This invention relates to an apparatus and method for rebuilding a sand beach.
Beach erosion is a serious problem along the shores of large bodies of water as a result of wave action in the body of water. Previous structures to control shore erosion include a plurality of block members that are laid end-to-end from each other along the shore line and, further, another plurality of block members on top of the original layer of block members to provide a wall over which the wave action can pass. The wall constructed by this plurality of block members requires connecting components such as locking pins to secure the plurality of blocks together. The construction of the shore erosion control wall of the prior art at the shore line is labor intensive and time consuming.
It is in the intent of the present invention to address the aforementioned concerns. The invention provides an apparatus for protecting a shoreline and for rebuilding a sand beach along the shoreline floor. The apparatus includes a hollow structure having an essentially trapezoidal configuration with a bottom wall, a pair of sidewalls, an inclined front wall and an inclined rear wall. The front and rear walls converge to a top wall. A plurality of tubular members extends through the hollow structure. Each of the tubular members have access apertures in the front and rear walls. The hollow structure is fillable with cement for retaining the structure in a fixed location on the shoreline floor.
In another aspect of the invention, the hollow structure is made of a water impermeable plastic material for preventing water damage to the structure. In yet another aspect of the invention, the plurality of tubular members may be integrally molded with the plastic hollow structure for receiving and dissipating wave energy.
Other applications of the present invention will become apparent to those skilled in the art when the following description of the best mode contemplated for practicing the invention is read in conjunction with the accompanying drawings.
The description herein makes reference to the accompanying drawings wherein like reference numerals refer to like parts throughout the several views, and wherein:
Integrally formed between the front and rear walls 12, 14 and also extending from the planar bottom wall 16 are two sidewalls 18 and 20. The sidewalls 18, 20 are spaced approximately five feet from each other. The first sidewall 18 has a convex or bowed configuration, as shown in
The hollow structure or outer shell 10 is cast from extremely durable and water impermeable polyurethane. The polyurethane outer shell 10 protects the cement 11 or other material therein from dissipation caused by the constant wave action. The hollow structure 10 encloses a cavity 13 therein interrupted by a plurality of tubular members 24 extending from the front wall 12 to the rear wall 14. Each tubular member 24 has a circular cross sectional area. Each tubular member 24 is spaced from an adjacent tubular member 24 providing the hollow space therebetween for the disposition of the cement 11 or other similar material. In the preferred embodiment, as shown in FIGS. 1—3, there are five evenly spaced columns of access holes 26 along the length (L) of the front wall 12 of the device 1. There are also four evenly spaced rows of access holes 26 along the height (H) of the device 1 to provide a total of twenty access holes 26 from the front wall 12 to the corresponding twenty tubular members 24. Likewise, there are corresponding access holes 28 on the rear wall 14. Each access hole 26 on the front wall 12 has a corresponding access hole 28 on the rear wall 14. The access holes 26, 28 define the termination points of each tubular member 24.
The access holes 26 on the front wall 12 opening to the tubular member 24 have twice the diameter of the access holes 28 on the rear wall. In the illustrated embodiment, the diameter of access holes 26 on the front wall 12 is six inches and the diameter of the access holes 28 on the rear wall is three inches. The larger access holes 26 on the front wall receive the initial wave action. As can be seen in
The top planar wall 22 has at least one access aperture 30 into the cavity 13 of the hollow structure 10. The access aperture 30 provides an entry point for filling the cavity 13 with cement 34 to add stability and weight to the device 1 and aids in maintaining the position of the device 1 along the shoreline against the impact of the surf.
The device 1 is intended for placement in the water so that the length (L) is essentially parallel with the shoreline and so that the front wall 12 faces the large body of water and the rear wall 14 faces landward. The orientation of the device 1 forces a portion of the incoming surf to enter the larger access holes 26 on the front wall 12 and to flow through the tapered tubular members 24. The gradual tapered feature of the tubular members 24 restricts the cross-sectional area of the passageway of the tubular member 24 on the rear wall 14 of the device 1. The tapered tubes 24 terminating at reduced access holes 28 in the rear wall 14 along with the incline of the rear wall 14 retards the motion of the return flow of the water toward the sea or ocean. This retarding effect reduces the velocity of the water and causes any suspended sand to be deposited on the shoreward side of the device 1, thereby restoring the height and width of the beach.
To provide restoration to a long stretch of shoreline, a plurality of the devices 1 are placed adjacent to each other so that one sidewall 18 is adjacent to the sidewall 20 of an adjacent device 1. The plurality of devices are orientated so that the front wall 12 with the larger access holes 26 face the large body of water. As discussed supra, one sidewall 18 has a convex or bowed configuration while the opposing sidewall 20 has a complementary concave configuration. The convex surface of the sidewall 18 of one device 1 fits within the concave surface of the sidewall 20 of an adjacent device 1. This configuration of the sidewalls 18, 20 eliminates the use of pins or other locking mechanisms to maintain adjacent devices next to each other. Further, the concave and convex configuration of the sidewalls provides a mean for proper orientation of the device at the site.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
Number | Name | Date | Kind |
---|---|---|---|
3894397 | Fair | Jul 1975 | A |
4073145 | Fair | Feb 1978 | A |
4172680 | Brown | Oct 1979 | A |
4175888 | Ijima | Nov 1979 | A |
4348133 | Trent et al. | Sep 1982 | A |
4367978 | Schaaf et al. | Jan 1983 | A |
4479740 | Schaaf et al. | Oct 1984 | A |
4708521 | Kocourek | Nov 1987 | A |
4711598 | Schaaf et al. | Dec 1987 | A |
5564369 | Barber et al. | Oct 1996 | A |
5586835 | Fair | Dec 1996 | A |
6079902 | Pettee, Jr. | Jun 2000 | A |
6439801 | Galiana et al. | Aug 2002 | B1 |
6896445 | Engler | May 2005 | B1 |
20050129468 | Knudson et al. | Jun 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
20060056913 A1 | Mar 2006 | US |