This disclosure relates to apparatuses for recovering solvent from biomass. More specifically, this disclosure relates to apparatuses for recovering solvent from biomass during an essential oil extraction process.
Solvents, such as ethanol, can be used to extract essential oils from plant matter. Examples of plant matter that contain useful essential oils include lavender flowers, eucalyptus leaves, peppermint leaves, tea tree leaves, jojoba seeds, rose petals, cannabis flowers, and jasmine flowers. Essential oils are used in a wide variety of applications, including as additives in household cleansers and personal care products (e.g. shampoos, lotions, facial cleansers) and in pain relief treatments.
In an essential oil extraction process using a quick-wash ethanol technique, plant matter (i.e. biomass) is submerged in ethanol for a period of time. While submerged, the solvent removes essential oils from the plant matter. After the essential oils have been removed from the plant matter, the spent plant matter is removed from the solvent and discarded. The solution of solvent and essential oils is then processed to isolate the essential oils.
The spent plant matter that is removed from the solvent is typically wetted with solvent. In a small operation, such as when extracting essential oils from flowers at home, the amount of solvent remaining in the spent plant matter may be relatively small (e.g. 20 percent of the total amount of solvent used) and, consequently, of relatively little value. Therefore, it may not make economic sense to spend time and effort attempting to recover the remaining solvent from the plant matter before discarding it. However, when operating a large scale essential oil extraction process, where many large batches of plant matter are processed every hour and large volumes of solvent are used (e.g. to extract essential oils for large batches of personal care products, such as perfumes or shampoos), it can be desirable to spend time and effort recovering solvent from the spent plant matter for reuse. By recovering as much solvent as possible, the process operator reduces the amount of solvent that has to be purchased to sustain the process and also significantly reduces the amount of solvent that must be disposed of (e.g. trucked away) with the spent plant matter.
An apparatus is needed to increase the percentage of solvent that can be quickly, easily, and affordably recovered from spent plant matter before it is discarded during an essential oil extraction process.
In one example, an apparatus for recovering liquid solvent from biomass can include a biomass receptacle configured to receive a mixture of biomass and liquid solvent, a means for exerting a compressive force on the mixture of biomass and liquid solvent while the mixture is positioned in the biomass receptacle, a means for flowing pressurized gas through the mixture while the mixture is positioned in the biomass receptacle, and a means for collecting the liquid solvent that exits the biomass receptacle.
In another example, an apparatus for recovering liquid solvent from wetted biomass can include a biomass receptacle having an inner surface, an outer surface, and a plurality of holes extending through the biomass receptacle from the inner surface to the outer surface where the inner surface of the biomass receptacle defines an inner volume. The apparatus can include a lower press member having a support surface configured to receive and support the biomass receptacle, an upper press member having a lower surface configured to seal against a rim surface of the biomass receptacle, and an actuator configured to transition the apparatus from an open position to a closed position, where the inner volume of the biomass receptacle is accessible when the apparatus is in the open position, and where the lower surface of the upper press member seals against the rim surface of the biomass receptacle when the apparatus is in the closed position. The apparatus can include a gas injection system configured to deliver pressurized gas to gas inlets in the lower surface of the upper press member. The gas injection system can be configured to deliver gas at a pressure of 15-80 psi to the gas inlets in the lower surface of the upper press member. The actuator can be configured to apply a compressive force of 10-50, 25-75, 50-100, 75-150, or 100-200 psi between the upper press member and the biomass receptacle when the apparatus is in the closed position. A portion of the upper press member can occupy a portion of the inner volume of the biomass receptacle when the apparatus is in the closed position, thereby decreasing available space within the inner volume for a mixture of biomass and solvent and allowing the upper press to compress the biomass and squeeze solvent from the biomass. The lower surface of the upper press member can be a convex surface that occupies a portion of the inner volume of the biomass receptacle when the apparatus is in the closed position, thereby decreasing available space within the inner volume for a mixture of biomass and solvent and allowing the upper press to compress the biomass and squeeze solvent from the biomass. The lower press member can include a drainage surface and a drainage opening fluidly connected to the drainage surface. The apparatus can include a gap between the outer surface of the biomass receptacle and the drainage surface of the lower press member where the gap is configured to permit drainage of liquid solvent from the holes in the biomass receptacle to the drainage opening in the lower press member when the apparatus is in the closed position. At least one of the plurality of holes in the biomass receptacle can have a diameter of 0.125-0.375 in. The gas injection system can include a gas manifold fluidly connected to one or more gas passageways, where the one or more gas passageways are fluidly connected to the gas inlets in the upper press member. Each gas passageway can be configured to deliver pressurized gas into the inner volume of the biomass receptacle when the apparatus is in the closed positioned and pressurized gas is supplied to the manifold. The apparatus can include a seal between the lower surface of the upper press member and the rim surface of the biomass receptacle. The actuator can be a pneumatic actuator or a hydraulic actuator.
