 | WO |
WO 9208875 | May 1992 | WO |
WO 9325799 | Dec 1993 | WO |
WO 9325800 | Dec 1993 | WO |
WO 9325800 | Dec 1993 | WO |
WO 9421887 | Sep 1994 | WO |
WO 9425655 | Nov 1994 | WO |
WO 9503476 | Feb 1995 | WO |
WO 9601937 | Jan 1996 | WO |
WO 9610710 | Apr 1996 | WO |
WO 9621083 | Jul 1996 | WO |
WO 9626350 | Aug 1996 | WO |
WO 9610710 | Nov 1996 | WO |
WO 9637681 | Nov 1996 | WO |
WO 9706346 | Feb 1997 | WO |
WO 9711306 | Mar 1997 | WO |
WO 9717524 | May 1997 | WO |
WO 9717526 | May 1997 | WO |
WO 9717527 | May 1997 | WO |
WO 9720130 | Jun 1997 | WO |
WO 9721901 | Jun 1997 | WO |
WO 9735084 | Sep 1997 | WO |
WO 9800626 | Jan 1998 | WO |
WO 9807957 | Feb 1998 | WO |
WO 9809053 | Mar 1998 | WO |
WO 9822690 | May 1998 | WO |
WO 9822690 | May 1998 | WO |
WO 9826152 | Jun 1998 | WO |
WO 9842947 | Oct 1998 | WO |
WO 9842947 | Oct 1998 | WO |
WO 9849423 | Nov 1998 | WO |
WO 9902818 | Jan 1999 | WO |
WO 9904135 | Jan 1999 | WO |
WO 9906670 | Feb 1999 | WO |
WO 9908827 | Feb 1999 | WO |
WO 9908828 | Feb 1999 | WO |
WO 9918328 | Apr 1999 | WO |
WO 9923354 | May 1999 | WO |
WO 9925524 | May 1999 | WO |
WO 9925951 | May 1999 | WO |
WO 9935368 | Jul 1999 | WO |
WO 9943923 | Sep 1999 | WO |
WO 0001926 | Jan 2000 | WO |
WO 0004271 | Jan 2000 | WO |
WO 03000690 | Jan 2000 | WO |
WO 0008301 | Feb 2000 | WO |
WO 0008301 | Feb 2000 | WO |
WO 0018635 | Apr 2000 | WO |
WO 0026500 | May 2000 | WO |
WO 0026501 | May 2000 | WO |
WO 0026502 | May 2000 | WO |
WO 0031375 | Jun 2000 | WO |
WO 0037766 | Jun 2000 | WO |
WO 0037767 | Jun 2000 | WO |
WO 0037768 | Jun 2000 | WO |
WO 0037771 | Jun 2000 | WO |
WO 0037772 | Jun 2000 | WO |
WO 0039432 | Jul 2000 | WO |
WO 0046484 | Aug 2000 | WO |
WO 0050727 | Aug 2000 | WO |
WO 0050732 | Aug 2000 | WO |
WO 0050733 | Aug 2000 | WO |
WO 0066877 | Nov 2000 | WO |
WO 0077431 | Dec 2000 | WO |
WO 0104520 | Jan 2001 | WO |
WO 0104535 | Jan 2001 | WO |
WO 01047161 | Feb 2001 | WO |
WO 0118353 | Mar 2001 | WO |
WO 0118354 | Mar 2001 | WO |
WO 0121929 | Mar 2001 | WO |
WO 0126860 | Apr 2001 | WO |
WO 0133037 | May 2001 | WO |
WO 0138693 | May 2001 | WO |
WO 0160545 | Aug 2001 | WO |
WO 0183943 | Nov 2001 | WO |
WO 0198623 | Dec 2001 | WO |
WO 0201102 | Jan 2002 | WO |
WO 0210550 | Feb 2002 | WO |
WO 0210551 | Feb 2002 | WO |
WO 0220941 | Mar 2002 | WO |
WO 0223007 | Mar 2002 | WO |
WO 0225059 | Mar 2002 | WO |
WO 0228560 | Apr 2002 | WO |
WO 0229199 | Apr 2002 | WO |
WO 0238343 | May 2002 | WO |
WO 0238343 | May 2002 | WO |
WO 0240825 | May 2002 | WO |
WO 02053867 | Jul 2002 | WO |
WO 02053867 | Jul 2002 | WO |
WO 02059456 | Aug 2002 | WO |
WO 02066783 | Aug 2002 | WO |
WO 02068792 | Sep 2002 | WO |
WO 02073000 | Sep 2002 | WO |
WO 02075107 | Sep 2002 | WO |
WO 02077411 | Oct 2002 | WO |
WO 02081863 | Oct 2002 | WO |
WO 02081864 | Oct 2002 | WO |
WO 02086285 | Oct 2002 | WO |
WO 02086286 | Oct 2002 | WO |
