The invention relates to an apparatus for servicing at least one field device of automation technology by means of a servicing unit connected or connectable with the field device.
In automation technology, especially in process, as well as in manufacturing, automation technology, field devices are often applied, which serve for registering and/or influencing physical, chemical or biological, process variables. Serving for registering process variables are measuring devices, such as, for example, fill level measuring devices, flow measuring devices, pressure and temperature measuring devices, pH measuring devices, conductivity measuring devices, etc., which register the corresponding process variables, fill level, flow, pressure, temperature, pH-value, and conductivity, respectively. Used for influencing process variables are actuators, such as valves or pumps, via which e.g. the flow of a liquid in a pipeline or the fill level of a medium in a container is changed. The terminology ‘field devices’ as used in connection with the invention, thus, includes all types of measuring devices and actuators.
Referred to as field devices in connection with the invention are, moreover, also all devices, which are applied near to the process and deliver or process information relevant to the process. Besides the earlier named measuring devices/sensors and actuators, also referred to as field devices are generally such units, which are connected directly to a fieldbus and serve for communication with the superordinated unit. Thus also categorized as field devices are units such as e.g. remote I/Os, gateways, linking devices and wireless adapters, respectively radio adapters. A large number of such field devices are produced and sold by the Endress+Hauser group of companies.
In modern industrial plants, communication between at least one superordinated control unit and the field devices occurs, as a rule, via a bus system, such as, for example, the Profibus® PA, Foundation Fieldbus® or HART® bus system. The bus systems can be embodied both wired as well as also wirelessly. The superordinated control unit serves for process control, process visualizing, process monitoring and/or start-up and servicing of the field devices and is also referred to as a configuration/management system.
The integration of field devices into configuration—or management systems can occur via device descriptions, which care therefor, that the superordinated control units, respectively servicing units, can detect and interpret the data delivered by the field devices. As a rule, the respective device manufacturers provide the device descriptions for each field device type, in given cases, for each field device type in different applications. In order that the field devices can be integrated in different fieldbus systems, different device descriptions for the different fieldbus systems must be created. Thus there are—to name only a few examples—HART, Fieldbus Foundation and Profibus device descriptions. The number of device descriptions is very large—corresponding to the large number of different field devices, respectively field device types, in different applications and bus systems.
For the purpose of creating a universal description language for field devices, the Fieldbus Foundation (FF), the HART Communication Foundation (HCF) and the Profibus User Organization (Profibus Nutzerorganisation or PNO) have created a unified electronic device description language (Electronic Device Description Language EDDL). The EDDL, respectively the corresponding Electronic Device Description EDD, is defined in the standard, IEC 61804-2.
Since for each field device type a corresponding field device specific, device driver DTM (Device Type Manager), respectively a corresponding field device specific, device description DD (Device Description), is required, the number of required field device type specific descriptions is very large. One speaks in this connection of a device driver/device description library. Via an installed setup of the library, it is possible for a customer universally to service field devices of different manufacturers.
The known solution is disadvantageous in the following ways:
Moreover, it is also known to integrate in a field device a web server, via which e.g. a parametering/configuring of the field device or a diagnosis of the field device can be performed. Depending on available memory capacity in the field device, this function is more or less well supported. An advantage of a web server in the field device is that the installation and updating of device drivers, respectively device descriptions, at the host, e.g. the servicing unit, can be omitted, since a standard operating means, thus especially a web browser, is used.
However, the solution with a web server in the field device has also less advantageous aspects:
An object of the invention is to provide an apparatus, which simplifies the servicing of field devices of automation technology by means of a servicing unit.
The object is achieved by features including that: a server arranged outside of the field device is associated with the servicing unit; the server dynamically produces at least one field device type specific, web page (or, in general, a field device specific content) for the respective field device; and that there is associated with the servicing unit a servicing program, which provides a browser, in order to present the field device type specific web page, respectively the field device specific content, on a display unit. Furthermore, the servicing program provides, respectively directly produces, a communication link between the server and the field device for the purpose of servicing the field device. Preferably, the servicing unit is a mobile servicing device, e.g. a smart phone, a laptop, a PDA or some other handheld servicing device. The concept “field device” has already been explained above.
