The present disclosure relates generally to HVAC systems, and more particularly, to ductless mini-split HVAC systems.
Ductless mini-split HVAC systems typically include an outdoor compressor unit and an indoor evaporator/fan unit and do not require a central system of ductwork. The outdoor and indoor units are usually connected by one or more conduits that contain electrical wiring, refrigerant lines and condensate tubing. The evaporator/fan unit often fits inside a slim case that mounts within the room or area to be air conditioned and may be ceiling, or wall, mounted.
A typical ductless mini-split HVAC system is controlled with a thermostat. When the temperature in the room exceeds a set-point of the thermostat, the outside compressor is automatically switched on. Refrigerant gas will be squeezed through a network of pipes and orifices in the compressor to raise its temperature and pressure. The refrigerant gas then moves into the condenser of the compressor, where a fan extracts heat from the refrigerant and exhausts it to the outside. When excess heat is removed, the refrigerant is transformed into a cool liquid. This cool liquid travels into the home through one or more tubes connecting the compressor and evaporator/fan unit.
As the cool liquid refrigerant enters the building, its typically passes through an expansion valve and undergoes an abrupt reduction in pressure. The reduction in pressure will dramatically flash-evaporate part of the liquid refrigerant, lowering the temperature of the liquid/vapor mix. A fan unit within the evaporator/fan unit will draw warm air from inside the room into the evaporator/fan unit. The warm air is exposed to the cool refrigerant passing through evaporator/fan unit coils or tubes, which absorbs excess heat from the air and thus cools down the room. The refrigerant with the excess heat from the room is then transferred back to the outside compressor and the cycle repeats.
The evaporator/fan unit is typically mounted on the interior wall of a room to be cooled or heated, and, thus, appearance is often important. In many instances, the evaporator/fan unit is hung flush with the wall and the refrigerant, electrical and condensate lines are run behind the wall (e.g. behind wall board) or against the wall and hidden (e.g. with decorative covers). Installing a mini-split evaporator/fan unit flush against an interior wall is often difficult and may require multiple installers. For example, a first person is often required to connect the refrigerant, electrical and condensate lines, while a second person holds the evaporator/fan unit spaced away from the wall. This operation can be especially challenging in certain situations, such as when the evaporator/fan unit is mounted high on a wall, requiring both installers to be positioned upon ladders.
After the refrigerant and electrical connections are made, the evaporator/fan unit can be positioned flush against the wall and then attached thereto (e.g. using a bracket). Thereafter, access to the evaporator/fan unit and/or refrigerant and electrical lines, such as for maintenance, repair or inspection (e.g. fixing a condensate pump or other important component in the interior of the evaporator/fan unit) may be challenging because the evaporator/fan unit must be moved away from the wall. As with installation, this often also requires multiple personnel (e.g. one to hold the evaporator/fan unit and another to perform work between the unit and the wall).
Accordingly, there exists a need for improved systems, apparatus and methods useful to assist in temporarily holding the evaporator/fan unit of a ductless mini-split HVAC system proximate to a wall, such as for installation, maintenance, etc. having one or more of the features, attributes or capabilities described or shown in, or as may be apparent from, the various portions of this patent.
It should be understood that the above-described discussion is provided for illustrative purposes only and is not intended to limit the scope or subject matter of the appended claims or those of any related patent application or patent. Thus, none of the appended claims or claims of any related application or patent should be limited by the above discussion or construed to address, include or exclude each or any of the cited examples, features and/or disadvantages, merely because of the mention thereof herein.
