Apparatus for sensing the feeding of sheets of paper

Information

  • Patent Grant
  • 6705609
  • Patent Number
    6,705,609
  • Date Filed
    Tuesday, April 2, 2002
    23 years ago
  • Date Issued
    Tuesday, March 16, 2004
    21 years ago
Abstract
Disclosed is an apparatus for sensing the feeding of individual sheets of paper in which the feeding of two or more overlapping sheets can be detected in a sheet feeding apparatus for continuously transferring sheets of paper one by one along a predetermined paper traveling path. The apparatus employs a support plate which allows the sheets of paper to slide, and a contact arm adapted to contact the support plate and to be moved upward by a height corresponding to the thickness of the sheet of paper when the sheet of paper passes between the support plate and the contact arm, instead of using an expensive rollers, bearings or the like as a means for sensing the thickness of a sheet of paper being fed. Accordingly, the rotational angle of the contact arm enables the thickness of a sheet of paper being fed to be sensed, so that the feeding of two or more overlapping sheets of paper between a driving roller and a driven roller is always detected correctly and reliably even when foreign matter is stuck to the rollers. Further, the paper feed sensing apparatus has a simple structure and malfunctions less.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an apparatus for sensing the feeding of individual sheets of paper, and more particularly, to an apparatus for sensing the feeding of individual sheets of paper in which the feeding of two or more overlapping sheets can be detected in a sheet feeding apparatus for continuously transferring sheets of paper one by one along a predetermined paper traveling path




2. Description of the Related Art




In general, such a sheet feeding apparatus can be adapted for use in combination with, for example, a printing machine in a printing house, an automatic teller machine (ATM) in a bank, and the like. The sheet feeding apparatus is equipped with a driving roller and a driven roller which contact each other, and has a sheet feeding scheme in which a sheet of paper is fed between the driving roller and the driven roller such that they are compressed against the sheet of paper




For example, in the case of a printing machine in a printing house, individual sheets of paper to be printed are transferred from section to section so that different processes are performed in sequences and if the individual sheets of paper are not correctly supplied, there may be a paper jam or printing may be adversely affected. In addition, in the case of an automatic teller machine (ATM), the number of bills of cash and bank notes dispensed by the ATM must be accurately checked.




When a sheet feeding apparatus for transferring individual sheets of paper does not supply sheets of paper one by one but rather feeds two or more sheets of paper at a time, an error occurs in the sheet feeding apparatus during its feeding operation and this can lead to further problems as well. Thus, it is required to always check the thickness of a sheet of paper fed between two corresponding rollers pressed against the sheet of paper.





FIG. 1

is a schematic longitudinal sectional view illustrating the construction of a typical sheet feeding apparatus given as an example to explain a conventional individual paper feed sensing apparatus.




Referring to

FIG. 1

, the sheet feeding apparatus is provided with a plurality of pairs of driving roller


12


and a driven roller


14


which are supported on a frame


10


The outer surfaces of the driving roller


12


and the driven roller


14


in each pair are in contact with each other to discharge to the outside a sheet of paper P fed therebetween along a predetermined paper traveling path. The driving rollers


12


are mechanically coupled to each other through a power transfer means such as gears, belts or the like, and rotate by means of a separate drive motor (not shown) to feed a sheet of paper along the predetermined paper traveling path such that the driving rollers


12


and the driven rollers


14


are compressed against the sheet of paper.




In the meantime, the sheet feeding apparatus as constructed above includes a paper feed sensing apparatus for detecting the thickness of a sheet of paper being fed. The paper feed sensing apparatus functions to check a space between the driving rollers


12


and the driven rollers


14


which are in contact with each other. There are also diverse kinds of paper feed sensing apparatuses, but almost all paper feed sensing apparatuses employ a paper feed sensing mechanism in which they detect a physical variation in the space between the driving rollers


12


and the driven rollers


14


and then output the detected result to the outside through an electronic sensor


18


.




For this purpose, a driving roller


12


and a driven roller


14


coupled to the sensor


18


are replaced by a metal driving roller


20


and a support bearing


22


, respectively, which have been machined very precisely. The outer surface of the metal driving roller


20


is treated very precisely and its concentricity is very precise. The support bearing


22


serves as a driven roller whose outer surface is in contact with that of metal driving roller


20


. Of course, the support bearing


22


is manufactured such that its outer surface is also treated very precisely to have more precise concentricity.




