Apparatus for restoring ink jet recording head

Information

  • Patent Grant
  • 6513902
  • Patent Number
    6,513,902
  • Date Filed
    Wednesday, February 3, 1999
    25 years ago
  • Date Issued
    Tuesday, February 4, 2003
    21 years ago
Abstract
There is disclosed an apparatus for restoring an ink jet recording head which can securely recover the ink jet recording head from the ink non-ejection condition caused by foreign particles or bubbles adhering inside the ink passage of an ejecting nozzle and which can prevent unnecessary bubbles from generating in the ink jet recording head. In the restoring operation, in which foreign particles are discharged together with ink from the ejecting nozzle by pressurizing the ink in an ink tank, an inner pressure of an ink supply passage is adjusted to reach a set pressure value.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an apparatus for restoring an ink jet recording head for use in an ink jet printer in which ink is ejected to a recording sheet from an ejecting nozzle to perform recording and an ink jet printer provided with the apparatus. More specifically, the present invention relates to a preferable apparatus for restoring an ink jet recording head for restoring the condition of ink non-ejection which is caused by the adhesion of foreign particles to the nozzle face or the occurrence of air bubbles in an ejecting nozzle, and an ink jet printer provided with the apparatus.




2. Description of the Related Art




In general, an ink jet printer is used as an output device of a computer, a word processor, or the like.




In a conventional ink jet printer, a carriage shaft is disposed in a direction parallel with a flat platen, and a reciprocatable carriage is disposed along the carriage shaft. Moreover, an ink jet recording head is mounted on the carriage to oppose to the platen in such a manner that a head nozzle of the ink jet head faces a printing face of the platen.




According to the above conventional ink jet printer, a recording sheet is conveyed between the platen and the ink jet head. While the carriage having the ink jet head mounted thereon moves along the platen, the nozzle of the ink jet head is operated on the basis of a predetermined printing signal, so that the desired ink is ejected or discharged from the nozzle toward the recording sheet on the platen. Thus, a desired image is recorded or printed on the recording sheet.




When such ink jet printer is used to perform recording, there is a case in which foreign particles adhere onto a nozzle face or air bubbles are mixed into or generated in the ink passage of the ejecting nozzle of the ink jet recording head. The sticking foreign particles or air bubbles clog or narrow a nozzle port of the ejecting nozzle, which causes ink non-ejection.




To solve the ink non-ejection problem, in the conventional ink jet printer, the foreign particles or bubbles are removed from the ejecting nozzle by a restoring apparatus. A suction method and a pressurizing method are known as restoring methods. In the suction method, an ink jet recording head is moved to a home position of a carriage, a cap is attached to and covers an ejecting nozzle, and suction is performed to make negative a pressure in the cap, so that the foreign particles are sucked together with ink from the ejecting nozzle to restore the non-ejectable condition. In the pressurizing method, the foreign particles are ejected or discharged together with the ink from the ejecting nozzle by pressurizing the ink in an ink tank, to restore the non-ejectable condition of the ink jet head.




In the suction method, in order to suck the ink by the cap, the ejecting nozzle needs to be hermetically sealed by contacting the cap closely to the ejecting nozzle, but it is difficult to keep hermetic the inside of the cap. Moreover, in the conventional pressurizing method, it is difficult to keep constant an ink ejecting pressure of each ejecting nozzle for restoration, and a dispersion of the ink ejecting pressure often happens. If an excessive inner pressure acts inside the normal ejecting nozzle, unnecessary and undesired air bubbles may be generated in the normal ink jet recording head.




SUMMARY OF THE INVENTION




The present invention has been accomplished in consideration of the aforementioned circumstances, and a first object of the present invention is to provide an apparatus for restoring an ink jet recording head which can securely recover the ink jet recording head from the ink non-ejection condition caused by foreign particles or air bubbles adhering inside an ink passage and which can prevent unnecessary air bubbles from generating inside the ink passage of the ink jet recording head. A second object is to provide an ink jet printer provided with the apparatus.




According to the present invention, the first object can be attained by adjusting to a set pressure value an inner pressure of an ink supply passage increased by operating pressurizing means. Specifically, the object is attained by the provision of an apparatus for restoring an ink jet recording head which performs image recording by ejecting ink droplets to a recording sheet from an ejecting nozzle of the ink jet recording head, comprising:




non-ejection detecting means for detecting the occurrence of non-ejection of the ink drops from the ejecting nozzle to output a non-ejection signal;




pressurizing means for increasing an inner pressure of an ink supply passage connected to said ink jet recording head;




pressure measuring means for detecting the inner pressure of said ink supply passage; and




control means for controlling said pressurizing means based on said non-ejection signal in such a manner that the inner pressure of the ink supply passage detected by said pressure measuring means reaches a set pressure value to eject ink.




Here, a piezoelectric ink jet system can be applied to the ink jet head. In the system, a piezoelectric element is provided to contact the ink supply passage. By applying a drive voltage, the piezoelectric element is deformed to increase the inner pressure of the ink supply passage, and ink within the ink supply passage is ejected from the nozzle. The non-ejection detecting means can use the piezoelectric element for use in the piezoelectric ink jet system. Specifically, when the piezoelectric element is deformed by a change of the inner pressure of the ink supply passage, voltage is generated between its both ends (piezoelectric effect). Therefore, an ejection/non-ejection condition can be determined by monitoring the voltage generated by the piezoelectric effect. Here, immediately after the ink is normally ejected, the inner pressure of the ink supply passage is largely varied by movement of the ink. When no ink is ejected, however, no ink moves in the ink supply passage, and the variation of the inner pressure is reduced. When the voltage generated by the piezoelectric effect of the piezoelectric element is largely varied, it can be determined that ejection is normally performed. When the variation is reduced, non-ejection can be determined.