In some embodiments, the present disclosure involves apparatus for temporarily positioning the evaporator/fan unit of a mini-split HVAC unit proximate to a wall. The apparatus includes a removable, reusable platform that has an upper, horizontally-oriented, elongated support base. The support base has a first end configured to be positioned adjacent to the wall during use of the platform and a second end configured to be spaced away from the wall during use of the platform. The support base also has an upwardly facing support surface extending at least partially between the first and second ends and upon which at least part of the evaporator/fan unit is positioned and supported during use of the platform. At least one connector is disposed proximate to the first end of the support base and configured to releasably connect the platform to the wall or, in some embodiments, to one or more component attached to the wall, such as for example, a “mini-split wall mounting plate”. As used herein, reference to connection or engagement of the platform (or other component) to the wall thus means directly or indirectly (through one or more other component) connected to the wall. The platform also includes an elongated support leg having first and second ends. The second end of the support leg is pivotably connected to the support base between the midpoint of the support base and the second end thereof so that the support leg is pivotable relative to the support base between at least a first, collapsed position and at least a second, extended position. The first end of the support leg in the first, collapsed position is positioned proximate to the first end of the support base. The first end of the support leg in the second, extended position is spaced downwardly from the first end of the support base and engageable with the wall.
In many embodiments, the present disclosure involves a system useful for temporarily positioning the evaporator/fan unit of a mini-split HVAC unit proximate to a wall. The system includes at least two removable, reusable platforms. Each platform includes an upper, horizontally-oriented, elongated support base upon which at least part of the evaporator/fan unit is positioned and supported during use of the platform. An elongated support leg extends from the support base. The support leg is configured to collapse toward the support base when the platform is not in use, and be moveable into a downwardly, angularly-oriented position relative to the support base to abut the wall when the platform is in use. At least one spacer extends between the support base and the support leg and is configured to limit the downward movement of the support leg relative to the support base.
In various embodiments, the present disclosure involves a portable and reusable installation platform for easing the installation or maintenance of an air conditioner on a vertical wall. The platform includes at least one elongated support base upon which at least part of the air conditioner is positioned during the installation or maintenance thereof. The support base includes first and second ends. At least one connector extends from the first end of the support base and is configured to releaseably engage the wall. At least one support leg extends downwardly from the support base and is configured to abut the wall to support the weight of the air conditioner placed upon the support base.
The present disclosure also includes embodiments of a method of temporarily positioning the evaporator/fan unit of a mini-split HVAC unit proximate to a wall with the use of at least one positioning platform to allow one or more refrigerant, electrical or condensate lines to be connected to the evaporator/fan unit, or to allow maintenance of the evaporator/fan unit. The method includes releasably engaging at least one connector extending from a first end of an elongated, horizontally-oriented support base of the platform with the wall. A support leg of the platform is pivoted downwardly from the support base until the first end thereof abuts the wall. The evaporator/fan unit is placed upon an upwardly facing support surface of the support base so that it is spaced away from the wall to allow one or more refrigerant, electrical or condensate lines to be connected to the evaporator/fan unit, or to allow maintenance of evaporator/fan unit.
Accordingly, the present disclosure includes features and advantages which are believed to enable it to advance ductless mini-split HVAC system technology. Characteristics and advantages of the present disclosure described above and additional features and benefits will be readily apparent to those skilled in the art upon consideration of the following detailed description of various embodiments and referring to the accompanying drawings.
The following figures are part of the present specification, included to demonstrate certain aspects of various embodiments of this disclosure and referenced in the detailed description herein:
Characteristics and advantages of the present disclosure and additional features and benefits will be readily apparent to those skilled in the art upon consideration of the following detailed description of exemplary embodiments and referring to the accompanying figures. It should be understood that the description herein and appended drawings, being of example embodiments, are not intended to limit the claims of this patent or any patent or patent application claiming priority hereto. On the contrary, the intention is to cover all modifications, equivalents and alternatives falling within the spirit and scope of the claims. Many changes may be made to the particular embodiments and details disclosed herein without departing from such spirit and scope.
In showing and describing preferred embodiments, common or similar elements are referenced with like or identical reference numerals or are apparent from the appended figures and/or the description herein. When multiple figures refer to a component or feature with the same reference numeral, any description herein of the component or feature with respect to any of the figures applies equally to the other figures to the extent such description does not conflict with a description herein of the other figure(s). The figures are not necessarily to scale and certain features and certain views of the figures may be shown exaggerated in scale or in schematic in the interest of clarity and conciseness.
