Apparatus for stitching vehicle interior components

Information

  • Patent Grant
  • 9512547
  • Patent Number
    9,512,547
  • Date Filed
    Monday, December 29, 2014
    10 years ago
  • Date Issued
    Tuesday, December 6, 2016
    8 years ago
Abstract
A method for stitching an interior component is provided. The method including the steps of: stitching an outer skin layer of the interior component with a single needle chain stitch machine having a rotary looper; descending a needle of the machine through the interior component; retracting the needle after is has descended through the interior component; engaging a thread loop formed during the retraction of the needle after it has descended through the interior component with a hook of the rotary looper, wherein a portion of interior component is located above and below the rotary looper as it rotates; and moving the interior component relative to the needle and rotary looper in order to establish a stitch length.
Description
BACKGROUND

This invention relates to an interior structure for a vehicle interior. More particularly, the invention relates to an apparatus for stitching vehicle interior components.


Currently, most stitching found in an automotive interior is of the functional variety, wherein two or more pieces of material (leather, vinyl, TPO, cloth, etc) are cut from a pattern and sewn together (cut-n-sew) prior to being wrapped around a component such as a seat cushion, head rest, arm rest, console lid, instrument panel substrate, etc. Such functional stitching is very labor intensive and is normally used only where required on low and mid-class vehicles. Functional stitching on decorate components such as instrument panel retainers and door panels has typically been restricted to higher class vehicles due to cost.


In recent years, automotive original equipment manufacturers (OEMs) have shown an interest in applying the “stitched” look to more vehicles over a wider range of price classes. A simulated non-functional stitch has been used in some applications; however, the ability to offer a simulated stitch in a contrasting color is not production feasible at this time. Additionally, more OEMs are requested that a real or “live” stitch be used on decorate components to provide the look and feel of a true cut-n-sew component.


Accordingly, it is desirable to provide a live, non-functional stitch on decorative automotive trim components.


SUMMARY OF THE INVENTION

An apparatus for stitching an interior component, having an outer skin layer, wherein the apparatus is a single needle chain stitch machine with a rotary looper and wherein a needle of the apparatus descends through the interior component and a hook of the rotary looper engages a thread loop formed during retraction of the needle after it has descended through the interior component; and wherein the apparatus further comprises a mechanism for moving the interior component relative to the needle and looper to establish a stitch length.


In yet another embodiment, a method for stitching an interior component is provided. The method including the steps of: stitching an outer skin layer of the interior component with a single needle chain stitch machine having a rotary looper; descending a needle of the machine through the interior component; retracting the needle after is has descended through the interior component; engaging a thread loop formed during the retraction of the needle after it has descended through the interior component with a hook of the rotary looper, wherein a portion of interior component is located above and below the rotary looper as it rotates; and moving the interior component relative to the needle and rotary looper in order to establish a stitch length.





BRIEF DESCRIPTION OF THE DRAWINGS

Other features, advantages and details appear, by way of example only, in the following description of embodiments, the description referring to the drawings in which:



FIG. 1 is a schematic illustration of an apparatus for stitching a component of a vehicle;



FIGS. 2A-2E sequentially illustrates a stitching sequence of an exemplary apparatus of the present invention;



FIG. 3 is cross sectional view of a component stitched in accordance with an exemplary embodiment of the present invention;



FIG. 4 is a schematic illustration of an apparatus for stitching a component of a vehicle according to an alternative exemplary embodiment; and



FIG. 5 is a schematic illustration of an apparatus for stitching a component of a vehicle according to yet another alternative exemplary embodiment.





DETAILED DESCRIPTION

Turning now to the drawings, wherein to the extent possible like reference numerals are utilized to designate like components throughout the various views, an interior portion of a vehicle is illustrated. In one implementation interior portion is a portion of an instrument panel of a vehicle. Also illustrated, is an apparatus for stitching the interior portion.