For the control means, when the non-ejection detecting means detects the ink non-ejection to output the non-ejection signal, the inner pressure of the ink supply passage is increased to a preset pressure value, and the piezoelectric element is then actuated, so that the ink is ejected from the ejecting nozzle. The foreign particles or air bubbles can thus securely be removed from the ink supply passage. In this case, when the drive voltage of the piezoelectric element is set to a voltage higher than the drive voltage at the time of normal operation, e.g., about twice the normal drive voltage, the ink ejecting pressure is further raised, and the foreign particles or air bubbles can be removed more securely.




In the restoring operation, it can simultaneously be judged whether or not the amount of ink remaining in the ink supply passage is lacking; i.e., whether or not there is remaining ink. In general, a pressure decreasing rate in a stationary state of the ink supply passage after once pressurized is relatively small, when a sufficient amount of ink remains in the ink supply passage. In contrast, the pressure decreasing rate is relatively large, when a lesser amount of the ink remains in the ink supply passage. The presence of remaining ink is determined by using the pressure decreasing rate which is changed by the remaining amount of ink. More specifically, in the restoring operation, after the ink supply passage is pressurized up to the predetermined pressure value, the piezoelectric element is actuated for a short time to discharge the foreign particles or bubbles. Additionally, during and after the operation of the piezoelectric element, the pressure decreasing rate is monitored. When the pressure decreasing rate is more than a predetermined rate, or when the pressure in the ink supply passage decreases to be less than a predetermined pressure, it is judged that there is no remaining ink.




The ink jet recording head may be provided with a buffering chamber for separating the air bubbles mixed into the ink. In order to adjust the amount of air accumulated in the buffering chamber with a head solenoid valve, the air amount adjustment of the buffering chamber may be performed prior to the restoring operation. Because there are cases in which, when the amount of air accumulated in the buffering chamber is equal to or more than a specified value, the air bubbles mixed into the ink cannot be separated, and non-ejection is caused. Therefore, in this case, after the ink supply passage is once pressurized in response to the non-ejection signal, and the head solenoid valve is opened to exhaust unnecessary air from the buffering chamber, the ink supply passage is again pressurized to perform the original restoring operation.




After the restoring operation, a nozzle face or tip end of the ejecting nozzle of the ink jet recording head may be cleaned with a wiper. In the ordinary restoring operation, after the ink supply passage is pressurized to eject the ink via the ejecting nozzle, the inner pressure of the ink supply passage is lowered. In this case, the ink droplets adhere to or remain in the tip end of the ejecting nozzle. Moreover, the ink or the foreign particles may adhere to a periphery of the nozzle port of the ejecting nozzle. The wiper for removing the ink or foreign particles from the ejecting nozzle can be operated during a time for releasing the inner pressure of the ink supply passage, after the restoring operation is completed.




The pressurizing means may be constituted by a pressurizing pump or air pump for supplying pressurizing air to the ink tank. In this case, the pressure measuring means may be formed by a pressure sensor for detecting an air pressure in a pressurizing air channel connecting the pressurizing pump and the ink tank.




When a plurality of ink jet recording heads and ink tanks are arranged for different colors, there are provided a pressure junction section which is pressurized by one pressurizing pump, and one pressure sensor and one pressure release valve connected to the pressure junction section. The pressure junction section may be separately connected to the tanks via tank solenoid valves. In this case, when the pressure junction section is maintained at a constant pressure, the constant pressure can be fed to an arbitrary ink tank by opening the associated tank solenoid valve. Therefore, different from a case in which the ink tanks are separately provided with pressurizing pumps, pressure sensors and pressure release valves, the structure can be simplified.




When there are provided a plurality of ink jet recording heads, each ink jet recording head is detected for the ink non-ejection condition, and the restoring operation can be applied only to the non-ejecting ink jet recording head. In this case, wasteful consumption of ink is minimized.




For the control means, after the inner pressure of the ink supply passage raised by operating the pressurizing means is once lowered, the inner pressure of the ink supply passage may be raised to the set pressure value again by operating the pressurizing means. In this case, the inner pressure of the ink jet recording head can easily and securely be raised to the set pressure value only by performing pressurizing in two stages.




According to the present invention, the second object can be attained by an ink jet printer in which ink is supplied to an ink jet recording head from an ink tank, and ejected to a recording sheet via an ejecting nozzle based on a predetermined recording signal to perform recording, comprising the aforementioned apparatus for restoring the ink jet recording head.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a perspective view showing one embodiment of an ink jet printer provided with an apparatus for restoring an ink jet recording head according to the present invention;





FIGS. 2A and 2B

are a schematic circuit diagram and an enlarged view, respectively, showing a main section of the ink jet printer provided with the apparatus for restoring the ink jet recording head in the embodiment of the present invention;





FIG. 3

is an explanatory view of a principle for judging the presence of remaining ink by remaining ink judgment means in the embodiment;




FIGS.


4


(A)-(F) illustrate a timing chart for restoring the ink non-ejection condition according to a first embodiment of the present invention; and




FIGS.


5


(A)-(H) illustrate a timing chart for restoring the ink non-ejection condition according to a second embodiment of the present invention.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Preferred embodiments of the present invention will be described hereinafter with reference to

FIGS. 1

to


5


.