The metal driving roller


20


and the support bearing


22


, machined precisely as mentioned above, are coupled to the sensor


18


. Accordingly, when there is a variation in the thickness of a sheet of paper passing between the metal driving roller


20


and the support bearing


22


, the distance between the center axes of rotational motion of the metal driving roller


20


and the support bearing


22


are also changed, which is detected by the sensor


18


.




However, in the case of such a conventional paper feed sensing apparatus, when the metal driving roller


20


and the support bearing


22


are not manufactured with sufficient precision, the apparatus does not operate reliably. Generally, a sheet of paper has a thickness of 0.1 mm or less. Thus, if either the metal driving roller


20


or the support bearing


22


is slightly eccentric or its outer surface is slightly non-uniform, the thickness of a sheet of paper being fed cannot be detected correctly.




For example, when a sheet of paper having a thickness of 0.1 mm passes between the metal driving roller


20


and the support bearing


22


in a state in which external foreign matter is adhered to the outer surface of either the metal driving roller


20


or the support bearing


22


, the sensor


18


detects the total thickness obtained by adding the thickness of the sheet and that of the foreign matter. At this time, if the thickness of the foreign matter is 0.1 mm, the sensor


18


will recognize one sheet of paper as two sheets of paper.




Moreover, the sensor


18


measures the distance between the rotational center axes of the metal driving roller


20


and the support bearing


22


to detect a variation in the distance. Accordingly, if foreign matter adhered to the outer surface of either the metal driving roller


20


or the support bearing


22


has an irregular thickness or pattern, there occurs a variation in the distance between the rotational center axes of the metal driving roller


20


and the support bearing


22


, which may make it impossible to measure the distance between the rotational center axes thereof. Further, when the support bearing is constructed as a ball having a number of balls fit into a space between the rotational center axis and the outer surface of a wheel portion, the space between the rotational center axis and the outer surface of the wheel portion is not constant on a microscopic level.




As a result, for the above-mentioned conventional paper feed sensing apparatus, there is the problem in that it must employ a high-priced metal driving roller


20


and support bearing


22


whose outer surface is machined very precisely and whose concentricity is very precise, thereby increasing the manufacturing cost. In addition, there is a limitation of measurement in that when foreign matter is adhered to the outer surface of either the metal driving roller


20


or the support bearing


22


, measurement is inaccurate. There arises a further problem in that a separate device for preventing the adhesion of foreign matter is required, thereby increasing both the complexity of the paper feed sensing apparatus and the frequency of malfunction.




SUMMARY OF THE INVENTION




To solve the above-described problems, it is a primary object of the present invention to provide an apparatus for sensing the feeding of individual sheets of paper adapted for use with a sheet feeding apparatus, which can simplify the structure of the sheet feeding apparatus, reduce the frequency of malfunction, and enable the feeding of two or more overlapping sheets of paper between driving rollers and driven rollers to always be detected correctly and reliably irrespective of presence of foreign matter on the rollers and without using expensive rollers, bearings or the like as a means for sensing the thickness of a sheet of paper being fed.




To accomplish the primary object of the present invention, there is provided an apparatus for sensing the feeding of individual sheets of paper which is adapted for use with a sheet feeding apparatus including a plurality of pairs of a driving roller and a driven roller which continuously feed a plurality sheets of paper one by one along a predetermined paper traveling path, the apparatus for sensing the feeding of individual sheets of paper comprising a support plate mounted between and adapted to support a sheet of paper passing between the driving roller and driven roller of each of the plurality of pairs of a driving roller and a driven roller along the predetermined paper traveling path, the support plate having a plurality of driving roller through-holes formed thereon which allows the plurality of pairs of a driving roller and a driven roller to contact each other therethough, a rotating shaft rotatably mounted over the top surface of the support plate, parallel to the support plate, an extending contact arm fixedly mounted on the rotating shaft with one end portion thereof extending toward the support plate to contact the top surface of the support plate, the extending contact arm being moved upward from the top surface of the support plate by a height corresponding to the thickness of the sheet of paper when the sheet of paper passes along the support plate thus causing the rotating shaft to rotate, an amplifying section operatively coupled to the rotating shaft to amplify an amount of rotation of the rotating shaft, and a sensor operatively coupled to the amplifying section for sensing the amount of rotation amplified by the amplifying section, wherein the feeding of two or more overlapping sheets of paper between the pairs of a driving roller and a driven roller is detected.