In another example, an apparatus for recovering liquid solvent from biomass can include a press having an upper press member, a lower press member, and an actuator, where the actuator is configured to reduce the distance between the lower press member and the upper press member. The apparatus can include a biomass receptacle positioned between the lower press member and the upper press member, where the lower press member and upper press member together are configured to exert a compressive force on the biomass receptacle when the apparatus is in a closed position. The apparatus can include a gas injection system configured to deliver pressurized gas to an inner volume of the biomass receptacle when the apparatus is in the closed position. The apparatus can include a drainage opening configured to allow liquid solvent to flow from the biomass receptacle when the apparatus is in the closed position and a compressive force is exerted on a mixture of biomass and solvent present in the biomass receptacle. The actuator can be configured to reduce the distance between the lower press member and the upper press member by advancing the lower press member toward the upper press member. The actuator can be configured to reduce the distance between the lower press member and the upper press member by advancing the upper press member toward the lower press member. The biomass receptacle can have an inner surface, an outer surface, and a plurality of openings extending from the inner surface to the outer surface. The inner surface of the biomass receptacle can be hemispherical. The upper press member can have a convex hemispherical surface that is configured to exert a compressive force on a mixture of biomass and solvent when the mixture is located in the concave hemispherical biomass receptacle. The apparatus can include a flexible receptacle having an interior bag and an exterior bag, where the interior bag is configured to insert within the exterior bag, and where the exterior bag comprises a durable fabric.
Apparatuses and methods for extracting solvent from biomass are disclosed herein. In a preferred embodiment, the apparatus 100 can include a physical press configured to exert pressure on wetted plant mater to force liquid solvent from the plant matter so the solvent can be collected for reuse. The apparatus can also be configured to apply pressurized gas to the wetted plant matter, thereby passing pressurized gas through the wetted plant matter and carrying liquid solvent away from the plant matter so the solvent can be collected for reuse. Because the apparatus does not rely on heat or vacuum to recover solvent, it can be less expensive to manufacture and operate than existing solvent recovery apparatuses.
An apparatus 100 for recovering solvent from biomass can include a supporting frame 130. In one example, shown in
The apparatus can include a biomass receptacle 105. An example of the biomass receptacle 105 is shown in
The biomass receptacle 105 can be made of a rigid material capable of withstanding compressive force applied by components of the apparatus 100 without deflecting. In some examples, the biomass receptacle 105 can be made of a food-safe material (e.g. stainless steel) and have a thickness of at least 0.125, 0.25, 0.375, or 0.5 in and preferable about 0.375 in.
The biomass receptacle 105 can have a diameter of at least 6, 12, 18, 24, or 30 in. In one example, the inner surface 107 of the biomass receptacle 105 can be curved (e.g. concave). In one example, the inner surface 107 of the biomass receptacle 105 can be hemispherical, similar to a well cap used to seal pressure vessels. Curvature of the inner surface 107 may be desirable for several reasons. First, the curved inner surface 107 may provide more uniform pressure distribution during a physical pressing step, thereby improving performance and increasing longevity of the biomass receptacle. The curved inner surface 107 may serve to self-align the biomass receptacle 105 with the upper press member (plunger) 110 during operation, thereby improving performance and reducing downtime for mechanical adjustments. The curved surface may improve solvent recovery yields by containing the solvent, utilizing gravity to recover solvent, and not allowing solvent to escape at a perimeter of the biomass receptacle, which can occur in a flat press.