WO 02090713 | Nov 2002 | WO |
WO 02095181 | Nov 2002 | WO |
WO 02163192 | Nov 2002 | WO |
WO 02103150 | Dec 2002 | WO |
WO 03004819 | Jan 2003 | WO |
WO 03004819 | Jan 2003 | WO |
WO 03004820 | Jan 2003 | WO |
WO 03004820 | Jan 2003 | WO |
WO 03004837 | Jan 2003 | WO |
WO 03008756 | Jan 2003 | WO |
WO 03012255 | Feb 2003 | WO |
WO 03014153 | Feb 2003 | WO |
WO 03016669 | Feb 2003 | WO |
WO 03016669 | Feb 2003 | WO |
WO 03023178 | Mar 2003 | WO |
WO 03023178 | Mar 2003 | WO |
WO 03023179 | Mar 2003 | WO |
WO 03023179 | Mar 2003 | WO |
WO 03029607 | Apr 2003 | WO |
WO 03029608 | Apr 2003 | WO |
WO 03036018 | May 2003 | WO |
WO 03042486 | May 2003 | WO |
WO 03042486 | May 2003 | WO |
WO 03042487 | May 2003 | WO |
WO 03042487 | May 2003 | WO |
WO 03042489 | May 2003 | WO |
WO 03048520 | Jun 2003 | WO |
WO 03048521 | Jun 2003 | WO |
WO 03055616 | Jul 2003 | WO |
WO 03058022 | Jul 2003 | WO |
WO 03058022 | Jul 2003 | WO |
WO 03059549 | Jul 2003 | WO |
WO 03064813 | Aug 2003 | WO |
WO 03069115 | Aug 2003 | WO |
WO 03071086 | Aug 2003 | WO |
WO 03071086 | Aug 2003 | WO |
WO 03078785 | Sep 2003 | WO |
WO 03078785 | Sep 2003 | WO |
WO 03086675 | Oct 2003 | WO |
WO 03086675 | Oct 2003 | WO |
WO 03089161 | Oct 2003 | WO |
WO 03089161 | Oct 2003 | WO |
WO 03093623 | Nov 2003 | WO |
WO 03093623 | Nov 2003 | WO |
WO 03093624 | Nov 2003 | WO |
WO 03102365 | Dec 2003 | WO |
WO 03104601 | Dec 2003 | WO |
WO 03104601 | Dec 2003 | WO |
WO 03106130 | Dec 2003 | WO |
WO 03106130 | Dec 2003 | WO |
WO 2004000337 | Jan 2004 | WO |
WO 2004007711 | Jan 2004 | WO |
WO 2004008073 | Jan 2004 | WO |
WO 2004009950 | Jan 2004 | WO |
WO 2004010039 | Jan 2004 | WO |
WO 2004010039 | Jan 2004 | WO |
WO 2004010317 | Jan 2004 | WO |
WO 2004010712 | Jan 2004 | WO |
WO 2004010762 | Feb 2004 | WO |
WO 2004011776 | Feb 2004 | WO |
WO 2004011776 | Feb 2004 | WO |
WO 2004011973 | Feb 2004 | WO |
WO 2004013462 | Feb 2004 | WO |
WO 2004015241 | Feb 2004 | WO |
WO 2004018823 | Mar 2004 | WO |
WO 2004018823 | Mar 2004 | WO |
WO 2004018824 | Mar 2004 | WO |
WO 2004018824 | Mar 2004 | WO |
WO 2004020895 | Mar 2004 | WO |
WO 2004020895 | Mar 2004 | WO |
WO 2004023014 | Mar 2004 | WO |
WO 2004023014 | Mar 2004 | WO |
WO 2004026017 | Apr 2004 | WO |
WO 2004026017 | Apr 2004 | WO |
WO 2004026073 | Apr 2004 | WO |
WO 2004026073 | Apr 2004 | WO |
WO 2004026500 | Apr 2004 | WO |
WO 2004026500 | Apr 2004 | WO |
WO 2004027200 | Apr 2004 | WO |
WO 2004027200 | Apr 2004 | WO |
WO 2004027201 | Apr 2004 | WO |
WO 2004027201 | Apr 2004 | WO |
WO 2004027204 | Apr 2004 | WO |
WO 2004027204 | Apr 2004 | WO |
WO 2004027205 | Apr 2004 | WO |
WO 2004027205 | Apr 2004 | WO |
WO 2004027318 | Apr 2004 | WO |
WO 2004027392 | Apr 2004 | WO |
WO 2004027786 | Apr 2004 | WO |
WO 2004027786 | Apr 2004 | WO |
WO 2004028936 | Apr 2004 | WO |
WO 2004053434 | Jun 2004 | WO |
WO 2004053434 | Jun 2004 | WO |