FIG. 1

shows a first embodiment of an ink jet printer provided with an apparatus for restoring an ink jet recording head according to the present invention. A printer unit


1


is supported by a pair of stands


3


,


3


to which a plurality of casters


2


are attached. The stands


3


,


3


are interconnected via an auxiliary frame


4


which is positioned in substantially the middle of each stand


3


in the vertical direction.




A plate-like platen


5


is oriented upward in the printer unit


1


. A multiplicity of suction holes


5


a are formed in a top surface of the platen


5


. When a recording sheet (not shown) is fed on the surface of the platen


5


, the sheet is sucked onto the top surface of the platen


5


by the action of the negative pressure in the suction holes


5




a


. Accordingly, the recording sheet is fixedly adhered to the top surface of the platen


5


. A pair of carriage shafts


7


,


7


extending parallel relative to the longitudinal direction of the platen


5


are disposed behind the platen


5


in the printer unit


1


. A reciprocable carriage


8


is disposed along the carriage shafts


7


. A carriage drive belt


9


positioned between the carriage shafts


7


is connected to the carriage


8


. The carriage drive belt


9


is operated by a drive device (not shown) and, as a result, the carriage


8


is reciprocated along the carriage shafts


7


.




A head unit


50


is disposed to the carriage


8


to face the platen


5


. Four ink jet recording heads


10


are assembled in the head unit


50


. Ink ejecting nozzles


12


are assembled in the ink jet recording heads


10


to face a recording surface of the platen


5


. In the first embodiment, the four ink jet recording heads


10


are provided for four colors: yellow (Y); magenta (M); cyan (C); and black (BK). Each ink jet recording head


10


has two ejecting nozzles


12


. Specifically, there are provided eight ejecting nozzles


12


in total. For the sake of simple description,

FIG. 2A

shows four ejecting nozzles


12


. A piezoelectric element


1201


is disposed to an ink supply passage in the ejecting nozzle


12


. The piezoelectric element is attached to contact on outer peripheral wall of the ink supply passage. The ink inside the ink supply passage is pressurized by applying a drive voltage to the piezoelectric element to deform the piezoelectric element. As a result, a predetermined amount of ink can be jetted via the ejecting nozzle


12


positioned on a tip end of each ink supply passage.




In each ink jet recording head


10


, a buffering chamber


12




a


for adjusting a pressure is formed behind the ejecting nozzle


12


. The ink is stored in the buffering chamber


12




a


, and a constant amount of air is sealed in an upper portion of the buffering chamber. Air bubbles contaminated in the ink fed to the ink jet recording head


10


via the ink supply passage are captured in the buffering chamber


12




a


, and prevented from entering the ejecting nozzle


12


. The buffering chamber


12




a


also serves as a damper for absorbing and damping ink waving caused in the ink jet recording head


10


by the reciprocating motion of the carriage


8


. A head solenoid valve


13


is provided above the buffering chamber


12




a


. When the head solenoid valve


13


is opened, excessive air accumulated in the buffering chamber


12




a


flows out, so that the amount of air in the ink jet recording head


10


becomes constant.




A wiper


14


is swingably provided opposite to an ejection face of the ejecting nozzle


12


of the ink jet recording head


10


for cleaning ink drops or dirt adhering to the ejection face. The wiper


14


is operated by a wiper motor


15


.




In the first embodiment, there is provided one wiper motor


15


, which is operatively connected to the wiper


14


for each ink jet recording head


10


, as shown in

FIGS. 2A and 2B

, to rock the wiper


14


. However, each wiper


14


may separately be provided with the wiper motor


15


.




Four ink tanks


16


, each thereof for each color, are disposed on one side in the rear face of the printer unit


1


. The ink tank


16


is communicated with the ink jet recording head


10


via a tube


18


. The tube


18


supplies ink to each ink jet recording head


10


from each ink tank


16


via the carriage


8


.




A pressurizing pump or another pressurizing means


19


is connected to the ink tanks


16


via the pressure junction section


20


. The ink tanks


16


are connected to the pressure junction section


20


via pressurizing air channels


22


. The pressurizing means


19


supplies air into the ink tanks


16


via the pressurizing air channels


22


, and raises inner pressures of ink supply passages in the tubes


18


, ink jet recording heads


10


, and the like via the ink.




The pressure junction section


20


disposed between the pressurizing means


19


and the ink tanks


16


is connected to a pressure measuring device or means


23


for measuring a pressurizing force of the pressurizing means


19


. The pressure junction section


20


is also connected to a pressure release or relief valve


24


. The pressure release valve


24


releases the pressure, which has been applied by the pressurizing means


19


, to the outside.




On the other hand, a tank solenoid valve


25


is interposed in each pressurizing air channel


22


connecting each ink tank


16


and the pressure junction section


20


. The tank solenoid valves


25


are opened, when non-excited, to supply air into the ink tanks


16


from the pressurizing means


19


. The tank solenoid valves


25


are closed when excited to stop the air supply into the ink tanks


16


.