Also, the apparatus may further comprise a cover plate disposed between the support plate and the rotating shaft in parallel with and spaced apart from the support plate, thus defining the predetermined paper traveling path between the support plate and the cover plate and guiding the sheet of paper passing on the support plate along the predetermined paper traveling path, the cover plate having a plurality of driven roller through-holes which allow parts of lower portions of the driven rollers to pass therethrough so that the outer surfaces of both the driving rollers and the driven rollers contact each other, and a plurality of extending contact arm through-holes which are each disposed between two driven roller through-holes and allow bottom portions of the extending contact arms to pass therethrough so that the bottom portions of the extending projections contact the top surface of the support plate.




The amplifying section preferably includes a pivoting rod fixedly mounted at one end thereof on one end of the rotating shaft and extending perpendicular to the rotating shaft, a connecting shaft fixedly connected to the other end of the pivoting rod and disposed parallel to the rotating shaft, and a link member rotatably connected at one end to the connecting shaft and disposed parallel to the pivoting rod.




Also, the sensor is preferably a magnetic sensor with a rotational center axis is rotatably connected to the other end of the link member.




The length of the end portion of the extending contact arm extending toward the support plate is preferably smaller than that of the pivoting rod.











BRIEF DESCRIPTION OF THE DRAWINGS




The above objects and advantages of the present invention will become more apparent by describing in detail a preferred embodiment thereof with reference to the attached drawings in which:





FIG. 1

is a schematic longitudinal sectional view illustrating the construction of a typical sheet feeding apparatus;





FIG. 2

is a partially cut-away perspective view illustrating the construction of a paper feed sensing apparatus according to an embodiment of the present invention which is in an assembled state;





FIG. 3

is an exploded perspective view illustrating the construction of the paper feed sensing apparatus of

FIG. 2

;





FIG. 4

is a cross-sectional view taken along line IV—IV in

FIG. 2

, which shows a sheet feeding construction in which a sheet of paper is transferred between a driving roller


12


and a driven roller


14


,





FIG. 5

is a cross-sectional view taken along line V—V in

FIG. 2

; and





FIGS. 6

,


7


and


8


are views illustrating the operation of a paper feed sensing apparatus according to an embodiment of the present invention











DETAILED DESCRIPTION OF THE INVENTION




Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.





FIG. 2

is a partially cut-away perspective view illustrating the construction of a paper feed sensing apparatus according to an embodiment of the present invention which is in an assembled state.




Referring to

FIG. 2

, a plurality of driving rollers


12


and driven rollers


14


are fixedly mounted on a driving shaft


29


and a driven shaft


28


, respectively, each of which is rotatably mounted at one end to a frame


10


. The driving rollers


12


and the driven rollers


14


function to transfer a sheet of paper.

FIG. 2

shows only rollers where the sheet feed sensing apparatus of the present invention is installed.




As shown in

FIG. 2

, a sheet feed sensing apparatus according to the present invention includes a cover plate


31


and a support plate


33


, a rotating shaft


35


, an extending contact arm


41


, a pivoting rod


26


, and a link member


37


.




The cover plate


31


and support plate


33


are fixedly mounted to the frame


10


to allow a sheet of paper to be fed through a passage formed therebetween. The rotating shaft


35


is disposed in parallel with the driven shaft


28


over the top surface of the cover plate


31


and is rotatably mounted at one end to the frame


10


. The extending contact arm


41


is fixedly mounted on the rotating shaft


35


and one end portion thereof passes through the cover plate


31


to contact the top surface of the support plate


33


. The pivoting rod


26


is fixedly mounted at one end portion on the one end of the rotating shaft


35


. And, the link member


37


is relatively rotatably coupled at one end to the other free end portion of the pivoting rod


26


for connecting a magnetic sensor


39


to the free end portion of the pivoting rod


26


.




Further, the driving rollers


12


and the driven rollers


14


contact each other through the cover plate


31


and the support plate


33


.




The support plate


33


has a curved surface and a uniform thickness to correspond to a paper traveling path. Also, the support plate


33


is located between the driving rollers


12


and the driven rollers


14


and has a number of driving roller through-holes


47


(see

FIG. 3

) formed thereon so that the driving rollers


12


and the driven rollers


14


can contact each other through the roller through-holes


47


. Of course, the shape of the support plate


33


may be diversely modified according to various embodiments.




The driving roller through-holes


47


(see

FIG. 3

) are provided such that they receive the upper portions of the driving rollers


12


to allow the outer surfaces of both the driving rollers


12


and the driven rollers


14


to contact each other, and, as shown in

FIG. 4

, the driving rollers


12


are inserted into the driving roller through-holes


47


by the thickness of the support plate


33


. Therefore, the upper portions of the driving rollers


12


inserted into the driving roller through-holes


47


lie substantially flush with the top surface of the support plate


33


, and a sheet of paper passing between the driving rollers


12


and the driven rollers


14


beyond the driving roller through-holes


47


is not bent upward nor downward.