The apparatus 100 can include an upper press member 110 and a lower press member 115 and a means for advancing the upper and lower press members toward each other to exert compressive force on biomass 400 positioned within the biomass receptacle 105, thereby squeezing the biomass and causing solvent 300 to exit the biomass and allowing the solvent to be recovered for reuse. In the example shown in
In the example shown in
The upper press member (plunger) 110 can be made of a rigid material capable of withstanding compressive force without deflecting significantly. In some examples, the upper press member 110 can be made of a food-safe material (e.g. stainless steel) and have a thickness of at least 0.25, 0.375, or 0.5 in. The lower surface 112 of the upper press member 110 can be curved (e.g. convex). In one example, the lower surface 112 of the upper press member 110 can be hemispherical. Curvature of the lower surface 112 of the upper press member 110 may be desirable for several reasons. First, the curved lower surface 112 may provide more uniform pressure distribution thereby improving performance and increasing longevity of the upper press member 110. The curved lower surface 112 may serve to self-align the upper press member 110 with the biomass receptacle 105 during operation, thereby improving performance and reducing downtime for mechanical adjustments.
The solvent recovery apparatus 100 can include a gas injection system 105 capable of delivering compressed gas to biomass 400 within the apparatus. Flowing compressed gas through the biomass can significantly improve the percentage of solvent 300 that is recovered from the wetted biomass. In a preferred example, the biomass 400 can be subjected to physical pressing first and then, while the biomass remains subjected to physical pressing, compressed gas is applied to the biomass, as shown in
An example of a gas injection system 150 is shown in
The gas injection system 150 can receive dry, clean compressed gas from a compressed gas supply system 180, as shown in
Since the essential oils that are extracted from the plant matter may be consumed by humans or used in personal care products, it is desirable to comply with food safety regulations and to use food-safe components in the solvent recovery process. Accordingly, the compressed gas that is used to purge solvent from the biomass during the gas injection process should be clean and free of unwanted particles.
A compressed gas supply system 180, as shown in
The compressed gas delivery system 180 can include one or more flow control devices (e.g. 904, 905), such as valves or regulators, to control flow of pressurized gas through the compressed gas supply system 180. A first flow control device 904 can be located between the storage tank 905 and the gas filtration system 910. A second flow control device 910 can be located between the gas filtration system 910 and the gas injection system 150.
In one example, the compressed gas delivery system 180 can include at least one pressure regulator (e.g. 904, 905) located between the storage tank 905 and the gas injection system 150. The pressure regulator can allow the system to deliver compressed gas at any pressure at or below the pressure of gas in the storage tank 904. This can allow an operator of the gas injection system 150 to adjust the pressure based on certain factors, such as type of plant matter, level of homogenization of the plant material, and desired cycle time.
The upper press member 110 can include a seal 120 proximate the lower surface 112 of the upper press member, as shown in
The apparatus 100 can include a means for compressing the mixture of biomass 400 and solvent 300 while the mixture is positioned in the biomass receptacle 105. The means for compressing the mixture of biomass and solvent can be a pneumatic actuator, a hydraulic actuator, a manual actuator, or any other suitable actuator or combination or actuators.
Since solvents (e.g. ethanol, hexane, acetone) can be flammable, to enhance safety of the solvent recovery apparatus 100, it can be desirable for the apparatus to not contain electrical components that could spark and potentially ignite the solvent. Accordingly, dynamic components of the apparatus, such as the actuator 125, can be pneumatic, hydraulic, or manual to reduce the likelihood of a fire or explosion.
