Embodiments of the invention relates to the field of barrier retainers. More specifically, the invention relates to an apparatus for securing a collapsible water dam.
Collapsible water dams (also known as Shower Water Retainer) prevents water from escaping out of a roll-in or barrier-free shower stall. In its normal or resting state, a collapsible water dam stands approximately 1.25 inches high but collapses to approximately ⅜ inches when stepped on or rolled over, e.g. by a wheelchair, and returning to its resting or normal state thereafter.
Health workers appreciate the extra safety provided by our shower water retainer. Safety is increased by retaining water in the shower areas to keep the rest of the area dry preventing slips. Collapsible shower water retainer dams are ideal for roll in, barrier free, and curbless shower stalls.
The water retainer dam is made of a high density memory material that returns to its original shape after it has been rolled or stepped on. End caps or plugs are used to anchor the water dam to the wall, i.e. where the wall meets the shower base.
One or more embodiments of the invention are directed to an apparatus for securing a collapsible water dam. Embodiments of the present invention provide a tight fit enclosure for the ends of collapsible shower dams to keep water out and create more stability.
Embodiments of the invention comprise an end-cap with a semi-cylindrical housing. The housing includes a chamber at its proximal end for securing the collapsible water dam.
In one or more embodiments, the end-cap further includes a side flange coupled to each side of the housing at the bottom periphery of the outside wall of housing.
In one or more embodiments, the end-cap further includes a barrier wall inside the housing that creates a secure chamber for housing a collapsible water dam. The secure chamber includes a slot on each side of the inside periphery of the housing to secure a bottom wall of the collapsible water dam.
In one or more embodiments, the end-cap further includes a wall flange at the distal end of the housing. The wall flange couples to and joins both side flanges in a configuration that provides a tight fit with the end wall of a shower. The wall flange may be configured to fit a 90-degree end wall or a curved end-wall.
In one or more embodiments, the end cap comprises a thermoplastic elastomer material such as a thermoplastic vulcanizate (TPV).
The above and other aspects, features and advantages of the invention will be more apparent from the following more particular description thereof, presented in conjunction with the following drawings wherein:
The present invention comprising an apparatus for securing a collapsible water dam will now be described. In the following exemplary description numerous specific details are set forth in order to provide a more thorough understanding of embodiments of the invention. It will be apparent, however, to an artisan of ordinary skill that the present invention may be practiced without incorporating all aspects of the specific details described herein. Furthermore, although steps or processes are set forth in an exemplary order to provide an understanding of one or more systems and methods, the exemplary order is not meant to be limiting. One of ordinary skill in the art would recognize that the steps or processes may be performed in a different order, and that one or more steps or processes may be performed simultaneously or in multiple process flows without departing from the spirit or the scope of the invention. In other instances, specific features, quantities, or measurements well known to those of ordinary skill in the art have not been described in detail so as not to obscure the invention. It should be noted that although examples of the invention are set forth herein, the claims, and the full scope of any equivalents, are what define the metes and bounds of the invention.
For a better understanding of the disclosed embodiment, its operating advantages, and the specified object attained by its uses, reference should be made to the accompanying drawings and descriptive matter in which there are illustrated exemplary disclosed embodiments. The disclosed embodiments are not intended to be limited to the specific forms set forth herein. It is understood that various omissions and substitutions of equivalents are contemplated as circumstances may suggest or render expedient, but these are intended to cover the application or implementation.
The term “first”, “second” and the like, herein do not denote any order, quantity or importance, but rather are used to distinguish one element from another, and the terms “a” and “an” herein do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.
One or more embodiments of the present invention will now be described with references to
Embodiments of the present invention comprise end-cap 20 that enable a tight fit enclosure for the ends of a collapsible shower dam 10 to keep water from flowing out of curbless showers and also to provide stability for the shower dam 10. As illustrated in
In one or more embodiment of the present invention, end-cap 20, illustrated in
In one or more embodiment of the present invention, the wall flange is configured to fit the shape of the end-wall. For example, the configuration of end cap, e.g. 20, comprises wall flange 506 with outside configuration 507 shaped to sit against a 90-degree end wall with very little radius between the shower floor and the end-wall. Another configuration of end cap, e.g. 30, comprises wall flange 706 with outside configuration 707 shaped to sit against a curved end wall with significant radius between the shower floor and the end-wall.
The end-cap, e.g. 20 or 30, further comprises a barrier wall 508 separating inner chamber 510 from inner chamber 520. The barrier wall 508 is configured as a stopper to prevent foreign objects, e.g. water, from entering the lumen 206 of the collapsible water dam thus preventing foreign materials from affecting its resiliency, in essence creating a secure chamber 510 for coupling the water dam. Chamber 510 is configured to accommodate collapsible water dam 10. Thus, chamber 510 includes a slot 512 on each side flange 504 to house or secure the exterior extensions of the bottom wall 204 of the collapsible water dam 10.
End-cap 20 is preferable made of a high performance elastomer in the thermoplastic rubber family, e.g. Santoprene® thermoplastic vulcanizates (TPV), which has excellent elastic recovery properties, and excellent chemical and temperature resistance. Those of skill in the arts would appreciate that other materials may be used without deviating from the spirit of the invention.
While the invention herein disclosed has been described by means of specific embodiments and applications thereof, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope of the invention set forth in the claims.