The interior portion may be a single layer or multi-layered construction. In one embodiment, the interior portion includes at least an outer skin layer having a substantially smooth outer surface and an underside facing away from the outer surface. The outer skin layer is preferably formed of a plastic material of substantial flexibility and aesthetically pleasing character. In one embodiment, the interior portion is a decorative element of a vehicle interior.


In order to enhance the softness of interior portion and in one embodiment, a layer of cushioning support material may be provided in the region below the outer skin layer. It is contemplated that the cushioning support material may be of any number of different constructions although a foamed material such as cross linked polypropylene (XLPP) foam may be potentially preferred. A substrate panel of dimensionally stable plastic or other suitable material can also be disposed below the cushioning support material.


According to one potentially preferred embodiment, the cushioning support material and the substrate panel serve cooperatively to provide a support structure for the outer skin layer.


It is contemplated that XLPP foam forming the cushioning support material may be blown between the outer skin layer and the substrate panel so as to form a multi-layered composite structure. It is also contemplated that the cushioning material may be attached to the outer skin layer in a preliminary cladding operation so as to form a preliminary layered composite which may thereafter be applied across any substrate panel as may be utilized.


Still further, the interior piece or decorative element may be anyone of a single layer (skin only), a double layer (skin/foam) or a triple layer (skin/foam/substrate). Accordingly, the apparatus disclosed herein in contemplated as being used with anyone of the aforementioned interior piece configurations.


As discussed above, there is a desire to provide a live, non-functional stitch on decorative automotive trim components without using costly cut-n-sew technologies. Typically, live non-functional stitching can be applied in one of the following ways:


I. Stitch a pattern on an unformed single or multilayer construction of trim material and wrap the sewn trim sheet around a preformed/precut substrate;


II. Stitch a pattern on a preformed single or multilayer construction of trim material and bond the sewn trim preform to a preformed molded substrate; and


III. Stitch a pattern on a flat or relatively flat single or multilayer trim & substrate component construction.


As the part complexity increases, in addition to the desire of many OEMs to place the live, nonfunctional stitching along the edge and other tight confines of the component, the ability to access these areas with conventional sewing equipment becomes increasingly difficult. Special long arm, high post stationary sewing machines with custom post extensions have been designed and are being used with some success to stitch in these confined areas. However, as part size increases, it becomes increasingly difficult for the sewing machine operator to manipulate the part/preform under the sewing head without either damaging the part or producing an irregular stitch length or misaligned stitch.


As a result, movement of the sewing machine around a fixed part becomes a more plausible solution as the part and stitch complexity increases. Movement is commonly guided by a 6 axis robot in order to provide access to all areas of the part. In addition to provide the ability to sew a large 3D component without damaging the part, the robot minimizes concerns regarding irregular stitch length and stitch misalignment.


Several types of sewing heads have been developed for attachment to a robot. Both post bed type and cylinder type robotic stitching heads have been developed for sewing 3D components. Both chain and lock type stitch patterns have also been utilized. Cylinder type machines designed to date have either been chain stitch with a hook looper in the cylinder arm or a lock stitch with a bobbin oriented with its axis of rotation in a horizontal fashion. Post bed type machines have also consisted of a chain stitch hook looper located at the top of the post or a lock stitch with a bobbin oriented vertically or horizontally at the top of the post.


The instant application is directed to an improvement in the existing robotic sewing head design technology to enable increased access to confined stitch areas.


Exemplary embodiments of the invention described herein, consists of a robotic sewing/stitching head design that enhances the ability to stitch in confined areas of a three-dimensionally shaped part. The design utilizes a chain type stitch with the use of a rotary looper at the end of a combination post and cylinder bed (see at least FIG. 1).


In FIG. 1, a lower shaft 1 is also driven by the same servo motor 10 (via mechanical linkage 17) that drives an upper shaft 2 and needle bar assembly 2a. Shaft 1 is configured to drive a series of secondary lower shafts (3 and 4) through appropriate gearings 5 and bearing supports 6.