The actuator 125 shown in
The actuator 125 can be configured to transition the solvent recovery apparatus 100 between an open position (see
In addition to being actuated with compressed air, the actuator 125 in
The solvent recovery apparatus 100 can include a lower press member 115. The lower press member (drain basket) 115 can collect solvent that flows through the holes in the biomass receptacle (perforated basket) 105 and funnel the solvent to a drainage opening 140 that is fluidly connected to the vessel (dunk tank) 200, as shown in
The lower press member 115 can be attached to the actuator 125, as shown in
In
The lower press member 115 can be made of a rigid material capable of withstanding compression without deflecting significantly. In some examples, the lower press member 115 can be made of food-safe material (e.g. stainless steel) and have a thickness of at least 0.25, 0.375, or 0.5 in.
Prior to the step shown in
The desired amount of time that the biomass 400 is submerged in the solvent 300 depends on, in part, the level of homogenization of the plant matter and the temperature of the solvent . Typically, the colder the solvent, the longer the biomass will need to soak to extract essential oils from the biomass. For example, if the solvent is room temperature, the biomass may only need to soak for about 5 mins, whereas if the solvent is −25 degrees Celsius, the biomass may need to soak for 15 minutes or more. The desired amount of time that the biomass 400 is submerged in the solvent 300 may also depend on desired extraction efficiency and process constraints, such as allowable cycle times.
The flexible receptacle 160 can be a pliable container made of fabric or any other suitable material or combination of materials. In a preferred embodiment, the flexible receptacle 160 can include an interior bag 161 positioned within an exterior bag 162. The interior bag 161 can be made of a breathable, tear-resistant, odor free fabric. The interior bag can be made of food-safe materials, such as woven cotton. The interior bag can be configured to receive the biomass and can be relatively supple and function as a first biomass filter that restricts large biomass particles from exiting the interior bag. In preferred examples, the interior bag is made of a light cotton fabric or light blended cotton and polyester fabric, similar to the material used in wild game bags manufactured by Alaska Game Bags, Inc.
The exterior bag 162 can be made of food-safe materials (e.g. cotton fabric). The exterior bag can be made of a less supple material than the interior bag. In a preferred example, the exterior bag 162 can be made of a durable plain-woven fabric, such as canvas, which can be made of cotton. In other examples, the exterior bag can be canvas made of linen, or hemp. In still other examples, the exterior bag can be made of a durable fabric with a twill weave, such as denim. The exterior bag can function as a second biomass filter that restricts relatively smaller biomass particles (i.e. biomass particles that passed through the interior bag) from passing through the exterior bag and ending up in the vessel 200. In one example, the exterior bag can be made of a material that filters particles larger than about 200 microns.
The material of the exterior bag 162 can be stiffer than the material of the interior bag 161. In one example, the material of the exterior bag can be sufficiently stiff to avoid being drawn into the plurality of holes 106 in the biomass receptacle 105 while pressing the flexible receptacle 160 in the apparatus 100 and applying pressurized gas to the flexible receptacle 160, as shown in
The vessel 200 can include a temperature control system to enable chilling of the solvent. In one example, the vessel 200 can be a stainless steel jacketed vessel fluidly connected to a chiller unit that supplies chilled liquid, such as a water-glycol mixture, to isolated passageways in the wall(s) of the vessel. The chilled liquid can be isolated from the solvent within the vessel and, therefore, does not mix with the solvent. While the vessel does not need to be cooled to function, providing cooling is preferred to produce high quality essential oils, which can be more desirable to consumers and more valuable.
In a quick wash ethanol process, the solvent can be capable of removing both essential oils and waxes from the plant matter. Typically, essential oils are desirable and valuable, and waxes are undesirable. It is therefore desirable to operate the extraction process in a way that increases the amount of essential oils recovered and decreases the amount of waxes recovered. Typically, the colder the solvent is, the less wax will be extracted. However, if the solvent is too cold, the extraction efficiency decreases and the time required to extract essential oils will increase, leading to longer processing times, which is undesirable from a commercial processing standpoint. In a preferred example, the solvent 300 in the vessel 200 can be maintained at about −20 to −30 degrees Celsius. This temperature range produces a high yield of desirable essential oils and a low yield of undesirable waxes.