In normal operation, the tank solenoid valves


25


are closed, and the pressurizing means


19


supplies air to each ink tank


16


to increase the inner pressure of the ink supply passage at the time of recording of the recording sheet. In this case, the inner pressure indicates a low constant pressure value (e.g., 1.3 atm). When the air bubbles or foreign particles or matters adhering inside of the ink supply passage of the ejecting nozzle


12


cause an ink non-ejection condition, this condition is detected as described later. The ink tank


16


is pressurized to adjust the inner pressure to a set pressure value (e.g., 1.35 atm), which is higher than an inner pressure at the time of ordinary recording. In the first embodiment, the high set pressure value is preferably kept in the range of about 1.25 to 1.4 atm, so that the foreign particles or bubbles are securely removed from the ejecting nozzle


12


and that the ejecting nozzle


12


is prevented from being broken by the excess pressure.




The head solenoid valves


13


, the tank solenoid valves


25


, and the pressure release valve


24


are opened/closed by control means


29


described later at predetermined timings.




The ink non-ejection condition is detected as follows:




In the ink supply passage positioned inside the ink jet recording head


10


, when the ink flows, the piezoelectric element is distorted. This distortion generates a voltage across both sides of the piezoelectric element. Therefore, each piezoelectric element is connected to voltage detecting means


26


for detecting the voltage across both ends. The ink flow, i.e., ink ejection can be detected based on a change of the detected voltage.




The voltage detecting means


26


is connected to non-ejection detecting means


28


for determining the ink ejection from the detected voltage change. When the specified ejecting nozzle


12


is clogged or inhibited from ejecting by air bubbles, the non-ejection detecting means


28


detects the non-ejection state from the fact that the voltage change across both ends of the piezoelectric element is small, and transmits to the control means


29


a non-ejection signal indicative of the non-ejection state of the specified ejecting nozzle


12


.




Upon receiving the non-ejection signal from the non-ejection detecting means


28


, the control means


29


supplies a drive signal to the pressurizing means


19


to pressurize the ink tank


16


.




On the other hand, the pressure measuring means


23


is connected to remaining ink judgment means


30


for judging the presence of ink in the ink tank


16


. The ink tank


16


is pressurized by the pressurizing means


19


until the inner pressure reaches the set pressure value. When the pressurizing is stopped, the remaining ink judgment means


30


monitors a decreasing rate of the inner pressure. Subsequently, the remaining ink judgment means


30


judges whether or not there is remaining ink in the ink tank


16


by detecting the magnitude of the inner pressure decreasing rate, in other words, by detecting whether the inner pressure is larger or smaller than a predetermined pressure value after a set time elapses.




Specifically, when the ink tank


16


, tube


18


or another ink supply system is filled with the ink, the inner pressure decreasing rate is small, and the inner pressure gradually decreases. On the other hand, if there is no ink in the ink supply system, the inner pressure rapidly decreases. This property is used to determine the presence of remaining ink.




Moreover, a set time for detecting the inner pressure decreasing rate after pressurizing may be shorter than a time required until the inner pressure becomes equal to or less than the predetermined pressure value when the ink supply system is normally filled with the ink.




This principle will next be described in more detail with reference to FIG.


3


. After the inner pressure of the ink tank


16


is increased by the pressurizing means


19


, and it is detected by the pressure measuring means


23


that the inner pressure is increased up to 1.3 atm, pressurizing is further continued for one second, and completed. When two seconds elapse after the pressurizing is completed, the inner pressure is detected again. Subsequently, when the inner pressure is more than the predetermined pressure value of 1.3 atom, it is judged that there is ink in the ink tank


16


. Moreover, when it is less than 1.3 atm, it is judged that there is no ink in the ink tank


16


.




Additionally, the remaining ink judgment means


30


incorporates therein a timer (not shown) for measuring a time from when the pressurizing by the pressurizing means


19


is completed until two seconds elapse and detection is then performed again.




In order to simplify the structure, in the first embodiment, the pressurizing means


19


for restoring the ink non-ejection condition is used as the remaining ink judgment means


30


. Specifically, the inner pressure increased by the pressurizing means


19


is used, and the presence of remaining ink is judged by referring to the decreasing rate of the inner pressure. However, the present invention is not limited to the use of the pressure at the time of restoration. Even at any time other than the time of restoration, the ink tank


16


may be pressurized, so that the presence of remaining ink is judged.




To enhance correctness, the judgment of the presence of remaining ink is preferably repeated several times. This is because when the ink remains not in the ink tank


16


, but in the tube


18


, this state fails to appear in inner pressure decreasing tendency, which may result in misjudgment.




In the first embodiment, the control means


29


and the remaining ink judgment means


30


are separately and individually constructed, but they may be integrally constructed in such a manner that the presence of remaining ink is judged by the control means


29


.




The remaining ink judgment means


30


is connected to remaining ink display means


32


. When it is judged that there is no ink in the ink tank


16


, the remaining ink display means


32


indicates an error display or emits an alarming sound to call to the user's attention, or stops the operation of the ink jet printer. Conversely, when it is judged that the ink remains, the remaining ink display means


32


indicates that there is remaining ink, or emits no alarming sound.




One side (left side in

FIG. 1

) of the platen


5


of the printer unit


1


is set in a home position of the ink jet recording head


10


. A cap


33


is disposed in the position corresponding to the home position. The cap


33


covers the ejecting nozzle


12


, when not in use, to prevent the drying of ink inside the ejecting nozzle


12


and the attachment of foreign particles. Moreover, the cap


33


sucks and collects by a negative pressure the ink ejected by the restoring operation of the ejecting nozzle


12


of the ink jet recording head


10


.




The auxiliary frame


4


is provided with a wind-up mechanism


34


. The wind-up mechanism


34


is provided with a pair of supports


35




a


,


35




b


positioned on opposite sides of the auxiliary frame


4


. In the embodiment, one support


35




a


(left support in

FIG. 1

) is fixed to the auxiliary frame


4


, while the other support


35




b


can be moved along the auxiliary frame


4


.