In a preferred embodiment of the apparatus of the invention, the servicing program, which provides the web browser, is implemented as device managers in a suitable frame application. Furthermore, a communication driver is provided, which establishes the communication link to the respective field device. The linking occurs either via a service interface or via a fieldbus interface. The device driver is preferably a device driver FDT-DTM produced corresponding to the FDT standard. The frame application is, in this case, an FDT frame, in which the FDT device drivers are runnable.
An advantageous embodiment of the apparatus of the invention provides that the servicing program works offline and is so embodied that produced in the web server are instance specific data sets, which are matched to a virtual field device, thus a not connected field device, and which completely describe the field device in the provided application.
Furthermore, the servicing program is so embodied that the instance specific data sets can be read-out from the web server and written back, without there being a direct connection with a corresponding field device.
Alternatively, it is provided that the servicing program works online and is so embodied that, in the case of connected field device, the servicing program commands the web server to conform, by reading from or writing to the field device, the, in given cases, earlier offline produced data sets at least partially with the data sets present in the field device. To do this, the servicing program establishes the required communication link. Moreover, it is provided, in this connection, that the servicing program is so embodied that the web server in the case of connected field device communicates via the offered communication link with the field device, displays field device specific information in the at least one web page and enables a servicing of the field device.
Preferably, the communication between the servicing unit and the server occurs via an intranet- and/or an Internet connection.
Advantages of the invention compared with the solution with web server integrated in the field device are the following:
The terminology, online, means in connection with the invention that the field device specific data sets of the field device are provided as soon as the connection between the servicing unit and the field device is produced. Then, the edited, instance specific, data sets matched to the particular application, involving especially parameter values, diagnostic values, status values, etc., can be stored locally or decentrally in a section of a memory.
In contrast to this, offline operation means that the field device type specific data sets are provided either locally or decentrally, processed offline, and, thus, produced as instance specific data sets, thus data sets tailored to the particular application, and then stored as instance specific data sets.
The relationship between parameters stored in the field device and those in the HTML page is determined in the web server by the device model of the respective field device type.
The advantages of the invention are again summarized here:
The invention will now be explained in greater detail based on the sole figure of the drawing,
The terminology, field devices, has already been explained above. Field device F is arranged, for example, in an automation plant. In the illustrated case, the field device F includes a fieldbus interface FBI and a service interface SI. Via the service interface SI, the field device F in the shown example is connected with a servicing unit SU; the field device F is thus online. Communication occurs either via suitable connecting cable or via radio. Via the fieldbus interface FBI, the field device F is coupled e.g. with one of the fieldbusses customary in automation technology and communicates via one of the communication protocols, which were already named above, with a control/servicing unit (not separately illustrated).
The servicing unit SU is connected with a server S arranged outside of the field device, F. In the illustrated case, the server S is reachable via Internet. Provided, however, is also a direct connection between field device F and server S. Server S provides on a web page WP, upon corresponding query, at least one piece of field device type specific information for the respective field device F. This information corresponds e.g. to at least one part of the parameters, which describe the field device F and its functionality. The information can, however, also be status information or diagnostic information.
According to the invention, the service program SP associated with the servicing unit SU provides a browser B. This makes the field device type specific web pages WP available on a display unit DU. Furthermore, the servicing unit SU provides a communication link KL between the server S and the field device F. The servicing of the field device F occurs via this communication link KL.
In the left upper region of
The selection of a field device F occurs, in each case, via a unique device ID. Depending on application, this is, for example, the serial number, the device tag or even the device type.
Not shown in
Number | Date | Country | Kind |
---|---|---|---|
10 2011 087 826.2 | Dec 2011 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2012/073309 | 11/22/2012 | WO | 00 |