The vessel 200 (dunk tank) can include a lid 210. The lid 210 can be configured to open via a hinge or other suitable mechanism or can be entirely removable. As shown in
After the biomass 400 has been submerged in solvent 300 for a sufficient duration (e.g. 3-5 minutes), the flexible receptacle 160 can be transferred from the vessel 200 (i.e. dunk tank) to the solvent recovery apparatus 100.
A first purpose of the transfer plate 500 is to prevent loss of solvent leaking from the bag 160 by catching the solvent and conveying the solvent back into the vessel. The transfer plate 500 can be arranged at an incline, as shown in
A second purpose of the transfer plate 500 is to reduce a physical strain on an operator who is transferring the bag 160 from the vessel 200 to the press apparatus 100. The transfer plate 50 can support the weight of the bag and its contents during the transfer process, so the operator doesn't need to lift the full weight of the bag and its contents during the transfer process. Instead, since the bag is saturated with solvent, an operator can easily slide the bag along the transfer plate with relatively little physical effort from the vessel 200 to the biomass receptacle 105.
To increase the amount of solvent recovered from the wetted biomass 400, pressurized gas can be injected proximate a top surface of the flexible receptacle, as shown in
The pressurized gas can flow through the bag 160 and biomass material 400 thereby entraining solvent and transporting the solvent to the drainage opening 140 of the solvent recovery apparatus. More specifically, as shown in
As shown in
As shown in
After the solvent is recovered from the biomass 400 in the step shown in
As shown in
After operating the solvent recovery apparatus 100, the solvent mixture that is recovered from the bag 160 flows back into the vessel 200 via the solvent recovery line 230. The outlet valve of the vessel can then allow the mixture of solvent, essential oils, and waxes in the vessel to be easily transferred via the discharge line 235 to a conical storage vessel 1000 for a winterization process.
To minimize the risk of fire, a non-electric pump, such as a SimpleSpirits air diaphragm distillery pump from VersaMatic, can be used to pump the mixture to the conical storage vessel 1005. The pump can be compatible with 190-proof ethanol and be ATEX-rated. The conical storage vessel can be appropriately sized to receive the volume of solvent being transferred from the solvent vessel 200. The conical storage vessel can be maintained at a temperature of about −10 to −20 Celsius. In one example, the conical storage vessel can be housed in a walk-in freezer.
The purpose of the winterization process is to remove waxes, fats, and other lipids from the mixture of ethanol and essential oils. In some applications, such as when creating distillate, it is desirable to remove waxes, fats, and other lipids to improve the clarity of the distillate.
After the ethanol is pumped into the conical storage vessel 1000, it begins to cool. Waxes, fats, and other lipids precipitate out of solution and fall to the bottom of the conical storage vessel. During precipitation, the wax does not stick to the walls of the conical storage vessel, because its walls are steep. Instead, the waxes migrate into the center of the cone and collect in a spool that extends from the bottom of the conical storage vessel 1000. The spool 1001 can be a long slender member suitable for capturing a volume of waxes, fats, and other lipids that precipitate out of solution. In one example, the spool is a stainless steel tube that attaches to the conical with a tri-clamp fitting and is capped on an opposing end. A valve between the conical storage vessel and the spool can be closed prior to removal of the spool to avoid any loss of solvent. The spool allows for easy removal of precipitate without agitating the solution and causing the waxes to be redissolved.
Once the spool 1001 is removed from the conical storage vessel 1000, the wax can be filtered out using a Buchner funnel. Any amount of ethanol remaining in the spool can be recovered and sent to the ethanol recovery system 1010 where the ethanol is separated from the essential oils.