A shaft support recess


38


opened upward is formed in each of the supports


35




a


,


35




b


for supporting a wind-up shaft


36


. Three support rollers


39


are rotatably arranged inside the shaft support recess


38


. The wind-up shaft


36


is rotatably and detachably supported by the support rollers


39


.




A wind-up drive gear


40


is disposed under the shaft support recess


38


of the support


35




a


. One end of the wind-up shaft


36


is provided with a wind-up follower gear


42


engaged with the wind-up drive gear


40


. The wind-up shaft


36


is rotated/operated via the wind-up follower gear


42


by rotating/operating the wind-up drive gear


40


.




The operation of the first embodiment will next be described.




In the ink jet printer of the first embodiment, a recording sheet is fed between the platen


5


and the ink jet recording head


10


by a sheet feeding mechanism (not shown). Moreover, the carriage


8


is reciprocated along the carriage shafts


7


by operating the carriage drive belt


9


. On the other hand, the piezoelectric element of the ink jet recording head


10


is operated on the basis of a predetermined recording signal to eject ink from the ejecting nozzle


12


. A desired image is thus recorded on the recording sheet.




The wind-up drive gear


40


is rotated/operated in synchronization with the feeding operation of the sheet feeding device, and the wind-up shaft


36


is rotated/operated via the wind-up follower gear


42


. Since the recorded sheet is wound up by the wind-up shaft


36


, the recorded sheet is prevented from wrinkling or creasing.




During the recording, the voltage across both ends of each piezoelectric element corresponding to each ejecting nozzle


12


is detected by the voltage detecting means


26


. The voltage generated by each piezoelectric element is transmitted to the non-ejection detecting means


28


from the voltage detecting means


26


, and the non-ejection detecting means


28


detects which of the ejecting nozzles


12


is in the non-ejection state. During the recording, when the ink supply passage of the ink jet recording head


10


is clogged, or air bubbles are generated to cause non-ejection of the ink from the ejecting nozzle


12


, the non-ejection detecting means


28


detects the ejecting nozzle from which the ink is not ejected, and transmits to the control means


29


a non-ejection signal indicating which of the ejecting nozzles


12


is in the non-ejection state.




When the non-ejection signal is transmitted to the control means


29


, the control means


29


stops the recording, returns the carriage to its home position, and performs the restoring operation of the ink non-ejection condition. Specifically, in the home position the cap


33


is attached to and covers the ejecting nozzle


12


. Thereafter, while an atmospheric air release valve (not shown) of the cap


33


is opened, the flowing ink is sucked under a negative pressure. Additionally, as shown in

FIG. 4B

, the pressurizing means


19


is operated.




Subsequently, the air is supplied into the ink tank


16


via the pressure junction section


20


and the pressurizing air channel


22


, and the ink in the ink supply passage is pressurized.

FIG. 4A

indicates the inner pressure of the ink supply passage detected by the pressure measuring means


23


. As shown in

FIG. 4A

, the inner pressure of the ink supply passage is set to about 1.35 atm (set pressure value) as shown by point A


1


of

FIG. 4A

, which exceeds 1.3 atm (constant pressure value).




Subsequently, as shown in

FIG. 4C

, the control means


29


turns on or opens the head solenoid valve


13


. Through the operation the air is exhausted from the buffering chamber


12




a


to make the air amount constant, and the pressure inside the buffering chamber


12




a


is adjusted. Since the air is exhausted from the buffering chamber


12




a


, and the ink flows to the cap


33


from the ejecting nozzle


12


, the pressure in the ink jet recording head


10


is lowered as shown by A


2


of FIG.


4


A.




Thereafter, in order to compensate for the decreased pressure, as shown by

FIG. 4B

, the control means


29


operates the pressurizing means


19


again, supplies air into the ink tank


16


via the pressure junction section


20


and the pressurizing air channel


22


, and pressurizes the ink tank as shown by A


3


of FIG.


4


A. Specifically, a period until the pressurizing means


19


is operated again (period L in

FIG. 4A

) serves as a period for adjusting the amount of air of the buffering chamber


12




a.






When the inner pressure of the ink supply passage is increased again up to about 1.35 atm (set pressure value), the pressurizing is stopped (point A


4


of

FIG. 4A

) and, as shown in

FIG. 4D

, and the control means


29


operates the piezoelectric element with about twice the voltage for ordinary recording, so that the ink is ejected from the ejecting nozzle


12


under high pressure. The foreign particles or air bubbles adhering inside the ejecting nozzle


12


are peeled off by pulsation at this time, and ejected into the cap


33


together with the ink.




After the high pressure ejection is performed as described above, as shown in

FIG. 4E

, the pressure release valve


24


is opened to release the pressure of the pressurizing means


19


, and the internal pressure of the pressure junction section


20


is adjusted to an atmospheric pressure (A


5


of FIG.


4


A). In this case, as shown in

FIG. 4F

, the wiper motor


15


is operated to rock the wiper


14


of each ejecting nozzle


12


before the pressure is completely lowered down to the atmospheric pressure. The ink is wiped off from the nozzle port of the ejecting nozzle


12


in this manner.