A rotary looper 7 is attached to the output of the last shaft 4 which in turn rotates to hook and secure the top thread to the underside of a component 8 being sewn. The position and dimensions of the lower arm assembly 9 is such that all areas of the component 8 being sewn can be accessed. It is desirable to size the diameter of the rotary looper and associated lower arm enclosure to maximize access to the backside of the part while providing the ability to accommodate the desired thread size and stitch length. For example, the configuration of the rotary looper 7 allows an underside area 38 of component 8 to be accessed. This would not be feasible with a vertically driven mechanism located directly below the rotary looper 7. An extension 39 of the appropriately configured diameter 40 of the rotary looper is shown in FIG. 1.


The means of driving the rotary looper is not limited to the description above and can be reconfigured accordingly to achieve the same effect, namely access into confined area such as area 38.


A typical operation sequence for a single needle chain stitch machine with a rotary looper and single thread is described below and is the preferred, but not only, method of stitching to accomplish a compact stitching head construction. As shown in FIGS. 2A-2E, the stitching sequence begins with the needle 11 descending through a material 12 and passing through the thread loop 13 generated during the previous cycle. A new thread loop 14 is generated via the friction between the thread and material as the needle 11 retracts through the material. The hook 15 of the rotary looper 16 engages the new thread loop during needle retraction. After the needle exits the material, the material moves relative to the needle and looper to establish the stitch length via a mechanism that is configured to move the material. The aforementioned mechanism is illustrated schematically via box 19 in FIGS. 1, 4 and 5. Box 19 may represent a mechanism for moving the part or component 8 relative to the sewing head 21 or alternatively a robot (as mentioned above) coupled to the sewing head 21 and configured to move the sewing head 21 relative to a stationary part or component 8. Still further and in yet another embodiment, a pair of mechanisms 19 (e.g., one robot and one for moving the part) may operate in concert with each other to simultaneously move the part 8 and the sewing head 21 or alternatively the two mechanisms 19 may alternate in their operation (e.g., part movement then sewing head movement). The material of component 8 movement can be accomplished via a feed dog mechanism and walking foot integral to a stationary sewing head 21 or the sewing head 21 can be moved relate to a fixed material position by for example a robot. During the advancement of the material relative to the sewing head 21 via the mechanism 19 the rotary looper releases the previous thread loop from the looper and the thread is drawn tightly against the bottom of the material. The looper hook continues to rotate and position itself to engage the next loop once again as the needle creates a new piercing and moves through the bottom of its stroke. This sequence continued until the stitching pattern is completed.


The completed stitch pattern 23 appears as shown in FIG. 3. Preformed materials used with this stitching head design are typically, but not limited to, thermoplastic vacuum formed or slush cast formed sheet or vacuum formed thermoplastic sheet of multilayer construction consisting of, at minimum, a skin 25 and foam layer 27 but also may include a barrier layer behind the foam as well as a rigid thermoplastic polymer that serves as the substrate 29 for the three dimensionally formed part.


An alternative exemplary design utilizes a chain type stitch with the use of an offset looper arm (see FIG. 4) or an offset looper hook (see FIG. 5) at the end of a combination post and cylinder bed in lieu of a rotary looper hook. The use of a looper arm/hook configuration enables the use of both a top thread 31 and a bottom thread 33 (illustrated schematically) to further enhance the security of the stitch against the sewn part.


In the case of the offset looper arm (FIG. 4), the lower shaft 1 is supported by bearings 30 and the lower shaft 1 is also driven by the same servo motor 10 that drives the upper shaft 2 and needle bar assembly 2a via mechanical linkage 17. The lower shaft is also configured to direct drive an offset looper arm 32 such that the desired rotational movement of the arm 32 and hook 34 is achieved. The offset of the looper arm 32 is illustrated as length 33 and the looper arm houses/contains a looper hook 34 that engages the loops formed by the needle 36 in a fashion similar to that described in FIG. 2. The position and dimensions of the lower arm assembly 9 is such that all areas of the component 12 being sewn can be accessed. It is desirable to design the depth of the offset 33 on the looper arm 32 and associated lower arm enclosure to maximize access to the backside of the part 12 while providing the ability to accommodate the desired thread size and stitch length.


