Ice dispenser bins are used in many situations, wherein ice is periodically made or generated and delivered or dropped into a storage bin, where it resides until the need arises to use the ice. In order to keep the ice pieces or particles from all adhering together into one large structure, it is known to agitate the ice. Generally, the ice pieces are dispensed from a lower location in the bin, to an upper location, to be discharged to bags, a cart, or other suitable container.
Because ice is delivered from an upper location to a lower location, to be later moved from a lower location to an upper location, it is known that there sometimes forms a bridge of ice pieces, inhibiting the delivery of ice from the upper location to the lower location.
It has become commonplace to periodically break up the bridge by reaching into the bin, manually, with a paddle, to strike the ice bridge and release the pieces or articles, to fall to the bottom of the bin.
In some cases, there is provided a drive for lifting ice from the bottom of the bin to the discharge, and when ice is thus being discharged, ice in the bin is simultaneously agitated to break up any bridge then forming, and to loosen ice particles so that they can fall to the bottom of the bin.
One disadvantage of such prior art type of devices is that they lack durability and require manual bridge-breaking intervention in order to keep the ice loose so the ice will properly dispense. Such manual agitation can create adverse sanitation problems.
Additionally, prior art ice dispensing equipment is often lacking in versatility.
Some users of ice dispensing equipment, such as supermarkets, purveyors of meat and fish and vegetables, desire the ability to fill large containers, rather than simply to fill bags of ice. For example, the ability to optionally fill carts as well as bags is a feature that has been missing from the art.
The present invention is directed to providing an ice storage bin having a dispenser for dispensing ice therefrom and an agitator for engaging ice pieces and agitating them, wherein there are provided driving means for driving the ice dispenser and for driving the ice agitator, such that they can be driven separately from each other.
Additionally, there is an upper bin section that has tapered walls to prevent bridging of ice therein, which facilitates the gravity dropping of ice from the upper bin to the lower bin. The lower bin section is separate from its structural support or frame, the latter carrying the drive loads, which frees the lower bin from carrying the drive loads.
Accordingly, it is an object of this invention to separately drive an ice dispenser and an agitator for ice in a storage bin.
It is a further object of this invention to accomplish the above object, wherein ice is delivered from a lower location within the bin to an upper location for discharge of ice.
It is yet another object of this invention to accomplish the object immediately above, wherein different types of containers, such as bags, carts, etc. can be used to receive ice discharged from an upper end of the bin.
It is a further object of this invention to accomplish the above objects, wherein the agitator comprises right and left, preferably somewhat helically configured and oppositely directed agitators carried on the same rotating agitator bar, whereby thrust loads in each direction from the right and left agitators tend to offset each other.
It is another object of this invention to provide an upper bin section that has tapered walls, to prevent bridging of ice therein.
It is yet another object of this invention to have a lower bin section that is separate from the lower structural frame, such that the structural frame carries the drive loads; not the lower bin section.
Other objects and advantages of the present invention will be readily understood upon reading the following brief descriptions of the drawing figures, detailed descriptions of the preferred embodiments, and the appended claims.
Referring now to the drawings in detail, reference is first made to
The ice making apparatus (not shown) may be of any conventional type, in that the particular ice making apparatus does not form an essential part of the present invention. Generally, the ice making apparatus will, however, be a suitable type of apparatus for making ice in the form of ice cubes, pieces, particles, shavings, or nuggets, and will generally be disposed above the upper bin 11, although, in the alternative, the same could be disposed at a location remote from the ice bin 11, with a suitable delivery system for delivering ice into the ice storage area provided by the bin 11. However, preferably, the ice making apparatus will be disposed generally above the bin 11, such that ice may pass to the ice bin 11, via gravity, and then enter the bin 12, via gravity.
With reference to
Ice agitators 18 and 20 are provided in the bin 9.
Agitator 18 comprises a pair of left and right wire augers 21 and 22, preferably generally helically constructed, as shown, each carried by the same agitator bar 23, such that, when the shaft 25 is rotated in the clockwise direction shown at 24, the bar 23 which is connected to the shaft 25 will likewise rotate in the clockwise direction, such that the augers 21, 22 will tend to drive ice toward the opposite auger, such that ice pieces or particles will tend to move toward the center of the bin 9, between the walls, 14, 15.
The bar 23 may likewise carry radial rods 26, 27, generally configured as shown, to also facilitate ice breakup.