The cover plate


31


is spaced apart from and parallel to the support plate


33


to define a predetermined paper traveling path therebetween, and is fixedly mounted to the frame


10


. As shown in

FIG. 3

, the cover plate


31


guides a sheet of paper passing on the support plate


33


along the predetermined paper traveling path and has a number of driven roller through-holes


45


and extending contact arm through-holes


49


formed thereon.




The driven roller through-holes


45


(see

FIG. 3

) are provided such that they receive the lower portions of the driven rollers


14


to allow the outer surfaces of both the driving rollers


12


and the driven rollers


14


to contact each other. Also, the extending contact arm through-holes


49


are provided such that they receive the extending projections


54


of the extending contact arms


41


to allow a contact surface


43


(see

FIGS. 3 and 5

) of the extending projections


54


to contact the top surface of the support plate


33


.




The rotating shaft


35


, which is disposed in parallel with the driven shaft


28


over the top surface of the cover plate


31


, is rotatably mounted at one end to the frame


10


, and fixedly mounts the plurality of extending contact arms


41


thereon.




The extending contact arms


41


are fixedly mounted on the rotating shaft


35


to each correspond to one of the extending contact arm through-holes


49


. Each of the extending contact arms


41


includes the extending projection


54


which extends toward the top surface of the support plate


33


from one side of the outer surface of the extending contact arm like a cam. The extending projection


54


passes though an extending contact arm through-hole


49


to allow a contact surface thereof to contact the top surface of the support plate


33


. Also, as shown in

FIG. 5

, the bottom surface of the extending projection


54


of the extending contact arm


41


is curved so that the contact surface


43


thereof, which contacts the top surface of the support plate


33


is rounded.




Accordingly, the support plate


33


and the cover plate


31


are fixedly mounted to the frame


10


such that they define a predetermined paper traveling path therebetween. The driving rollers


12


and the driven rollers


14


contact each other through the driving roller through-holes


47


and the driven roller through-holes


45


. In addition, the extending projections


54


of the extending contact arms


41


pass through the extending contact arm through-holes


49


to allow the contact surfaces


43


thereof to contact the top surface of the support plate


33


. After that, the extending projections


54


wait for a sheet of paper to come along the predetermined paper traveling path defined between the support plate


33


and the cover plate


31


.




In the meantime, the pivoting rod


26


is fixedly mounted at one end portion to one end of the rotating shaft


35


, perpendicular to the rotating shaft


35


, to thus rotate together with the rotating shaft


35


. Also, the other end portion of the pivoting rod


26


is coupled to the magnetic sensor


39


through the link member


37


.




The magnetic sensor


39


is a well-known sensor which generates electrical current when a center shaft


51


(see

FIG. 6

) thereof rotates to detect the passing of a sheet of paper between the driving rollers


12


and the driven rollers


14


and transmits the detected result to an external controller (not shown). A body of the magnetic sensor


39


is fixedly mounted to the frame


10


, and the sensor shaft


51


thereof is fixedly connected to an end of the link member


37


.




The link member


37


acts to convert the pivotal movement of the pivoting rod


26


into the rotational movement of the sensor shaft


51


of the magnetic sensor


39


, which is coupled at one end to a free end portion of the pivoting rod


26


through a connecting shaft


53


thereof and is rotatably coupled at the other end to the center axis of the magnetic sensor


39


. At this time, the connecting shaft


53


of the link member


37


is rotatably coupled to the link member


37


and is fixedly mounted to the free end portion of the pivoting rod


26


. Here, the pivoting rod


26


, the connecting shaft


53


and the link member


37


constitute an amplifier for amplifying an amount of rotation of the rotating shaft


35


to axially rotate the sensor shaft


51


of the magnetic sensor


39


.




Therefore, when the rotating shaft


35


rotates by a certain angle in the direction of an arrow “a”, the pivoting rod


26


pivots in the direction of an arrow “b” around the rotating shaft


35


, which causes the sensor shaft


51


of the magnetic sensor


39


to rotate in the direction of an arrow “c”. The pivotal movement of the pivoting rod


26


in the direction of the arrow “b” occurs when a sheet of paper passes between the top surface of the support plate


33


and the contact surfaces


43


of the extending projection


54


which are in contact with each other.