In the case of the offset looper hook 34 (FIG. 5), the same machine configuration exists as with the offset looper arm 32 with the exception that the hook 34 instead of the arm 32 contains the offset 33 required to gain access to the restricted areas of the part.


Accordingly, an underside of the part 12 in area 38 can be access via the offset 33.


While the invention has been described with reference to an exemplary embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the present application.

Claims
  • 1. A method for stitching an interior component, comprising: stitching an outer skin layer of the interior component with a single needle chain stitch machine having a rotary looper;descending a needle of the machine through the interior component;retracting the needle after it has descended through the interior component;engaging a thread loop formed during the retraction of the needle after it has descended through the interior component with a hook of the rotary looper, wherein a portion of interior component is located above and below the rotary looper as it rotates; andmoving the interior component relative to the needle and rotary looper in order to establish a stitch length.
  • 2. The method as in claim 1, wherein the rotary looper releases a previous thread loop as the interior component is moved by a mechanism and wherein the thread loop is drawn tightly against a bottom of the interior component.
  • 3. The method as in claim 1, wherein outer skin layer, is formed from the group consisting of vinyl, leather and thermoplastic polyolefin; and an intermediary layer is applied to the outer skin layer, wherein the intermediary layer is a foam.
  • 4. The method as in claim 3, wherein a plastic substrate layer is applied to the foam.
  • 5. The method as in claim 1, wherein the interior component is an interior trim piece of a vehicle.
  • 6. The method as in claim 5, wherein the interior trim piece is a portion of an instrument panel of the vehicle.
  • 7. The method as in claim 2, wherein outer skin layer, is formed from the group consisting of vinyl, leather and thermoplastic polyolefin; and an intermediary layer is applied to the outer skin layer, wherein the intermediary layer is a foam.
  • 8. The method as in claim 7, wherein a plastic substrate layer is applied to the foam.
  • 9. The method as in claim 8, wherein the interior component is an interior trim piece of a vehicle.
  • 10. The method as in claim 9, wherein the interior trim piece is a portion of an instrument panel of the vehicle.
  • 11. The method as in claim 1, wherein the rotary looper has an arm member configured with an offset such that the hook is offset from other portions of the arm member.
  • 12. The method as in claim 11, wherein the arm member of the rotary looper is directly driven a lower shaft coupled to a motor and the motor drives an upper shaft that drives the needle.
  • 13. The method as in claim 12, wherein the interior component is an interior trim piece of a vehicle.
  • 14. The method as in claim 13, wherein the interior trim piece is a portion of an instrument panel of the vehicle.
  • 15. The method as in claim 1, wherein the rotary looper has an arm member and the hook is secured to the arm member, wherein the hook is configured with an offset such that the hook is offset from the arm member.
  • 16. The method as in claim 15, wherein the arm member of the rotary looper is directly driven a lower shaft coupled to a motor and the motor drives an upper shaft that drives the needle.
  • 17. The method as in claim 16, wherein the interior component is an interior trim piece of a vehicle.
  • 18. The method as in claim 17, wherein the interior trim piece is a portion of an instrument panel of the vehicle.
  • 19. The method as in claim 1, wherein a mechanism is configured to directly move the component with respect to the needle and the rotary looper.
  • 20. The method as in claim 1, wherein a mechanism is configured to directly move the needle and the rotary looper relative to the component.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/543,489 filed Jul. 6, 2012, which claims the benefit of U.S. Provisional Application Ser. No. 61/505,836, filed Jul. 8, 2011, the contents each of which are incorporated herein in their entirety by reference thereto.

