Referring to
The apparatus comprises the following components as discussed in detailed below. A holder 2 is a cylinder made of a heat-resistant material. The holder 2 comprises a body 21 having a lower extension 211 adapted to secure to a drive unit 3, an upper hole 212 for securing to the body 11 of the cryovial 1 and disposing both the cap 12 and the thermally contractible film 13 externally of the hole 212.
The drive unit 3 is implemented as a motor 31 having an extended rotating shaft 32 secured to the extension 211 such that the holder 2 is capable of turning about its length axis as driven by the motor 31.
A transporting assembly 4 comprises a slide 41, a motor 42, and two supports 43. The slide 41 is operatively connected to the motor 42 and both are mounted on the supports 43. The slide 41 comprises a seat 411 having an elongated upper groove, a sliding block 413 slidably fitted in the groove of the seat 411, a threaded rod 412 having one end threadedly secured to the sliding block 413, and a coupling 414 for interconnecting the other end of the threaded rod 412 and a rotating shaft of the motor 42. As such, the sliding block 413 may slide relative to the seat 411 when the motor 42 activates.
A heating unit 5 is adapted to generate heat and blow hot air toward a periphery of the thermally contractible film 13 on the cryovial 1 so as to quickly contract the thermally contractible film 13 onto the cryovial 1.
A controller 6 is adapted to control operations of the drive unit 3, the transporting assembly 4, and the heating unit 5. Further, parameters including heating time, heating temperatures, and start time and end time of moving the transporting assembly 4 can be set through the controller 6.
A housing 7 is adapted to enclose both the transporting assembly 4 and the heating unit 5 with the controller 6 disposed externally. An exhaust fan 71 is provided on a top of the housing 7 opposite the heating unit 5 for expelling air out of the housing 7.
An operation of sealing the cryovial 1 according to the invention will be described in detailed below. Put biological specimens into the cryovial 1. Close an opening of the cryovial 1 by means of a cap 12. Next, put a thermally contractible film 13 on the cryovial 1. Next, firmly hold the cryovial 1 by means of the holder 2 with a mouth of the cryovial 1 being exposed.
Set parameters including heating time and heating temperature through the controller 6. Next, enable the controller 6 to activate the motor 42 of the transporting assembly 4 to move both the drive unit 3 and the holder 2 relative to the fixed seat 411 from the current position to a heating position.
Then, stop the transporting assembly 4 and activate the motor 31 of the drive unit 3 to turn the holder 2 about a length axis of the cryovial 1. At the same time, the heating unit 5 is enabled by the controller 6 to heat the thermally contractible film 13 for a predetermined period of time equal to the heating time. As a result, the thermally contractible film 13 quickly contracts to sealingly enclose the cryovial 1.
Next, activate the transporting assembly 4 again to move both the drive unit 3 and the holder 2 from the heating position to the original position. This finishes the cryovial sealing operation. It is contemplated by the invention that any possible cracks of a cryovial are sealed. Thus, future permeation of liquid nitrogen through cryovials placed in a liquid nitrogen container during cryopreservation is substantially eliminated.
Referring to
While the invention herein disclosed has been described by means of specific embodiments, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope and spirit of the invention set forth in the claims.