After the spool has been removed from the conical storage vessel, the mixture in the conical storage vessel can be transferred through a multi-stage filtrations system 1005 and then to an ethanol recovery system 1010, as shown in
In one example, a method for recovering solvent 300 from biomass 400 can include providing a flexible receptacle 160 containing biomass and liquid solvent, placing the flexible receptacle containing biomass and liquid solvent into a biomass receptacle 105 where the biomass receptacle has a plurality of openings 106, pressing the flexible receptacle against the biomass receptacle and causing at least a portion of the liquid solvent to exit the flexible receptacle and flow through the plurality of openings 106 in the biomass receptacle 105, and flowing gas through the flexible receptacle containing biomass and liquid solvent to force at least a portion of the liquid solvent to exit the flexible receptacle and flow through the plurality of openings in the biomass receptacle where it can be recovered, as shown in
In another example, a method for recovering solvent 300 from biomass 400 can include providing a flexible receptacle 160 containing biomass and liquid solvent, placing the flexible receptacle of biomass and liquid solvent into a concave biomass receptacle 105 where the concave biomass receptacle has a plurality of openings along a bottom surface of the concave biomass receptacle (see
In another example, a method for recovering liquid solvent 300 from biomass 400 can include providing a biomass receptacle 105 containing a mixture of biomass and liquid solvent, exerting pressure on the mixture of biomass and liquid solvent while the mixture is positioned in the biomass receptacle, flowing pressurized gas through the mixture of biomass and liquid solvent while the mixture is positioned in the biomass receptacle, and collecting the liquid solvent that exits the biomass receptacle.
In one example, an apparatus 100 for recovering liquid solvent 300 from wetted or saturated biomass 400 can include a biomass receptacle 105 having an inner surface 107, an outer surface 108, and a plurality of holes 106 extending through the biomass receptacle from the inner surface to the outer surface where the inner surface of the biomass receptacle defines an inner volume. The apparatus can include a lower press member 115 having a support surface 119 configured to receive and support the biomass receptacle 105, an upper press member 110 having a lower surface 112 configured to seal against a rim surface 109 of the biomass receptacle, and an actuator 125 configured to transition the apparatus from an open position to a closed position, where the inner volume 165 of the biomass receptacle is accessible when the apparatus is in the open position, and where the lower surface 112 of the upper press member 110 seals against the rim surface of the biomass receptacle 105 when the apparatus is in the closed position. The apparatus can include a gas injection system configured to deliver pressurized gas to gas inlets in the lower surface of the upper press member. The gas injection system can be configured to deliver gas at a pressure of 15-80 psi to the gas inlets in the lower surface of the upper press member. The actuator can be configured to apply a compressive force of 10-50, 25-75, 50-100, 75-150, or 100-200 psi between the upper press member and the biomass receptacle when the apparatus is in the closed position. A portion of the upper press member (plunger) 110 can occupy a portion of the inner volume 165 of the biomass receptacle 105 when the apparatus 100 is in the closed position, thereby decreasing available space within the inner volume for a mixture of biomass 400 and solvent and allowing the upper press to compress the biomass and squeeze solvent 300 from the biomass. The lower surface 112 of the upper press member 110 can be a convex surface that occupies a portion of the inner volume of the biomass receptacle when the apparatus is in the closed position, thereby decreasing available space within the inner volume for a mixture of biomass and solvent and allowing the upper press to compress the biomass and squeeze solvent from the biomass. The lower press member can include a drainage surface 116 and a drainage opening 140 fluidly connected to the drainage surface. The apparatus can include a gap 145 between the outer surface 108 of the biomass receptacle 105 and the drainage surface 116 of the lower press member 115 where the gap is configured to permit drainage of liquid solvent from the holes 106 in the biomass receptacle 105 to the drainage opening 140 in the lower press member when the apparatus is in the closed position. At least one of the plurality of holes in the biomass receptacle 105 can have a diameter of about 0.125-0.375 in. The gas injection system 150 can include a gas manifold 151 fluidly connected to one or more gas passageways 152, where the one or more gas passageways are fluidly connected to the gas inlets 154 in the upper press member 110. Each gas passageway 151 can be configured to deliver pressurized gas into the inner volume 165 of the biomass receptacle 105 when the apparatus is in the closed positioned and pressurized gas is supplied to the manifold. The apparatus can include a seal 120 between the lower surface 112 of the upper press member 110 and the rim surface 109 of the biomass receptacle 105. The actuator 125 can be a pneumatic actuator or a hydraulic actuator.