US Referenced Citations (56)
Number Name Date Kind
1731221 Becker Oct 1929 A
1820935 Buhler Sep 1931 A
2147006 Zablocki Feb 1939 A
2328705 Becker Sep 1943 A
2332125 Zonis et al. Oct 1943 A
2386660 Clayton Oct 1945 A
2430087 Stritter Nov 1947 A
2529575 Sailer Nov 1950 A
2673537 Eastman Mar 1954 A
2860591 Ness Nov 1958 A
3602168 Yamashita Aug 1971 A
3732833 Brookhyser May 1973 A
3866554 Holtzman Feb 1975 A
3875877 Fox Apr 1975 A
4169422 Hayes et al. Oct 1979 A
4488498 Smith Dec 1984 A
4561367 Corbett et al. Dec 1985 A
4711190 Smith Dec 1987 A
5094180 Salganik Mar 1992 A
5313897 Katamine et al. May 1994 A
5390950 Barnes et al. Feb 1995 A
5679296 Kelman et al. Oct 1997 A
5873318 Bohlinger et al. Feb 1999 A
5988085 Martz Nov 1999 A
6045732 Nakatsuji et al. Apr 2000 A
6095069 Tadzhibaev Aug 2000 A
6129031 Sarh et al. Oct 2000 A
6178903 Bondanza et al. Jan 2001 B1
6401643 Iida Jun 2002 B2
6450678 Bayersdorfer Sep 2002 B1
6997126 Murley Feb 2006 B2
7278363 Wieczorek et al. Oct 2007 B2
7401829 Michalski et al. Jul 2008 B2
7431484 Fong Oct 2008 B2
7661740 Saito Feb 2010 B2
8215810 Welch, Sr. et al. Jul 2012 B2
8316785 Boinais et al. Nov 2012 B2
8833829 Wenzel et al. Sep 2014 B2
8919270 Wenzel et al. Dec 2014 B2
9010259 Schwarzberger Apr 2015 B2
20030168151 Wright et al. Sep 2003 A1
20060197321 Saito et al. Sep 2006 A1
20090316401 Choquet et al. Dec 2009 A1
20100296302 Welch, Sr. et al. Nov 2010 A1
20110030596 Boinais et al. Feb 2011 A1
20110063872 Irie et al. Mar 2011 A1
20110084852 Szczerba et al. Apr 2011 A1
20110171435 Sheldon Jul 2011 A1
20120297643 Shaffer et al. Nov 2012 A1
20130009416 Wenzel et al. Jan 2013 A1
20130147228 Filipp Jun 2013 A1
20140306476 Wenzel et al. Oct 2014 A1
20150033996 Wenzel et al. Feb 2015 A1
20150040812 Schwarzberger Feb 2015 A1
20150158115 Davies Jun 2015 A1
20160096490 Wenzel Apr 2016 A1
Foreign Referenced Citations (18)
Number Date Country
1298974 Jun 2001 CN
1325466 Dec 2001 CN
1746365 Mar 2006 CN
1826443 Aug 2006 CN
201176507 Jan 2009 CN
3703070 Sep 1988 DE
03097491 Apr 1991 JP
6511395 Dec 1994 JP
2001162068 Jun 2001 JP
2005087510 Apr 2005 JP
2006075221 Mar 2006 JP
2006081636 Mar 2006 JP
2006273312 Oct 2006 JP
2013043571 Mar 2013 JP
1020030024287 Mar 2003 KR
1020060050815 May 2006 KR
2004078518 Sep 2004 WO
2013090371 Jun 2013 WO
Non-Patent Literature Citations (38)
Entry
English Translation of the first office action for patent application No. 201280033806.X; Date of Issue: Feb. 3, 2015.
First office action for patent application No. 201280033806.X; Date of Issue: Feb. 3, 2015.
English Translation of CN201176507 Abstract, Jan. 7, 2009.
English Translation of DE10060771 Abstract which corresponds with CN1298974, Aug. 9, 2001.
CN Office Action for Application No. 20120034003.6 dated Dec. 2, 2014; 7 pgs.
CN Office Action for Application No. 201280034003.6 dated Jul. 24, 2015; 5 pgs.
CN Office Action for application No. 2012800330806.X dated Feb. 3, 2015; 9 pgs.
English abstract for CN1746365A—Mar. 15, 2006; 2 pgs.
English Abstract for DE3703070A1—Sep. 1, 1988; 1 pg.
English Abstract for JP2013043571A—Mar. 4, 2013; 1 pg.
