The invention relates to an apparatus for storage of wood chips in an open-yard or silo storage as a conical or curved-top stockpile and, respectively, for unloading material from this type of stockpile. While the invention is particularly advantageously related to the storage of wood chips, it is also suited for use in the storage of other granular material such as bark, coal, grain and the like.
It is known to store chips in stockpiles by a method wherein chips are stacked in a curved-top pile having typically a diameter of 80 to 150 m and a height of 20 to 30 m. In these methods, green chips are stacked at one end of the stockpile while earlier stored chips are unloaded from the other end. By virtue of this method, the storage time of chips can be kept optimal in regard to the later processing steps inasmuch the stockpile is always unloaded at the end containing the longest stored chips.
In conventionally used chip storage facilities meeting the above requirements, green chips are transported over the top level of the stockpile by means of a belt conveyor, adapted to operate in a conveyor bridge, to the upper portion of a tower-like structure located in the center of the curved-top stockpile. Below the conveyor bridge, on the top portion of the tower structure is supported a horizontally rotatable boom. Chips are dropped via a hopper onto a belt conveyor adapted into the boom which in this manner creates a curved stockpile around the tower. The top of the stockpile is kept on loading at a constant height with the help of an automatic level sensor. The chips are unloaded from the stockpile by means of a horizontally on ground level rotated reclaim conveyor bridge that houses a reclaim conveyor and is connected to the lower portion of the tower by its one end. To the distal end of the reclaim conveyor bridge are mounted driven wheels that run on the storage yard along a track encircling the stockpile. As known in the art, the reclaim conveyor may be a drag conveyor or, alternatively, an auger conveyor equipped with one or more augers. To the reclaim conveyor bridge is further adapted a rake-like lattice which is adapted to move reciprocatingly driven in the direction of the reclaim conveyor bridge so as to collapse the stockpile onto the reclaim conveyor. The reclaim conveyor bridge has in a reclaim system of this type a length of 40 to 70 m, and is consequently quite heavy, having completely equipped a weight of 50 to 100 tons.
The reclaim conveyor transfers chips into an open hopper located in the foot of the tower, conventionally embedded in the foundation construction, and forming a circulating ring around the tower, from which hopper the chips fall onto a conveyor located beneath the chip storage, and delivering the chips from the storage area. As a security issue it is to be noted that this kind of open hopper is not well suited for the purpose because besides the chips, also other items may fall into it, including operating personnel, animals and other non-intended obstacles.
Curved-top pile storages for chips are also known where the chips are reclaimed from the surface of the pile, and transported further from the ground level. Said storage system is, however, not very suited for utilizing an optimized storage time, because the stationary transport conveyor cuts the pile constantly at a same location.
As a controlled unloading capacity is required from the apparatus of the invention, the machinery turning the heavy unloading bridge must be controlled and furnished with a control drive of its own. Similarly the unloading auger in the bridge must be furnished with a controlled drive of its own or even in some cases with two drives. The transportation conveyor delivering the chips further from the unloading bridge has its own operation requirements. The apparatus of the invention is to be continuously operating, and longer service stops are not allowed, and especially a situation where the storage becomes empty, is totally excluded. This means that the robust machinery parts are to be quite easily and quickly to be serviced, and the service personnel must have access to the locations requiring inspection and service.
The essential characterizing features of an apparatus implementing the the invention are disclosed in appended claims.
Next, the invention will be examined in greater detail by making reference to the appended drawings, wherein
Referring to
The stack is diminished by a unloading conveyor bridge 13 which is supported at its one end on the lower part of 12 of the tower, and rotating on the ground level to certain direction around the tower center 4. To the outer end of the unloading conveyor bridge 13 is mounted a driven support wheel assembly 15 that runs along a track 16 encircling the curved-top stockpile 3. While the embodiment of
In the unloading conveyor bridge 13 is further adapted to include a rake-like lattice 20 which is adapted to move reciprocating along the bridge 13 and to collapse the stockpile 3 onto the unloading conveyor 14. The unloading conveyor transfers chips into a hopper 21, which is located around the bottom of the tower. The outer diameter of the annular opening is on the top 6 to 8 meters. The opening 24 diminishes below the tower to a funnel 21, from which the chips fall onto a conveyor 23 located in a tunnel 22 below the stockpile 3 and transferring chips away from the storage. The bottom 19 of the tower is supported on the ground foundation 26 by beams 25 crossing the opening 24.