Consequently, the paper feed sensing apparatus of the present invention detects an ascending degree of the contact surfaces


43


(see

FIG. 5

) which are moved upward by a height corresponding to the thickness of the sheet of paper being fed by means of the magnetic sensor


39


when a sheet of paper passes between the support plate


33


and the extending contact arms


41


. Of course, the greater the ascending degree of the contact surfaces


43


, the larger an angle of rotation of the sensor shaft


51


of the magnetic sensor


39


.





FIG. 3

is an exploded perspective view illustrating the construction of the paper feed sensing apparatus of FIG.


2


.




As shown in

FIG. 3

, the support plate


33


with a certain thickness has a plurality of driving roller through-holes


47


formed uniformly spaced apart thereon. Each of the driving roller through-holes


47


is of a quadrangular shape and a part of an upper portion of a corresponding driving roller


12


is moved upward and inserted into each driving roller through-hole


47


by the thickness of the support plate


33


.




The cover plate


31


positioned over the support plate


33


also has a plurality of driven roller through-holes


45


of a quadrangular shape formed thereon to correspond to one of the plurality of driving roller through-holes


47


. Each of the driven roller through-holes


45


functions as a passage for making it possible for a part of the lower portion of the driven rollers


14


to downwardly pass therethrough so that the outer surfaces of both the driving rollers


12


and the driven rollers


14


contact each other.




Also, each of the extending contact arm through-holes


49


of a rectangular shape, which is disposed between a pair of driven roller through-holes


45


, functions as a passage for making it possible for the extending projections


54


of the extending contact arms


41


to pass therethrough so that the contact surface


43


of the extending projections


54


comes into contact with the top surface of the support plate


33


. According to other embodiments, the extending contact arm through-hole


49


and the driven roller through-hole


45


may be formed as an integrated single hole.




The extending projection


54


of the extending contact arm


41


fixedly mounted on the rotating shaft


35


is bent upward so that the bottom surface thereof, i.e., the contact surface


43


, is curved. The contact surface


43


comes into contact with a sheet of paper being fed along the predetermined paper traveling path defined between the support plate


33


and the cover plate


31


so that it is upward pushed to be spaced apart from the support plate


33


. In this way, since the contact surface


43


is curved, a sheet of paper can easily enter a contact boundary portion between the extending contact arm


41


and the support plate


33


.




In the meantime, the rotating shaft


35


fixedly supporting the extending contact arm


41


and the contact surface


43


are spaced apart from each other by a distance of “d” as shown in FIG.


6


. The aim of this is to enable the rotating shaft


35


to rotate in response to the upwardly rotational movement of the extending projection


54


as well as to make it possible for the contact surface


43


to press against the top surface of the support plate


33


by means of a load of the extending projection


54


.





FIG. 4

is a cross-sectional view taken along line IV—IV in

FIG. 2

, which shows a sheet feeding construction in which a sheet of paper is transferred between a driving roller


12


and a driven roller


14


.




Referring to

FIG. 4

, it can be seen that a driving roller


12


and a driven roller


14


are guided into the driving roller through-hole


47


and the driven roller through-hole


45


, respectively, to contact each other. At this time, the upper portion of the driving roller


12


lies substantially flush with the top surface of the support plate


33


. Accordingly, in the case where a sheet of paper (p) is fed along the predetermined paper traveling path defined between the support plate


33


and the cover plate


31


, although the sheet of paper passes the upper portion of driving roller through-hole


47


, it can be continuously transferred without being depressed downwardly.





FIG. 5

is a cross-sectional view taken along line V—V in FIG.


2


.




Referring to

FIG. 5

, the extending projection


54


of the extending contact arm


41


fixedly mounted on the rotating shaft


35


is guided into the extending contact arm through-hole


49


so that its contact surface


43


comes into contact with the top surface of the support plate


33


. The contact surface


43


of the bottom portion of the extending projection


54


is always biased downward in the direction of an arrow “f” relative to the top surface of the support plate


33


by the load of the extending projection. That is, in the extending contact arm


41


, the extending projection side is heavier by virtue of its asymmetrical structure due to the extending projection


54


, so that the contact surface


43


presses down against the top surface of the support plate


33


with a force corresponding to the weight of the extending projection


54


.




However, since the force applied downward in the direction of an arrow “f” through the contact surface


43


is smaller than the feeding force of a sheet of paper (p), it does not interfere with the movement of the sheet of paper. Accordingly, when the sheet of paper (p) is slid between the contact surface


43


of the extending contact arm


41


and the top surface of the support plate


33


, the extending projection


54


is pushed upward by the thickness of the guided sheet of paper (p) so that the contact surface


43


ascends by a height corresponding to the thickness of the sheet of paper (p) while being pressed against the top surface of the sheet of paper (p) downward in the direction of an arrow “f”.




