This invention relates generally to angiop1asty and more particularly to a method and apparatus for preventing restenosis after angioplasty or other stenosis treatment.
In the past, catheters have been developed which may be effectively inserted into blood vessels and maneuvered through a vascular tree. A balloon may be used with such catheters to expand in the vessel and open blockages found therein. In a typical percutaneous transluminal coronary angioplasty (PTCA) or percutaneous transluminal angioplasty (PTA) procedure, a guiding catheter is percutaneously introduced into the vascular system of a patient through an artery and advanced therein until the distal tip of the guiding catheter is appropriately positioned. A dilation catheter having a balloon on the distal end thereof and a guide wire are slidably disposed and introduced through the guiding catheter. The guide wire is first advanced through the distal tip of the guiding catheter until the distal end of the guide wire crosses the lesion to be dilated. The dilation catheter is then advanced over the previously introduced guide wire until the dilation balloon on the distal extremity of the dilation catheter is properly positioned inside the lesion. The balloon portion of the dilation catheter is then inflated to a predetermined size to radially compress the atherosclerotic plaque of the lesion against the inside of the artery wall to thereby reduce the annular stenosed area. After a period of time, the balloon is deflated so that blood flow is resumed, allowing the dilation catheter to be removed.
A major problem encountered in a significant number of patients treated by this procedure is the subsequent narrowing of the artery after the expansion treatment. Various methods and apparatus have been developed to address the restenosis problem including multiple inflations of the balloon during the original procedure, atherectomy, hot balloons, and lasers. Even the installation of permanent stents has been thought to potentially have some value in reducing restenosis rates. See, for example, U.S. Pat. No. 5,019,075 to Spears et al. wherein the region surrounding the balloon utilized in the angioplasty procedure is heated by means within the balloon, or within the skin of the balloon, upon inflation of the balloon in order to ideally fuse together fragmented segments of tissue. U.S. Pat. No. 4,733,655 to Palmaz discloses an expansible vascular graft which is expanded within a blood vessel by an angioplasty balloon to dilate and expand the lumen of the blood vessel. The Palmaz method and apparatus leaves the expandable vascular graft in place to ideally prevent recurrence of stenosis in the body passageway.
However, recent data seems to indicate that the prior art methods described above do not significantly reduce restenosis rates of occurrence. In restenosis, a proliferation of cells following angioplasty is believed to cause the lesion to reform. The rate of occurrence of restenosis is generally considered to be about 33 percent. It would therefore be desirable to have a method and apparatus to treat a lesion in order to reduce the restenosis rate of occurrence. The present invention is believed to provide a unique method and apparatus to reduce the restenosis rate of occurrence following an angioplasty or like-intended procedure.
The purpose of the invention is to provide method and apparatus to significantly reduce restenosis rates of occurrence following an angioplasty procedure. To accomplish this purpose, there is provided method and apparatus for exposing the dilated lesion to a radiation dose that will affect smooth muscle cell growth. There is provided a catheter which has at its distal end a radioactive source, the source being maneuverable to the site of a lesion which has been dilated or removed, the apparatus allowing the site to be exposed to the radiation dose that will affect smooth muscle cells such that the rapid growth of such cells can be prevented, thereby controlling restenosis.
In one aspect of the invention there is provided a method for treatment and post-treatment of the stenosed region of an artery comprising the steps of:
In another aspect of the invention there is provided a method for treatment and post-treatment of the stenosed region of an artery after reduction of said region by angioplasty or other means comprising the step of applying a radioactive dose to said reduced region of the artery.
In yet another aspect of the invention there is provided apparatus for post-treatment of a stenosed region of an artery that has been reduced by angioplasty or other means comprising:
With continued reference to the drawing,
In
It is understood that the various embodiments of the subject invention are useful in the treatment of a lesion site within an artery. “Lesion site” includes those lesions which have been treated with balloon angioplasty, those lesions that have been treated by an atherectomy or laser angioplasty, those lesions that have been treated by rotational atherectomy or any other means of compressing or removing the material of the lesion which may cause trauma to the artery. It is this trauma which causes the proliferation of smooth muscle cells which method and apparatus of the subject invention is intended to inhibit.
With regard to all embodiments of the subject invention, “radioactive dose” means bombardment by particles emitted from radioactive materials including, but not limited to, materials such as Radon 222, Gold 198, Strontium 90, Radium 192, and Iodine 125. These materials may be incorporated into or delivered in a solid, liquid, or gaseous form, and the delivery of such forms is considered to be within the scope of the subject invention.
The foregoing description of the drawing illustrates various methods of the invention. It should be understood that the methods of the invention include the treatment and post-treatment of an annularly stenosed region of an artery. Most methods of treatment currently available cause some trauma to the artery. The artery in response to this trauma proliferates the growth of smooth muscle cells in many cases, and this results in restenosis at the site of the original stenosis—usually within a six-month period. The post-treatment consists of exposing the treated region of the stenosis to a radiation dose which is sufficient to retard or halt the proliferation of smooth muscle cells. It should also be pointed out that both the treatment and post-treatment could occur simultaneously if the device which removes or compresses the stenosis material also contains the radioactive dose means.
Having indicated above preferred embodiments of the present invention, it will occur to those skilled in the art that modification and alternatives can be practiced within the spirit of the invention. It is accordingly intended to define the scope of the invention only as indicated in the following claims.
This application is a continuation of application Ser. No. 07/755,480, filed Sep. 5, 1991, now U.S. Pat. No. 5,302,168.
Number | Name | Date | Kind |
---|---|---|---|
3168092 | Silverman | Feb 1965 | A |
3324847 | Zoumboulis | Jun 1967 | A |
4202323 | Zweig et al. | May 1980 | A |
4434788 | Nakatsugawa | Mar 1984 | A |
4588395 | Lemelson | May 1986 | A |
4697575 | Horowitz | Oct 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4815449 | Horowitz | Mar 1989 | A |
4878492 | Sinofsky | Nov 1989 | A |
4881938 | Van't Hooft | Nov 1989 | A |
5019075 | Spears | May 1991 | A |
5059166 | Fischell et al. | Oct 1991 | A |
5084002 | Liprie | Jan 1992 | A |
5213561 | Weinstein et al. | May 1993 | A |
Number | Date | Country | |
---|---|---|---|
Parent | 07755480 | Sep 1991 | US |
Child | 08219179 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08219179 | Mar 1994 | US |
Child | 08850073 | US |