Now referring to
The unloading conveyor adapted to the unloading conveyor bridge 13″ is shown to be an auger conveyor 28′. The unloading bridge is supported by a driven carriage 42 at a distance about ⅓ from the outer circle of the traveling path of the unloading bridge. The support forms a steady construction with moderate costs. Especially this is beneficial in connection with unloading bridges with a length of over 60 meters.
The unloading conveyor 28′ feeds chips to a two-part vertical screw conveyor 31. The vertical screw conveyor 31 elevates chips onto an uphill-angled auger conveyor 32 that further transfers chips onto a belt conveyor 34 operating at a lower level on a bridge 33. Alternatively, the vertical screw conveyor 31 may be arranged to elevate chips directly onto the belt conveyor 34. It is beneficial of using a two-part vertical screw conveyor 31 in the invention because the lower portion 35 of the tower to rotate about the tower center 4 independently from the stationary middle portion 27 of the tower. The lower portion 35 of the tower is mounted to a foundation 36 in bearing 37 and to the stationary middle portion 27 of the tower in bearing 38.
The lower conveyor bridge 33 is attached to the stationary center portion 27 of the tower, wherefrom the conveyor bridge travels over the stockpile 3 or even tangentially to the top of the stockpile top 39, whereby the starting level of the chip transportation path from the storage is almost equal to the stockpile height. By way of orienting the lower 33 and the upper 1 conveyor bridges in different directions, the tower can be supported at its top from different directions by support feet 40 and 41 against wind forces imposed thereon.
The carriage 42 disclosed more detailed on
When the unloading bridge 13″ is furnished with the support carriage 42, the diameter D of the curved-top pile can be further diminished without limiting the storage volume by slightly increasing the pile height. This becomes possible when a wall 48 surrounding the pile is in use, as depicted in
In an apparatus according to the invention, the inner perimeter of the stockpile can be allowed to rest against the tower up to a height H (most advantageously H is 2 to 4 m), as indicated in
Due to the above mentioned measures resulting to a diminishing in the pile diameter the support beams 40, 41 for the transport bridges can be positioned closer to the center 4 of the pile. Consequently, lighter constructions in the bridges 1 and 33 are possible.
Unloading of the chips from the pile, as depicted in
Drawing
When the support 42 for the unloading bridge 13″ is used, the drive 61 for the screw 28′ is positioned in the lower part 35 of the tower, inside the mantle 50.
The bearing construction 38 between the lower part 35 of the tower and the stationary middle part 27 is presented in the drawing
This application is a divisional application of pending U.S. patent application Ser. No. 10/518,456 filed on 22 Dec. 2004 as a national phase application of International Application No. PCT/FI2003/000058 filed on Jan. 24, 2003.
Number | Name | Date | Kind |
---|---|---|---|
2649215 | Dickson | Aug 1953 | A |
2790563 | McCarthy | Apr 1957 | A |
3438517 | Steffen | Apr 1969 | A |
3487961 | Neuenschwander | Jan 1970 | A |
3526328 | Garret et al. | Sep 1970 | A |
3557979 | Zortman | Jan 1971 | A |
3661283 | Fischer et al. | May 1972 | A |
3713552 | Schnyder | Jan 1973 | A |
3765548 | Shivvers | Oct 1973 | A |
3847289 | Fischer | Nov 1974 | A |
4154332 | Schlegel | May 1979 | A |
4217701 | Mathews | Aug 1980 | A |
4286909 | Tingskog | Sep 1981 | A |
4322021 | Olsson | Mar 1982 | A |
4401404 | Weaver | Aug 1983 | A |
4451192 | Wood | May 1984 | A |
4492302 | Svens | Jan 1985 | A |
4537553 | Andersson | Aug 1985 | A |
4721425 | Strocker | Jan 1988 | A |
4775278 | Fischer et al. | Oct 1988 | A |
5098247 | Campbell | Mar 1992 | A |
5180272 | Campbell | Jan 1993 | A |
5366067 | Courtois et al. | Nov 1994 | A |
5722529 | Manjunath et al. | Mar 1998 | A |
5845762 | Stark | Dec 1998 | A |
6203261 | South et al. | Mar 2001 | B1 |
6254329 | Sukup et al. | Jul 2001 | B1 |
6676357 | Stafford et al. | Jan 2004 | B2 |
Number | Date | Country |
---|---|---|
516 935 | Dec 2000 | SE |
WO 0075053 | Dec 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20060285943 A1 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10518456 | US | |
Child | 11505880 | US |