The operation of a paper feed sensing apparatus according to an embodiment of the present invention will be described in detail hereinafter with reference to

FIGS. 6

,


7


and


8


.





FIGS. 6

,


7


and


8


are cross-sectional views illustrating the operation of the sheet feeding apparatus according to the present invention.





FIG. 6

shows the operation just before a sheet of paper (p) is inserted between the support plate


33


and the cover plate


31


.




Referring to

FIG. 6

, the sheet of paper (p) is fed along a predetermined paper traveling path between the support plate


33


and the cover plate


31


in the slant direction of an arrow “i” so as to be slid beneath the bottom end portion of the extending projection


54


. At this time, the contact surface


43


of the extending contact arm


41


is in contact with the top surface of the support plate


33


, and the rotatably moving rod


26


and the magnetic sensor


39


are maintained in an initially set state.




Referring to

FIG. 7

, as the sheet of paper (p) is fed along the predetermined paper traveling path between the support plate


33


and the cover plate


31


in the slant direction of an arrow “i”, it first reaches the contact surface between the driving roller


12


and the driven roller


14


and then is slid beneath the bottom end portion of the extending projection


54


by means of the feeding force applied thereto from the driving roller


12


and the driven roller


14


. At this time, the extending projection


54


is pushed upward by the thickness of the guided sheet of paper (p) while being rotated upward, which causes the rotating shaft


35


to angularly rotate in the counterclockwise direction of an arrow “k”.




As the rotating shaft


35


rotates by a certain angle, the pivoting rod


26


pivots around the rotating shaft


35


, and the link member


37


rotatably mounted to a free end of the pivoting rod


26


rotates in the counterclockwise direction relative to the pivoting rod


26


, which causes the sensor shaft


51


of the magnetic sensor


39


to rotate in the direction of an arrow “m”.




At this time, one sheet of paper passes beneath the bottom end portion of the extending projection


54


, which means a normal operational state. Thus, a degree of angular rotation of the sensor shaft


51


is within a normal range, so that an erroneous signal is not generated.




On the other hand, as shown in

FIG. 8

, in the case where two overlapping sheets of paper (p) are slid beneath the bottom end portion of the extending projection


54


, the ascending height of the extending projection


54


is twice that in the case of FIG.


7


. Accordingly, the rotational angles of both the rotating shaft


35


and the sensor shaft


51


of the magnetic sensor


39


are also twice those in the case of

FIG. 7

, so that an error signal is generated.




It should, of course, be noted that in the case of the magnetic sensor


39


, the rotational angle of the sensor shaft


51


required for generating an error signal could be determined when adjusting the settings of the paper feed sensing apparatus.




As described above, the paper feed sensing apparatus according to the present invention has the advantage of detecting a variation in the thickness of a sheet of paper being fed between the driving roller


12


and the driven roller


14


along the predetermined paper traveling path between the support plate


33


and the cover plate


31


by detecting a variation in the distance between the top surface


43


of the support plate


33


and the contact surface of the extending projection


54


of the extending contact arm


41


which is biased toward the top surface of the support plate


33


, so that the machined very precisely rollers of the conventional art are not required.




While this invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various modifications may be made without departing from the spirit of the invention. The scope of the invention, therefore, is to be determined solely by the appended claims.