The agitator 20 likewise comprises a pair of oppositely arranged, preferably helically configured wire augers 31, 32, carried by the bar 33, that is likewise driven by shaft 34, for rotation in a clockwise direction 35, for conveying ice toward a central zone 36 generally near the back wall 16, at the lower end of the bin 9. The augers, 31, 32, like the augers, 21,22, being arranged in pairs carried by their respective bars 33, 23, are disposed such that the thrust loads resulting from conveying ice are caused to oppose each other.
It will also be noted that the sloped bottom wall 37 near the front wall 13 and the curved bottom wall portions 38, 40 near the back wall 16 are configured to cooperate with the augers of the respective agitators 18, 20, to cooperate in moving ice pieces or particles toward the central back or rear zone 36.
The agitator shafts 25, 34 are mounted in appropriate bearings 29b, 29f and 29e, 29g carried on opposite frame members 44, 39, on each side of the frame, outside respective side walls 15, 14 of bin 9. In this regard, it will be noted that in
With reference now to
With reference now to
It will be seen, with reference to
In this regard, reference is made to the detail view shown in
Thus, it will be seen that thrust loads in axial directions, and radial loads as well, are not carried by the walls 14, 15 of the bin 9, but rather, are carried by the supporting frame for the bin apparatus 12.
Similarly, with respect to
A pair of sprockets 45, 46 are shown, in
An ice dispenser, generally designated by the numeral 60 is provided, in the form of an acutely angled dispenser tube 62, generally mounted and disposed at an acute angle, preferably of 45° with the vertical, or with the front wall 13, as shown in
The dispenser 60 includes a tube 62 having an ice inlet 63 at the lower end, in the upper portion thereof, to receive ice pieces or particles from the bin zone 36 at the lower back or rear end of the bin 9, and to deliver the ice upwardly to an ice outlet 64 at the upper end. The dispenser 60 includes a dispensing auger mounted in the tube 62, and preferably in the form of a continuous helically configured, rotatably driven auger 65 disposed within the tube 62, to enable carrying ice from the dispenser inlet 63, to the outlet 64. The auger 65 is rotatably driven by a preferably electric A.C. motor 66, via suitable chain drive 67, for driving the auger 65.
The motor 66 is driven completely separately from the motor 51, such that the operation of the agitators 18 and 20 via the motor 51 is not tied to the operation of the auger 65 via its motor 66.
The motor 51 may be controlled by a suitable timer, schematically shown at 70, if desired.
The operation of the dispenser motor may be controlled by a suitable proximity detector 71 or the like, in the form of a switch, infrared beam, or any other suitable switching or detecting mechanism, for activating the motor 66 to cause the auger 65 to rotate and deliver ice pieces or particles up the tube 62, to discharge at 64, via a discharge chute 72. The chute 72 may have an inside chute component 73 and an outside chute component 74, with the inside chute component 73 being adjustable via positioning of a suitable adjusting handle 75, for delivering ice into a bag (not shown) removably carried on bag-holding pins 76 beneath the chute 73.
Additionally, the bag (not shown) for receiving ice may be carried on a suitable lower support 77, mounted at 78 on generally vertically disposed support 80, which support 80 is also pivotally mounted at 81, to be moved toward a more rearward direction from that shown in
To fill carts, the support 77 is removed, and the support 80 is pivoted inward. The handle 75 is actuated to position the chutes 73 and 74 outwardly, relative to the front of the apparatus 12.
If desired, a blower (not shown) may be housed within the cover 90 shown in
It would thus be seen that the goals of the present invention as set forth in the objects and summary of the invention, as well as in the appended claims, are complied with. It would be understood that various changes may be made in the details of construction, as well as in the use and operation of the apparatus of the present invention, all within the spirit and scope of the invention as recited in the appended claims.
This application is a divisional of U.S. patent application Ser. No. 09/948,290 filed Sep. 6, 2001 now U.S. Pat. No. 6,685,053.
Number | Name | Date | Kind |
---|---|---|---|
3937365 | Shelley et al. | Feb 1976 | A |
4168805 | Taylor | Sep 1979 | A |
4199956 | Lunde | Apr 1980 | A |
4512502 | Landers | Apr 1985 | A |
4694661 | Landers | Sep 1987 | A |
4969583 | Torimitsu et al. | Nov 1990 | A |
5029737 | Yamamoto | Jul 1991 | A |
5088300 | Wessa | Feb 1992 | A |
5211030 | Jameson | May 1993 | A |
5277016 | Williams et al. | Jan 1994 | A |
5910164 | Snelling et al. | Jun 1999 | A |
Number | Date | Country | |
---|---|---|---|
20040079103 A1 | Apr 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09948290 | Sep 2001 | US |
Child | 10681644 | US |