In another example, an apparatus 100 for recovering liquid solvent from biomass can include a press having an upper press member 110, a lower press member 115, and an actuator 125, where the actuator is configured to reduce the distance between the lower press member and the upper press member. The apparatus 100 can include a biomass receptacle 105 positioned between the lower press member 115 and the upper press member 110, where the lower press member and upper press member together are configured to exert a compressive force on the biomass receptacle 105 when the apparatus is in a closed position. The apparatus can include a gas injection system 150 configured to deliver pressurized gas to an inner volume 165 of the biomass receptacle 105 when the apparatus is in the closed position. The apparatus can include a drainage opening 140 configured to allow liquid solvent to flow from the biomass receptacle 105 when the apparatus is in the closed position and a compressive force is exerted on a mixture of biomass and solvent present in the biomass receptacle. The actuator 125 can be configured to reduce the distance between the lower press member 115 and the upper press member 110 by advancing the lower press member toward the upper press member. The actuator 125 can be configured to reduce the distance between the lower press member and the upper press member by advancing the upper press member toward the lower press member. The biomass receptacle 105 can have an inner surface 107, an outer surface 108, and a plurality of openings 106 extending from the inner surface to the outer surface. The inner surface 107 of the biomass receptacle 105 can be hemispherical. The upper press member 110 can have a convex hemispherical surface 112 that is configured to exert a compressive force on a mixture of biomass 400 and solvent 300 when the mixture is located in the concave hemispherical biomass receptacle. The apparatus 100 can include a flexible receptacle 160 having an interior bag and an exterior bag, where the interior bag is configured to insert within the exterior bag, and where the exterior bag comprises a durable fabric.
In another example, an apparatus 100 for recovering liquid solvent 300 from biomass 400 can include a biomass receptacle 105 configured to receive a mixture of biomass and liquid solvent, a means for exerting a compressive force on the mixture of biomass and liquid solvent while the mixture is positioned in the biomass receptacle (see, e.g.,
The elements and method steps described herein can be used in any combination whether explicitly described or not. All combinations of method steps as described herein can be performed in any order, unless otherwise specified or clearly implied to the contrary by the context in which the referenced combination is made.
As used herein, the singular forms “a,” “an,” and “the” include plural referents unless the content clearly dictates otherwise.
Numerical ranges as used herein are intended to include every number and subset of numbers contained within that range, whether specifically disclosed or not. Further, these numerical ranges should be construed as providing support for a claim directed to any number or subset of numbers in that range. For example, a disclosure of from 1 to 10 should be construed as supporting a range of from 2 to 8, from 3 to 7, from 5 to 6, from 1 to 9, from 3.6 to 4.6, from 3.5 to 9.9, and so forth.
All patents, patent publications, and peer-reviewed publications (i.e., “references”) cited herein are expressly incorporated by reference to the same extent as if each individual reference were specifically and individually indicated as being incorporated by reference. In case of conflict between the present disclosure and the incorporated references, the present disclosure controls.
The methods and compositions of the present invention can comprise, consist of, or consist essentially of the essential elements and limitations described herein, as well as any additional or optional steps, components, or limitations described herein or otherwise useful in the art.
It is understood that the invention is not confined to the particular construction and arrangement of parts herein illustrated and described, but embraces such modified forms thereof as come within the scope of the claims.
The foregoing description has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the claims to the embodiments disclosed. Other modifications and variations may be possible in view of the above teachings. The embodiments were chosen and described to explain the principles of the invention and its practical application to enable others skilled in the art to best utilize the invention in various embodiments and various modifications as are suited to the particular use contemplated. It is intended that the claims be construed to include other alternative embodiments of the invention except insofar as limited by the prior art.