On the other hand, when the inner pressure of the ink tank


16


is increased by the pressurizing means


19


, the presence of ink in the ink supply passage is simultaneously judged by the remaining ink judgment means


30


. Specifically, after the inner pressure of the ink supply passage is raised up to about 1.35 atm by the pressurizing means


19


(about one second elapses after 1.3 atm is detected), and two seconds elapse after the completion of pressurizing (point A


4


of FIG.


4


A), it is detected whether the pressure is above or below 1.3 atm. When it is more than 1.3 atm, it is judged that there is remaining ink. When it is less than 1.3 atm, it is judged that there is no remaining ink. A period M shown in

FIG. 4A

is a period for judging the presence of remaining ink.




When the judgment is repeated predetermined times, and it is finally judged that there is no remaining ink, the remaining ink display means


32


indicates an error display or emits an alarming sound to inform the user. Moreover, a signal is transmitted to the control means


29


to stop the restoring operation.




Therefore, according to the first embodiment, the ink jet recording head


10


having caused the ink non-ejection by the foreign particles or air bubbles adhering thereto can securely be restored.




Moreover, since the judgment of the presence of the ink remaining in the ink tank


16


can be made using the restoring apparatus, the structure is simple and requires little manufacturing cost. Additionally, the disposal of the ink tank


16


is not troublesome.




A second embodiment of the present invention will next be described. Additionally, the structure of the second embodiment equivalent to or corresponding to the structure of the first embodiment is denoted with the same reference and codes, and the description thereof is omitted.




In the first embodiment, when the non-ejection detecting means


28


outputs the non-ejection signal indicating the ink non-ejection of a certain ejecting nozzle


12


, the control means


29


performs the restoring operation for all the ejecting nozzles


12


including nozzles not in the non-ejection state. The second embodiment is different from the first embodiment in that the restoring operation is applied only to the ejecting nozzle


12


placed in the ink non-ejection state.




The second embodiment will be described in more detail with reference to FIG.


5


. For example, a case in which the ejecting nozzle


12


of the ink jet recording head


10


for black ink is placed in the non-ejection state is assumed.

FIG. 5A

shows a pressure applied to the normally operated ink jet recording head for the inks other than the black ink, while

FIG. 5A



bk


shows a pressure applied to the non-ejecting ink jet recording head for the black ink. In this case, the tank solenoid valve


25


of the black ink is first kept off or opened, and the tank solenoid valves


25


for the other inks (yellow, magenta, cyan) are turned on or closed (FIGS.


5


G and


5


H). Only the ink tank


16


of the black ink is connected to the pressurizing means


19


in this manner.




In this condition, the pressurizing means


19


is operated, and air is supplied into the ink tank


16


of the black ink via the pressure junction section


20


and the pressurizing air channel


22


(FIG.


5


B). Subsequently, the inner pressure of the ink supply passage for the black ink is raised up to 1.35 atm (set pressure value). Subsequently, only the head solenoid valve


13


for the ejecting nozzle


12


of the black ink is opened (FIG.


5


C), and the amount of air in the buffering chamber


12




a


of the ink jet recording head for the black ink is adjusted to be constant.




Thereafter, since the amount of air in the buffering chamber


12




a


corresponding to the black ink is adjusted and the ink flows out of the ejecting nozzle


12


, the inner pressure of the ink jet recording head


10


is lowered (

FIG. 5A



bk


). Then, the pressurizing means


19


is operated again, air is supplied into the ink tank


16


of the black ink, and the inner pressure of the ink supply passage is raised up to the set pressure value of 1.35 atm. Moreover, the piezoelectric element is allowed to pulsate with the voltage twice the ordinary voltage, and the foreign particles or air bubbles adhering to the ejecting nozzle


12


of the black ink are ejected together with the ink under high pressure (FIG.


5


D).




After the ink jet recording head


10


for the black ink is recovered from the non-ejection condition in this manner, the pressurizing means


19


is operated again, and the tank solenoid valves


25


for the inks other than the black ink are turned off or opened (FIG.


5


H), and the ink tanks


16


are pressurized. Subsequently, the ink is ejected from all the ink jet recording heads


10


, and the ejection faces of the ejecting nozzles


12


are cleaned by the wipers


14


(FIG.


5


F).




As described above, after the restoring operation, the ink is ejected from all the ink jet recording heads


10


. This is because the wipers


14


in the second embodiment are operated by one wiper motor


15


. Specifically, the operation of only the wiper


14


for the black ink is not realized. Unless the ink is ejected from all the ejecting nozzles


12


, the ejection faces for the other colors may be damaged. Therefore, if the wiper


14


for each color is connected to the wiper motor


15


operated separately and independently, only the wiper


14


for the black ink may be operated to lower the pressure after the high-pressure ejection.




Consequently, according to the second embodiment, in addition to the effect of the first embodiment, there is provided an effect that the wasteful consumption of ink can be minimized, because the high-pressure ejection for the restoring operation of the normally ejecting ink jet recording head


10


is not performed.




Additionally, the present invention is not limited to the aforementioned embodiments, and can variously be modified as required. For example, the solenoid valves are used in the head solenoid valves, tank solenoid valves and pressure release valve because the valves can easily and securely be opened/closed by electromagnetic action, but the valves are not limited to these and may be opened/closed by another means.




As described above, according to the apparatus for restoring the ink jet recording head of the present invention, when the ink non-ejection condition is detected, the control means adjusts the inner pressure of the ink passage of the ink jet recording head to the set pressure value. Therefore, the air bubbles or foreign particles can securely be removed from the ink jet recording head, so that the ink jet recording head is recovered from the non-ejection condition.