English Translation for CN Office Action Application No. 201280033806.X dated Feb. 3, 2015; 11 pgs.
English Translation for CN Office Action for Application No. 201280034003.6 dated Jul. 24, 2015; 5 pgs.
English Translation of CN Office Action for Application No. 201280034003.6 dated Dec. 2, 2014; 8 pgs.
International Search Report dated Jan. 25, 2013 for International application No. PCT/US2012/045797; International filing date: Jul. 6, 2012; 5 pgs.
International Search Report for International application No. PCT/US2015/043438; International Filing Date: Aug. 3, 2015, Date of Mailing: Nov. 19, 2015; 3 pgs.
International Search Report for International Application No. PCT/US2015/043436; International Filing Date: Aug. 3, 2015; Date of Mailing: Nov. 12, 2015; 3 pgs.
International Written Opinion for International Application No. PCT/US2015/043436; International Filing Date: Aug. 3, 2015; Date of Mailing: Nov. 12, 2015; 4 pgs.
International Written Opinion for International application No. PCT/US2015/043438; International Filing Date: Aug. 3, 2015; Date of Mailing: Nov. 19, 2015; 5 pgs.
Non-Final Office Action for U.S. Appl. No. 14/450,609, filed Aug. 4, 2014; Dated Sep. 28, 2015; 9 pgs.
Written Opinion dated Jan. 25, 2013 for International application No. PCT/US2012/045797; International filing date: Jul. 6, 2012; 5 pgs.
Written Opinion dated Jan. 25, 2013 for International application No. PCT/US2012/045798.
Englisth Abstract CN1746365, equivilent to KR102006000815, Mar. 15, 2006.
Englisth Abstract JP03097491, Apr. 23, 1991.
Englisth Abstract JP2001162068, Jun. 19, 2001.
International Search Report dated Jan. 25, 2013 for International application No. PCT/US2012/045798.
English Abstract KR1020030024287, Mar. 26, 2003.
English Abstact for JP2006081636A—Mar. 30, 2006; 2 pgs.
English Abstract for JP2005087510A—Apr. 7, 2005; 1 pg.
English Abstract for JP2006075221A—Mar. 23, 2006; 1 pg.
English Translation for Japanese Office Action Patent Application No. 2014-519078; Date of Mailing: May 31, 2016; 6 pgs.
English Translation of Japanese Office Action for Patent Application No. 2014-519079; Date of Mailing: Apr. 26, 2016; 4 pgs.
English Translation of Third Chinese Office Action for Application No. 201280033806.X; dated Feb. 22, 2016; 1 pg.
Japanese Office Action for Application No. 2014-519078; Date of Mailing: May 31, 2016; 5 pgs.
Japanese Office Action for Patent Application No. 2014-519079; Date of Mailing: Apr. 26, 2016; 5 pgs.
PCT International Search Report for International Application No. PCT/US2015/056907; International Filing Date: Oct. 22, 2015; Date of Mailing: Feb. 4, 2016; 3 pgs.
PCT Written Opinion for International Application No. PCT/US2015/056907; International Filing Date: Oct. 22, 2015; Date of Mailing: Feb. 4, 2016; 3 pgs.
Third Chinese Office Action for Application No. 201280033806.X; Dated: Feb. 22, 2016; 3 pgs.
English Abstract for JP6511395A—Dec. 22, 1994; 1 pg.
Related Publications (1)
Number Date Country
20150176165 A1 Jun 2015 US
Provisional Applications (1)
Number Date Country
61505836 Jul 2011 US
Continuations (1)
Number Date Country
Parent 13543489 Jul 2012 US
Child 14585173 US