Claims
  • 1. An apparatus for sensing the feeding of individual sheets of paper which is adapted for use with a sheet feeding apparatus including a plurality of pairs of a driving roller and a driven roller which continuously feed a plurality sheets of paper one by one along a predetermined paper traveling path, the apparatus for sensing the feeding of individual sheets of paper comprising:a support plate mounted between and adapted to support a sheet of paper passing between the driving roller and driven roller of each of the plurality of pairs of a driving roller and a driven roller along the predetermined paper traveling path, the support plate having a plurality of driving roller through-holes formed thereon which allows the plurality of pairs of a driving roller and a driven roller to contact each other therethough; a rotating shaft rotatably mounted over the top surface of the support plate, parallel to the support plate; an extending contact arm fixedly mounted on the rotating shaft with one end portion thereof extending toward the support plate to contact the top surface of the support plate, the extending contact arm being moved upward from the top surface of the support plate by a height corresponding to the thickness of the sheet of paper when the sheet of paper passes along the support plate thus causing the rotating shaft to rotate; an amplifying section operatively coupled to the rotating shaft to amplify an amount of rotation of the rotating shaft; and a sensor operatively coupled to the amplifying section for sensing the amount of rotation amplified by the amplifying section, wherein the feeding of two or more overlapping sheets of paper between the pairs of a driving roller and a driven roller is detected.
  • 2. The apparatus as claimed in claim 1, further comprising a cover plate disposed between the support plate and the rotating shaft in parallel with and spaced apart from the support plate, thus defining the predetermined paper traveling path between the support plate and the cover plate and guiding the sheet of paper passing on the support plate along the predetermined paper traveling path, the cover plate having a plurality of driven roller through-holes which allow parts of lower portions of the driven rollers to pass therethrough so that the outer surfaces of both the driving rollers and the driven rollers contact each other, and a plurality of extending contact arm through-holes which are each disposed between two driven roller through-holes and allow bottom portions of the extending contact arms to pass therethrough so that the bottom portions of the extending projections contact the top surface of the support plate.
  • 3. The apparatus as claimed in claim 1, wherein the amplifying section comprises:a pivoting rod fixedly mounted at one end thereof on one end of the rotating shaft and extending perpendicular to the rotating shaft; a connecting shaft fixedly connected to the other end of the pivoting rod and disposed parallel to the rotating shaft; and a link member rotatably connected at one end to the connecting shaft and disposed parallel to the pivoting rod.
  • 4. The apparatus as claimed in claim 2, wherein the amplifying section comprises:a pivoting rod fixedly mounted at one end thereof on one end of the rotating shaft and extending perpendicular to the rotating shaft; a connecting shaft fixedly connected to the other end of the pivoting rod and disposed parallel to the rotating shaft; and a link member rotatably connected at one end to the connecting shaft and disposed parallel to the pivoting rod.
  • 5. An apparatus for sensing the feeding of individual sheets of paper which is adapted for use with a sheet feeding apparatus including a plurality of pairs of a driving roller and a driven roller which continuously feed a plurality sheets of paper one by one along a predetermined paper traveling path, the apparatus for sensing the feeding of individual sheets of paper comprising:a support plate mounted between and adapted to support a sheet of paper passing between the driving roller and driven roller of each of the plurality of pairs of a driving roller and a driven roller along the predetermined paper traveling path, the support plate having a plurality of driving roller through-holes formed thereon which allows the plurality of pairs of a driving roller and a driven roller to contact each other therethough; a rotating shaft rotatably mounted over the top surface of the support plate, parallel to the support plate; an extending contact arm fixedly mounted on the rotating shaft with one end portion thereof extending toward the support plate to contact the top surface of the support plate, the extending contact arm being moved upward from the top surface of the support plate by a height corresponding to the thickness of the sheet of paper when the sheet of paper passes along the support plate thus causing the rotating shaft to rotate; an amplifying section operatively coupled to the rotating shaft to amplify an amount of rotation of the rotating shaft, wherein the amplifying section comprises: a pivoting rod fixedly mounted at one end thereof on one end of the rotating shaft and extending perpendicular to the rotating shaft; a connecting shaft fixedly connected to the other end of the pivoting rod and disposed parallel to the rotating shaft; and a link member rotatably connected at one end to the connecting shaft and disposed parallel to the pivoting rod; and a sensor operatively coupled to the amplifying section for sensing the amount of rotation amplified by the amplifying section, wherein the sensor is a magnetic sensor with a rotational center axis is fixedly connected to the other end of the link member, wherein the feeding of two or more overlapping sheets of paper between the pairs of a driving roller and a driven roller is detected.