Moreover, when a plurality of ink jet recording heads are independently detected for the ink non-ejection condition, and the ink is ejected only from the non-ejecting ink jet recording head for the restoring operation, the wasteful consumption of the ink can be minimized.



Claims
  • 1. An apparatus for restoring an ink jet recording head which performs image recording by ejecting ink droplets to a recording sheet from an ejecting nozzle of the ink jet recording head, comprising:a non-ejection detector for detecting an occurrence of non-ejection of the ink droplets from the ejecting nozzle to output a non-ejection signal; a pressurizing device for increasing an inner pressure of an ink supply passage connected to said ink jet recording head during both a normal and a restoring operation; a pressure measuring device for detecting the inner pressure of said ink supply passage during both the normal and the restoring operation; and a controller-for controlling said pressurizing device based on said non-ejection signal in such a manner that the inner pressure of the ink supply passage detected by said pressure measuring device reaches a set pressure value to eject ink.
  • 2. The restoring apparatus according to claim 1, said ink jet recording head comprising a piezoelectric element disposed adjacent the ink supply passage;wherein a voltage device applies drive voltage to the piezoelectric element to deform the piezoelectric element, and the inner pressure of the ink supply passage is increased to eject the ink.
  • 3. The restoring apparatus according to claim 2, wherein said non-ejection detector monitors a change of a voltage generated when the piezoelectric element is deformed by a change of the inner pressure of the ink supply passage immediately after ink ejecting operation, and determines ejection/non-ejection by referring to the change of the generated voltage.
  • 4. The restoring apparatus according to claim 2, wherein after the inner pressure of the ink supply passage is increased to the set pressure value in response to the non-ejection signal, the controller actuates said piezoelectric element to eject the ink.
  • 5. The restoring apparatus according to claim 4, wherein the drive voltage of the piezoelectric element at a restoring operation is set higher than a drive voltage at the time of normal operation.
  • 6. The restoring apparatus according to claim 1, comprising a remaining ink judgment device for receiving an output of said pressure measuring device to monitor a decreasing rate of the inner pressure of the ink supply passage after the inner pressure of the ink supply passage is increased to a predetermined pressure value by said pressurizing device in the restoring operation, and judging a presence of remaining ink in the ink supply passage on the basis of a magnitude of the decreasing rate.
  • 7. The restoring apparatus according to claim 1, said ink jet recording head comprising:a buffering chamber communicated with the ink supply passage for separating air bubbles contaminated in the ink; and a head solenoid valve for exhausting air from the buffering chamber; wherein, prior to the restoring operation, the controller starts the pressurizing device based on the non-ejection signal to raise the inner pressure of the ink supply passage, opens the head solenoid valve, and adjusts an amount of air in said buffering chamber.
  • 8. The restoring apparatus according to claim 1, further comprising a wiper for cleaning a nozzle face of the ejecting nozzle;wherein said controller opens a pressure release valve for releasing the inner pressure of the ink supply passage after completing the restoring operation, and then actuates said wiper.
  • 9. The restoring apparatus according to claim 1, wherein said pressurizing device is formed by a pressurizing pump for supplying pressurizing air to an ink tank communicated with the ink jet recording head; andwherein said pressure measuring device includes a pressure sensor for detecting an air pressure in a pressurizing air channel connecting said pressurizing pump and the ink tank.
  • 10. The restoring apparatus according to claim 1, comprising:a plurality of ink jet recording heads for recording different colors; a plurality of ink tanks corresponding to the ink jet recording heads; a pressure junction section which is pressurized by one pressurizing pump; tank solenoid valves provided in a plurality of pressurizing air channels connecting the pressure junction section and the plurality of ink tanks; a pressure sensor for detecting a pressure of said pressure junction section, said pressure sensor being used as said pressure measuring device; and a pressure release valve for releasing the inner pressure of said pressure junction section.
  • 11. The restoring apparatus according to claim 10, wherein said non-ejection detector independently detects ink non-ejection condition of the plurality of ink jet recording heads, and the controller performs the restoring operation for the ink jet recording head placed in the ink non-ejection condition.
  • 12. An apparatus for restoring an ink jet recording head, comprising:a non ejection detector for detecting ink non-ejection from each of a plurality of ejecting nozzles of a plurality of ink jet recording heads to output a non-ejection signal; a pressurizing device for increasing an inner pressure of an ink supply passage during both a normal and a restoring operation; and a controller for, when the non-ejection signal of any one of the ejecting nozzles is transmitted from said non-ejection detector, operating said pressurizing device to increase the inner pressure of the ink supply passage to eject ink from said one of the ejecting nozzles; wherein the inner pressure of the ink supply passage increased by an action of said pressurizing device is adjusted to a set pressure value by said controller.
  • 13. The restoring apparatus according to claim 12, wherein after the inner pressure of the ink supply passage increased by operating said pressurizing device is once lowered, said controller again operates said pressurizing device to increase the inner pressure of the ink supply passage to the set pressure value prior to returning the ink jet recording head to normal operation.
  • 14. The restoring apparatus according to claim 12, wherein said controller controls said pressurizing device to increase to the set pressure value the inner pressure only of the ink supply passage for the ejecting nozzle whose non-ejection signal is outputted by said non-ejection detector.