As used herein and throughout various portions (and headings) of this patent, the terms “invention”, “present invention” and variations thereof are not intended to mean every possible embodiment encompassed by this disclosure or any particular claim(s). Thus, the subject matter of each such reference should not be considered as necessary for, or part of, every embodiment hereof or of any particular claim(s) merely because of such reference. The terms “coupled”, “connected”, “engaged” and the like, and variations thereof, as used herein and in the appended claims are intended to mean either an indirect or direct connection or engagement. Thus, if a first device couples to a second device, that connection may be through a direct connection, or through an indirect connection via other devices and connections.
Certain terms are used herein and in the appended claims to refer to particular components. As one skilled in the art will appreciate, different persons may refer to a component by different names. This document does not intend to distinguish between components that differ in name but not function. Also, the terms “including” and “comprising” are used herein and in the appended claims in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to . . . .” Further, reference herein and in the appended claims to components and aspects in a singular tense does not necessarily limit the present disclosure or appended claims to only one such component or aspect, but should be interpreted generally to mean one or more, as may be suitable and desirable in each particular instance.
Referring initially to
The exemplary platform 10 is removable and reusable, and includes an upper, generally horizontally-orientable support base 18 and at least one support leg 20. The support base 18 and support leg 20 may have any suitable configuration, form and operation. In this example, the support base 18 and support leg 20 are elongated. As used herein, the term “elongated” means a component having a length that is greater than its width. However, in other embodiments, the support base 18 and/or support leg 20 may not be elongated. The illustrated support base 18 is configured to support at least part of the evaporator/fan unit prior to, during and/or after installation of the evaporator/fan unit. In this example, the support base 18 includes a first end 24 configured to be positioned adjacent to the wall (e.g. wall 14,
Still referring to
The connector 36 is releasably engageable with the wall (or one or more components mounted on the wall) in any suitable manner. For example, the connector 36 may engage hardware extending from or mounted on the wall. In the embodiment of
In some embodiments, the second end 28 of the support base 18 may, if desired, have an upwardly-oriented, ramp-like shape, such as shown in
Referring back to the embodiment of
Referring to
Referring back to
Referring now to
The support base 18 and support leg 20 may be constructed of any suitable material, such as plastic, metal, wood or a combination thereof, to provide sufficient stiffness and strength to temporarily, safely and securely support or hold at least part of the evaporator/fan unit (e.g. unit 16,
Referring back to
The spacer 86 may be engaged with the support base 18 and support leg 20 in any suitable manner. Referring to
Referring back to
As shown, the first end 54 of each exemplary support leg 20 is positioned to engage (rest against) the wall 14 to help stabilize and support the weight of the evaporator/fan unit 16 on the support base 18. The exemplary evaporator/fan unit 16 is placed and supported on the support surface 32 of each illustrated platform 10 and positioned proximate to the wall 14 (prior to its engagement with the mounting plate 48). While
In the illustrated embodiment, the portable and reusable platforms 10 are designed to attach to the wall 14 at the bottom portion of the plate 48, which is just below the area where the evaporator/fan unit 16 will be/was mounted. However, the platforms 10 could be releasably engaged with the wall 14 in any other suitable location or arrangement. The exemplary support leg 20 is pivoted downward so that it is in a diagonal position with its first end 54 resting against the wall 14. In some configurations, the platform 10 includes a spacer 86 to ensure that the support leg 20 does not pivot farther than desired. Other configurations may not include a spacer 86, such as with the use of a stop member (not shown) that will limit pivoting of the support leg 20 or when a rigid, non-pivoting, support leg 20 is used.
