The invention relates to a receiver for receiving data from a differential data bus with two lines which can detect a positive and a negative level on the bus lines.
Such receivers usually have two resistive input branches, which are used to weaken the input signals from the data bus. According to solutions in the state of the art, two voltage sources in combination with two comparators are used for detecting the two levels. The exact detection levels are mainly defined by the voltage sources. If the voltage sources do not deliver exactly the same voltage, witch can easily occur in practice, the positive and negative detection levels are not equal, which should be avoided.
It is an object of the invention to provide a receiver for a differential data bus which ensures symmetrical detection levels of positive and negative signals.
This object is achieved by the receiver having the features according to claim 1:
Receiver for a differential data bus with two resistive branches, with a differential amplifier with two transistors, with a resistor, and with a control logic that controls a switch with which a current from a current source is switchable to either side of the resistor, which resistor couples the two transistors, and with two operational amplifiers which are coupled to the two transistors of the differential amplifier with opposite poles, in which receiver the control logic detects from the output signals of the two operational amplifiers whether a “0” or a “1” is expected on the bus and which receiver sets the switch accordingly so that a comparison with the received bus signal is made.
The receiver according to the invention uses only one voltage source instead of two in order to avoid level mismatches. This one voltage source is realized with one current source and one resistor. By switching the resistor between two branches of a differential amplifier this voltage source can be used for detecting a positive level on one line and a negative level on the other line, or vice versa. This ensures an absolutely symmetrical detection of levels of the two polarities, which has the consequence of a very low jitter.
The control logic puts the switch with which the current is switched on either side of the differential amplifier in accordance with the falling edge last received.
According to the advantageous measures of claim 2, two transistors can be used as the differential amplifier, thus providing a simple circuitry.
The invention will be further described with reference to the drawings, in which:
The schematic block diagram of
The first divider comprises three resistors 4, 5 and 6 in series. Resistor 4 is coupled to the line bp of the bus. The second divider comprises three resistors 1, 2 and 3, also in series, of which resistor 1 is coupled to the other line bm of the data bus.
The connection between resistor 1 and resistor 2 is coupled to the input of an inverter 7, whose output is coupled to a connection between resistors 3 and 6. In the same way a second inverter 8 is coupled to the connection between resistors 4 and 5 and the connection between the last transistors 3 and 6 of the dividers.
The connection between the resistors 5 and 6 is coupled to the base of a first bipolar npn-transistor 9, while the connection between the transistors 2 and 3 is coupled to the base of a second bipolar npn-transistor 10.
The collectors of the transistors 9 and 10 are coupled via current sources 11 and 12 to a power source V+ with positive voltage.
The emitters of the two transistors 9 and 10 are coupled via a resistor 13 which, together with a current source 14, forms a voltage source which is used for detecting positive and negative levels, as will be explained below. The two transistors 9 and 10 and the resistor 13 form a differential amplifier.
The current source 14 can be switched to either side of the resistor 13 by a switch 15, which is controlled by a control logic 16.
The data outputs are realized by a second comparator 17 and a first comparator 18, which deliver the output signals RXD1 and RXD0.
The negative input of the second comparator 17 and the positive input of the first comparator 18 are coupled to the collector of the second transistor 10, while the positive input of comparator 17 and the negative input of comparator 18 are coupled to the collector of the first transistor 9.
As already mentioned, instead of using two separate voltage sources, one voltage source is formed with one resistor 13 and one current source 14. The switch 15 serves to determine whether a positive or a negative differential voltage has to be detected.
The control logic 16 detects only the falling edges of the output signals RXD0 and RXD1. A falling edge of RXD0 causes the control logic 16 to set the switch 15 to a second position, in which the current source 14 is coupled to the emitter of transistor 10, whereas a falling edge of RXD1 causes the control logic 16 to set the switch 15 to a first position, in which the current source 14 is coupled to the emitter of transistor 9.
With reference to the timing diagram in
The first two signals in
The next two signals in the diagram are the signals V1 and V2. These are bus signals bm and bp which have been weakened by input dividers formed by the resistors 1 to 6. The signals V1 and V2 are applied to the bases of the transistors 9 and 10, respectively.
The next two signals show the voltages at the collectors of the transistors 9 and 10.
The last two signals are the output signals RXD1 and RXD0 of the comparators 17 and 18 and of the receiver.
In the timing diagram of
The fact that the signal RXD1 shows a falling edge causes the control logic to set the switch 15 to the first position, in which the current source 14 is coupled to the emitter of the second transistor 9, as now a falling edge in the signal bm is expected.
The timing diagram shows that in fact at the next transition the signal bp changes from high to low and that signal bm from low to high. This time, the transistors 9 and 10 are switched to the opposite positions, so that the potential at the collector of transistor 9 goes up and that at the collector of transistor 10 goes down. Consequently, the signal RXD1 shows a rising edge and RXD0 shows a falling edge this time, so that the control logic 16 switches the switch 15 to its second position, in which the current source is coupled to the emitter of transistor 10.
Now a falling edge in the signal bp is expected next and the process is repeated as described above.
The switching process of the two transistors will be explained in detail below:
The outputs of the bipolar transistors 9 and 10 switch at the point where the currents through the emitters are equal. So, at this moment the emitter currents are I/2, wherein I is the tail current of the differential pair formed by the current source 14. At this moment the current through the resistor 13 is I/2. It can thus be calculated that: V1−Vbe−½I*R=V2−Vbe. Now the collector of transistor 10 goes down and the collector of the transistor 9 goes up. Output RXD0 goes from 1 to 0 and output RXD1 goes from 0 to 1. The falling edge of RXD0 causes the control logic to switch the switch 15 to the other side of the resistor (The control logic only reacts to negative edges of RXD0 and RXD1, positive edges are of no influence). After this, the differential pair switches its outputs again when the point is reached where: V2−Vbe−½*I*R=V1−Vbe. RXD1 goes from 1 to 0, RXD0 goes from 0 to 1, and the control logic switches the tail current back to the other side of the resistor.
In the example of
If for some reason the first bit after idle is not a “0” but a “1”, it would seem that the first bit will be missed by the system. This, however, is not the case for the following reason: the falling edges of RXD0 and RXD1 are translated into an RXD signal. So a negative edge on RXD0 makes RXD “0” and a negative edge on RXD1 makes RXD “1”. Most protocols require that RXD is high when the bus is idle, so if the first bit is “1” no negative edge will arise on RXD1, RXD will stay high, and the comparator will still wait for a “0” (which should come after the previous “1”). So, the system will still work in this case.
Number | Date | Country | Kind |
---|---|---|---|
04103221 | Jul 2004 | EP | regional |
04105873 | Nov 2004 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2005/052182 | 6/30/2005 | WO | 00 | 4/25/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2006/006106 | 1/19/2006 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5872813 | Hui | Feb 1999 | A |
6236243 | Takeshima | May 2001 | B1 |
7667939 | Kiuchi | Feb 2010 | B2 |
20020186047 | Sterrantino | Dec 2002 | A1 |
Number | Date | Country |
---|---|---|
1236956 | Dec 1999 | CN |
03058903 | Jul 2003 | WO |
Number | Date | Country | |
---|---|---|---|
20110188606 A1 | Aug 2011 | US |