WO 2004057715 | Jul 2004 | WO |
WO 2004057715 | Jul 2004 | WO |
WO 2004067961 | Aug 2004 | WO |
WO 2004067961 | Aug 2004 | WO |
WO 2004072436 | Aug 2004 | WO |
WO 2004074622 | Sep 2004 | WO |
WO 2004074622 | Sep 2004 | WO |
WO 2004076798 | Sep 2004 | WO |
WO 2004076798 | Sep 2004 | WO |
WO 2004081346 | Sep 2004 | WO |
WO 2004083591 | Sep 2004 | WO |
WO 2004083591 | Sep 2004 | WO |
WO 2004083592 | Sep 2004 | WO |
WO 2004083592 | Sep 2004 | WO |
WO 2004083593 | Sep 2004 | WO |
WO 2004083594 | Sep 2004 | WO |
WO 2004083594 | Sep 2004 | WO |
WO 2004085790 | Oct 2004 | WO |
WO 2004089608 | Oct 2004 | WO |
WO 2004089608 | Oct 2004 | WO |
WO 2004092527 | Oct 2004 | WO |
WO 2004092528 | Oct 2004 | WO |
WO 2004092528 | Oct 2004 | WO |
WO 2004092530 | Oct 2004 | WO |
WO 2004092530 | Oct 2004 | WO |
WO 2004094766 | Nov 2004 | WO |
WO 2004094766 | Nov 2004 | WO |
WO 02005017303 | Feb 2005 | WO |
WO 2005021921 | Mar 2005 | WO |
WO 2005021921 | Mar 2005 | WO |
WO 2005021922 | Mar 2005 | WO |
WO 2005021922 | Mar 2005 | WO |
WO 2005023391 | Mar 2005 | WO |
WO 2005024170 | Mar 2005 | WO |
WO 2005024170 | Mar 2005 | WO |
WO 2005024171 | Mar 2005 | WO |
WO 2005027318 | Mar 2005 | WO |
WO 2005028446 | Mar 2005 | WO |
WO 2005028451 | Mar 2005 | WO |
WO 2005028453 | Mar 2005 | WO |
WO 2005028473 | Mar 2005 | WO |
WO 2005028641 | Mar 2005 | WO |
WO 2005028642 | Mar 2005 | WO |
WO 2005028669 | Mar 2005 | WO |
WO 2005028803 | Mar 2005 | WO |
WO 2005028819 | Mar 2005 | WO |
WO 2005028936 | Mar 2005 | WO |
WO 2005043122 | May 2005 | WO |
WO 2005061852 | Jul 2005 | WO |
WO 2005071212 | Aug 2005 | WO |
WO 2005079186 | Sep 2005 | WO |
WO 2005079186 | Sep 2005 | WO |
WO 2005081803 | Sep 2005 | WO |
WO 2005086614 | Sep 2005 | WO |
WO 2006002449 | Jan 2006 | WO |
WO 2006010674 | Feb 2006 | WO |
WO 2006014333 | Feb 2006 | WO |
WO 2006017459 | Feb 2006 | WO |
WO 2006020723 | Feb 2006 | WO |
WO 2006020726 | Feb 2006 | WO |
WO 2006020734 | Feb 2006 | WO |
WO 2006020734 | Feb 2006 | WO |
WO 2006020809 | Feb 2006 | WO |
WO 2006020810 | Feb 2006 | WO |
WO 2006020810 | Feb 2006 | WO |
WO 2006020827 | Feb 2006 | WO |
WO 2006020827 | Feb 2006 | WO |
WO 2006020913 | Feb 2006 | WO |
WO 2006020913 | Feb 2006 | WO |
WO 2006020960 | Feb 2006 | WO |
WO 2006033720 | Mar 2006 | WO |
WO 2006060387 | Jun 2006 | WO |
WO 2006060387 | Jun 2006 | WO |
WO 2006079072 | Jul 2006 | WO |
WO 2006079072 | Jul 2006 | WO |
WO 2006088743 | Aug 2006 | WO |
WO 2006088743 | Aug 2006 | WO |
WO 2006096762 | Sep 2006 | WO |
WO 2006102171 | Sep 2006 | WO |
WO 2006102556 | Sep 2006 | WO |
WO 2007014339 | Feb 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20080083541 A1 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
60450504 | Feb 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10546548 | US | |
Child | 11834401 | US | |
Parent | 10351160 | Jan 2003 | US |
Child | 10546548 | US |