In this example, with the support bases 18 in a roughly horizontal position and the support legs 20 opened and resting against the wall in a diagonal position, the platforms 10 are stable and the evaporator/fan unit 16 may be placed on the support surfaces 32 of the platforms 10 in a suitable position for hooking up accessories (e.g. pumps, condensate switches, etc.) associated with the evaporator/fan unit 16, various electrical, refrigerant and fluid lines or any other desired purpose (e.g. inspection, repair, maintenance, etc). After the desired tasks are completed, the top of the exemplary evaporator/fan unit 16 may be engaged with the wall mounting plate 48 (as is known), and the illustrated platforms 10 may be disengaged from the plate 48 and removed. Thereafter, the bottom of the evaporator/fan unit 16 may be snapped into the snap-in tabs 50. However, this particular methodology may not be appropriate in embodiments where a mounting plate 48 is not used for engaging the platforms 10.
Referring now to
The support leg 20 may be selectively adjustable in length in any suitable manner. In this embodiment, the support leg 20 has upper and lower sections 20a, 20b in telescoping relationship. The illustrated upper section 20a is show inserted and telescoping within the lower section 20b. The respective positions of the upper and lower sections 20a, 20b may be secured with a removable pin (not shown) extendable therethrough or any other suitable mechanism(s). In other embodiments, a reverse arrangement may instead be used, wherein the lower section 20b telescopes within the upper section 20a.
Still referring to
Preferred embodiments of the present disclosure thus offer advantages over the prior art and are well adapted to carry out one or more of the objects of this disclosure. However, the present invention does not require each of the components and acts described above and is in no way limited to the above-described embodiments, variables, values, value ranges or methods of operation. Any one or more of the above components, features and processes may be employed in any suitable configuration without inclusion of other such components, features and processes. Moreover, the present invention includes additional features, capabilities, functions, methods, uses and applications that have not been specifically addressed herein but are, or will become, apparent from the description herein, the appended drawings and claims. Further, all of the value and value ranges provided herein and in the appended claims are intended to be approximate, as that term is defined herein.
The methods that may be described above or claimed herein and any other methods which may fall within the scope of the appended claims can be performed in any desired suitable order and are not necessarily limited to any sequence described herein or as may be listed in the appended claims. Further, the methods of the present invention do not necessarily require use of the particular embodiments shown and described herein, but are equally applicable with any other suitable structure, form and configuration of components.
While exemplary embodiments of the invention have been shown and described, many variations, modifications and/or changes of the system, apparatus and methods of the present invention, such as in the components, details of construction and operation, values, arrangement of parts and/or methods of use, are possible, contemplated by the patent applicant(s), within the scope of the appended claims, and may be made and used by one of ordinary skill in the art without departing from the spirit or teachings of the invention and scope of appended claims. Thus, all matter herein set forth or shown in the accompanying drawings should be interpreted as illustrative, and the scope of the disclosure and the appended claims should not be limited to the embodiments described and shown herein.
This application claims priority to U.S. patent application Ser. No. 14/513,605 filed Oct. 14, 2014 and entitled “Apparatus and Methods for Temporarily Holding the Evaporator/Fan Unit of a Ductless Mini-Split HVAC System Proximate to a Wall” which is based on U.S. Provisional Patent Application Ser. No. 61/961,698 filed on Oct. 21, 2013 and entitled “Portable Platforms for Installing a Mini-Split HVAC System”, the entire contents of which are hereby incorporated by reference herein in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
557875 | Reeves | Apr 1896 | A |
1325229 | Pittet | Dec 1919 | A |
1894878 | La Grange | Jan 1933 | A |
5636816 | Burton | Jun 1997 | A |
8584998 | Peterson | Nov 2013 | B1 |
9605870 | Darby | Mar 2017 | B2 |
Number | Date | Country | |
---|---|---|---|
20180003397 A1 | Jan 2018 | US |
Number | Date | Country | |
---|---|---|---|
61961698 | Oct 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14513605 | Oct 2014 | US |
Child | 15665978 | US |