  • 6. An apparatus for sensing the feeding of individual sheets of paper which is adapted for use with a sheet feeding apparatus including a plurality of pairs of a driving roller and a driven roller which continuously feed a plurality sheets of paper one by one along a predetermined paper traveling path, the apparatus for sensing the feeding of individual sheets of paper comprising:a support plate mounted between and adapted to support a sheet of paper passing between the driving roller and driven roller of each of the plurality of pairs of a driving roller and a driven roller along the predetermined paper traveling path, the support plate having a plurality of driving roller through-holes formed thereon which allows the plurality of pairs of a driving roller and a driven roller to contact each other therethough; a rotating shaft rotatably mounted over the top surface of the support plate, parallel to the support plate; a cover plate disposed between the support plate and the rotating shaft in parallel with and spaced apart from the support plate, thus defining the predetermined paper traveling path between the support plate and the cover elate and guiding the sheet of paper passing on the support plate along the predetermined paper traveling path, the cover plate having a plurality of driven roller through-holes which allow parts of lower portions of the driven rollers to pass therethrough so that the outer surfaces of both the driving rollers and the driven rollers contact each other, and a plurality of extending contact arm through-holes which are each disposed between two driven roller through-holes and allow bottom portions of the extending contact arms to pass therethrough so that the bottom portions of the extending projections contact the top surface of the support plate; an extending contact arm fixedly mounted on the rotating shaft with one end portion thereof extending toward the support plate to contact the top surface of the support plate, the extending contact arm being moved upward from the top surface of the support plate by a height corresponding to the thickness of the sheet of paper when the sheet of paper passes along the support plate thus causing the rotating shaft to rotate; an amplifying section operatively coupled to the rotating shaft to amplify an amount of rotation of the rotating shaft, wherein the amplifying section comprises: a pivoting rod fixedly mounted at one end thereof on one end of the rotating shaft and extending perpendicular to the rotating shaft; a connecting shaft fixedly connected to the other end of the pivoting rod and disposed parallel to the rotating shaft; and a link member rotatably connected at one end to the connecting shaft and disposed parallel to the pivoting rod; and a sensor operatively coupled to the amplifying section for sensing the amount of rotation amplified by the amplifying section, wherein the sensor is a magnetic sensor with a rotational center axis is fixedly connected to the other end of the link member, wherein the feeding of two or more overlapping sheets of paper between the pairs of a driving roller and a driven roller is detected.
  • 7. The apparatus as claimed in claim 3, wherein the length of the end portion of the extending contact arm extending toward the support plate is smaller than that of the pivoting rod.
  • 8. An apparatus for sensing the feeding of individual sheets of paper, comprising:a support plate mounted between and adapted to support a sheet of paper passing between multiple opposed roller pairs along a predetermined paper traveling path; an extending contact arm movably mounted with one end portion thereof extending into said paper path to contact said support plate; a mechanical amplifying section operatively coupled to amplify movement of said contact arm; and a sensor operatively coupled to the amplifying section for sensing the amount of rotation amplified by the amplifying section, wherein the feeding of two or more overlapping sheets of paper between the pairs of a driving roller and a driven roller is detected.
  • 9. The apparatus of claim 8, wherein support plate is curved.
  • 10. The apparatus of claim 8, wherein said sensor is a magnetic sensor.
  • 11. A method for sensing the feeding of individual sheets of paper, comprising the steps of:positioning an extending projection of a first arm, which is mounted to a rotating shaft, to be deflected by paper passing through a paper path; translating motion of a second arm, which is also mounted to said rotating shaft, into a further mechanical motion; and sensing said further mechanical motion to detect presence of paper in said paper path.
  • 12. The method of claim 11, wherein said second arm extends farther from said shaft than does said first arm.
  • 13. The method of claim 11, wherein said sensing step uses a magnetic sensor.
  • 14. The method of claim 11, wherein said paper path carries paper currency.
  • 15. A method for sensing the feeding of individual sheets of paper, comprising the steps of:allowing an extending projection to be deflected by sheets of paper passing through a paper path; mechanically coupling motion of said projection to cause motion of a second element; mechanically coupling motion of said second element to cause motion of a third element; and sensing motion of said third element to detect presence of paper in said paper path.
  • 16. The method of claim 15, wherein said motion of said second element is greater than deflection of said projection.
  • 17. The method of claim 15, wherein said sensing step uses a magnetic sensor.
  • 18. A method for sensing the feeding of individual sheets of paper, comprising the steps of:positioning an extending projection of a first arm, which is mounted to a rotating shaft, within a paper path; and, when said projection is deflected by passage of a sheet of paper through said paper path, translating a resulting rotation of said shaft into a further mechanical motion; and sensing said further mechanical motion to detect presence of paper in said paper path.
  • 19. The method of claim 18, wherein said further mechanical motion is greater than deflection of said projection.
  • 20. The method of claim 18, wherein said paper path carries paper currency.
Priority Claims (1)
Number Date Country Kind
2001-17372 Apr 2001 KR
US Referenced Citations (6)
Number Name Date Kind
5011127 Hamilton et al. Apr 1991 A
5437445 Chang et al. Aug 1995 A
6000693 Tranquilla Dec 1999 A
6308951 Allmendinger et al. Oct 2001 B1
20010022422 Tamura Sep 2001 A1
20010042957 Luther Nov 2001 A1