  • 15. An ink jet printer for supplying ink to an ink jet recording head from an ink tank, and ejecting ink droplets to a recording sheet from the ejecting nozzle on the basis of a predetermined recording signal to perform recording, comprising:a restoring apparatus, comprising: a non-ejection detector for detecting an occurrence of non-ejection of the ink droplets from the ejecting nozzle to output a non-ejection signal; a pressurizing device for increasing an inner pressure of an ink supply passage connected to said ink jet recording head during both a normal and a restoring operation; a pressure measuring device for detecting the inner pressure of said ink supply passage during both the normal and the restoring operation; and a controller for controlling said pressurizing device based on said non-ejection signal in such a manner that the inner pressure of the ink supply passage detected by said pressure measuring device reaches a set pressure value to eject ink; a platen; a carriage for supporting the ink jet recording head; and a conveyor for conveying said recording sheet between the platen and the ink jet recording head.
  • 16. An apparatus for restoring an ink jet recording head which performs image recording by ejecting ink droplets to a recording sheet from an ejecting nozzle of the ink jet recording head, comprising:a non-ejection detector for detecting an occurrence of non-ejection of the ink droplets from the ejecting nozzle to output a non-ejection signal; a pressurizing device for increasing an inner pressure of an ink supply passage connected to said ink jet recording head; a pressure measuring device for detecting the inner pressure of said ink supply passage; a controller for controlling said pressurizing device based on said non-ejection signal in such a manner that the inner pressure of the ink supply passage detected by said pressure measuring device reaches a set pressure value to eject ink; and a remaining ink judgment device for receiving an output of said pressure measuring device to monitor a decreasing rate of the inner pressure of the ink supply passage after the inner pressure of the ink supply passage is increased to a predetermined pressure value by said pressurizing device in a restoring operation, and judging a presence of remaining ink in the ink supply passage on the basis of a magnitude of the decreasing rate.
  • 17. An apparatus for restoring an ink jet recording head which performs image recording by ejecting ink droplets to a recording sheet from an ejecting nozzle of the ink jet recording head, comprising:a non-ejection detector for detecting an occurrence of non-ejection of the ink droplets from the ejecting nozzle to output a non-ejection signal; a pressurizing device for increasing an inner pressure of an ink supply passage connected to said ink jet recording head; a pressure measuring device for detecting the inner pressure of said ink supply passage; and a controller for controlling said pressurizing device based on said non-ejection signal in such a manner that the inner pressure of the ink supply passage detected by said pressure measuring device reaches a set pressure value to eject ink; wherein said ink jet recording head comprises: a buffering chamber communicated with the ink supply passage for separating air bubbles contaminated in the ink; and a head solenoid valve for exhausting air from the buffering chamber, wherein, prior to a restoring operation, the controller starts the pressurizing device based on the non-ejection signal to raise the inner pressure of the ink supply passage, opens the head solenoid valve, and adjusts an amount of air in said buffering chamber.
  • 18. An apparatus for restoring an ink jet recording head which performs image recording by ejecting ink droplets to a recording sheet from an ejecting nozzle of the ink jet recording head, comprising:a non-ejection detector that detects an occurrence of non-ejection of the ink droplets from the ejecting nozzle to output a non-ejection signal; a pressurizing device that increases an inner pressure of an ink supply passage connected to said ink jet recording head; a pressure measuring device that detects the inner pressure of said ink supply passage; and a controller that initiates a restoring operation for said ink jet recording head based on said non-ejection signal, the restoring operation being different from a normal operation of said ink jet recording head, wherein during the restoring operation the controller activates said pressurizing device a first time to increase the inner pressure of the ink supply passage to a first set pressure value, pauses said pressurizing device for a first period of time during which the inner pressure of the ink supply passage drops, and activates said pressurizing device a second time to increase the inner pressure of the ink supply passage to a second set pressure value prior to returning said ink jet recording head to the normal operation.
  • 19. The apparatus according to claim 18, further comprising a buffering chamber for said ink jet recording head and a head solenoid valve connected thereto, and wherein said controller activates said solenoid valve to bleed air from said buffering chamber during the first period of time.
  • 20. The apparatus according to claim 18, further comprising a mechanical-electrical device in said ink jet recording head for ejecting ink therefrom, and wherein said controller activates said mechanical-electrical device after activating said pressurizing device the second time prior to returning said- ink jet recording head to the normal operation.
  • 21. The apparatus according to claim 20, wherein said mechanical-electrical device is a piezoelectric device, and wherein said controller activates said mechanical-electrical device to operate at a restoring operation voltage that is greater than a voltage at which said mechanical-electrical device operates during normal operation.
  • 22. The apparatus according to claim 18, further comprising a remaining ink judgement device that judges a presence of remaining ink in the ink supply passage on the basis of a decreasing rate of pressure in the ink supply passage.
Priority Claims (1)
Number Date Country Kind
10-022326 Feb 1998 JP
US Referenced Citations (8)
Number Name Date Kind
4558326 Kimura et al. Dec 1985 A
4587535 Watanabe May 1986 A
4625220 Nagashima Nov 1986 A
5434605 Osborne Jul 1995 A
5500657 Yauchi et al. Mar 1996 A
5621444 Beeson Apr 1997 A
5625385 Suzuki Apr 1997 A
5757396 Bruner May 1998 A
Foreign Referenced Citations (3)
Number Date Country
0 221 703 May 1987 EP
0 623 472 Nov 1994 EP
7-290721 Nov 1995 JP
Non-Patent Literature Citations (3)
Entry
Japanese Abstract No. 54156539, dated Dec. 10, 1979.
Japanese Abstract No. 01150549, dated Jun. 13, 1989.
Japanese Abstract No. 62158053, dated.