The present invention relates to an apparatus for the adjustment of the stroke or lift of a valve actuated by a camshaft.
Apparatus for the adjustment of the stroke of charge changing valves of internal combustion engines offer great advantages for numerous applications. For example, by reducing the stroke in the partial throttle range the mixture preparation can be improved, thereby reducing consumption and the content of noxious material in the exhaust gas.
An apparatus of this type is know from U.S. Pat. No. 4,203,397. With this apparatus, the entire U-shaped outer lever is supported on a hydraulic play-compensating element. The inner lever is mounted at the free end of the arms of the outer lever. A blocking device for blocking the pivotability of the inner lever relative to the outer lever is provided with a pivot element that is mounted on the arms of the outer lever adjacent to the free end region of the inner lever; by means of a stationary electro magnet, the pivot element is pivotable into the path of movement of the inner lever, thereby blocking the pivotability of the inner lever relative to the outer lever. The camshaft has a full stroke cam that cooperates with a contact surface of the inner lever, and partial stroke cams that are disposed on both sides of the full stroke cam and cooperate with contact surfaces of the outer lever. The construction of the blocking mechanism is relatively complicated. Furthermore, the outer lever is a relatively complicated, space-consuming and heavy component due to its support upon the valve play-compensating element and the mounting not only of the inner lever but also of the blocking element on the outer lever.
U.S. Pat. No. 5,544,626 discloses a valve disengagement device that has a two-part valve lever, whereby an outer lever has an overall U-shaped configuration and is supported via its crosspiece on a hydraulic valve play-compensating element. Mounted on the ends of the arms of the U is an inner lever that carries a roller for contacting a cam of the camshaft. The free end of the inner lever can be interlocked on the crosspiece of the outer lever in that a pin, which is movably guided in the crosspiece of the outer lever, is moved into a recess formed on the inner lever by means of hydraulic fluid pressure that acts from the hydraulic valve play-compensating element. When the blocking device is arrested, the valve lever acts like a one-part lever that transfers the cam stroke to the valve. When the blocking device is released, the inner lever extends into the outer lever, so that the valve is not actuated.
U.S. Pat. No. 5,655,488 describes an apparatus for the adjustment of the stroke of a valve, which is actuated by a camshaft, via an inner lever that is mounted within an outer lever in the region of the support of the outer lever against a component that is secured to the engine. By means of a blocking device, which displaces a blocking component disposed on that end of the outer lever that is on the valve side, the pivotability of the inner lever relative to the outer lever can be blocked.
It is an object of the present invention to provide an apparatus for the adjustment of the stroke of a valve that is actuated by a camshaft, wherein the apparatus has a straightforward construction and requires little installation space.
This object, and other objects and advantages of the present invention, will appear more clearly from the following specification in conjunction with the accompanying schematic drawings, in which:
The apparatus of the present invention comprises a valve lever that includes an outer lever and an inner lever and has a first end region that is supported on a fixed component, and a second end region for actuating a valve, wherein the outer lever has an overall U-shaped configuration including two arms and a crosspiece that interconnects the arms and faces the fixed component, wherein at least one of the arms is provided with an abutment surface for contacting the cam or cams of the camshaft, wherein the inner lever is mounted on a free end of the outer lever between the arms thereof, wherein the inner lever has an abutment surface for contacting the cam or cams, and wherein the abutment surface is disposed between the axis of the mounting of the inner lever on the arms of the outer lever and the support of the first end region of the valve lever on the fixed component; and a blocking device for fixing the crosspiece of the lever on an end of the inner lever that is remote from the valve, wherein such end is supported on the fixed component and contains the blocking device.
Due to the fact that the free end of the inner lever is supported on the fixed component, the inner lever can essentially be designed like a conventional valve lever for valves that have no stroke adjustment device. The outer lever can be produced as a simple sheet metal part that spans the inner lever and is mounted on that end of the inner lever that is on the side of the valve.
The apparatus of the present invention can be utilized anywhere where it is advantageous to vary the stroke of a valve that is controlled by a camshaft via a valve lever. The present invention is particularly advantageous for use with intake valves of reciprocating piston internal combustion engines.
Further specific features of the present invention will be described in detail subsequently.
Referring now to the drawings in detail, pursuant to
The inner lever 4, when viewed in plan, has an overall U-shaped configuration and contains two curved arms 8 and 10, which are connected via a crosspiece 12. The arms 8 and 10 have two pairs of holes 14 and 16 that are disposed across from one another, whereby a pin 18 can be inserted into the pair of holes 14; this pin 18 is provided with a flat portion 20 for resting against a valve shaft that is not illustrated in FIG. 1. In the installed state, the pin 18 projects laterally out of the arms 8 and 10.
A pin 22 can be inserted into the pair of holes 16 for the mounting of a cam roller 24 that can be inserted between the arms 8 and 10.
The crosspiece 12 has a body 26 that contains a blind hole 28 into which can be inserted a piston 32 that has a shaft 30. A threaded ring 34 can be screwed into the blind hole 28 whereby a spring 36 is provided that surrounds the shaft 30 and is supported between the piston 32 and the threaded ring 34.
The front ends of arms 38 and 40 of the on the whole U-shaped outer lever 6 can, via a pair of holes 42, be mounted on the ends of the pin 18 that projects laterally out of the arms 8 and 10 of the inner lever 4. The arms 38 and 40 can be provided with further holes in order to save weight. Provided in the crosspiece 44 of the outer lever 6 is a hole 46 into which the shaft 30 of the piston 32 can be inserted in the assembled state of the inner lever 4 and outer lever 6. The upper sides of the arms 38 and 40 are formed with abutment surfaces 48 and 50. The outer lever 6 can be embodied as a simple sheet metal part that has been bent in a U-shaped manner, whereby the upper sides of the arms 38 and 40 are bent away to form the abutment surfaces 48 and 50.
In the assembled state, springs 52, which are disposed on both sides of the body 26, are supported between the crosspiece 44 of the outer lever 6 and the crosspiece 12 of the inner lever 4. The springs 52 have the tendency to cock the outer lever 6 relative to the inner lever 4 in a clockwise direction in FIG. 1.
The camshaft 54, which is disposed axially parallel to the pin 22, has a partial stroke cam 56 and full stroke cams 58 that are disposed on both sides of the partial stroke cam 56. In the installed state, the partial stroke cam 56 is contacted by the cam roller 24, and the full stroke cams 58 are contacted by the abutment surfaces 48 and 50. The base circles of the cams can have different diameters. The geometrical coordination is preferably such that the cam roller 24 rests against the pertaining cam base circle when the valve is closed, thereby reducing the friction.
The assembly of the inventive apparatus can also be seen with reference to
Subsequently, the lever assembly is placed via the underside of the crosspiece 12 upon the hydraulic play-compensating element 60 that is secured to the engine housing, and is placed via the flat portion 20 of the pin 18 upon the stem of a valve 62, and the camshaft 54 is installed. Toward the top, the hydraulic play-compensating element 60 is provided with a non-illustrated opening that is aligned with a non-illustrated opening disposed on the underside of the body 26 and communicating via a duct with that end of the blind hole 28 that is disposed on the valve side, so that a pressure chamber is formed between the piston 32 and the base of the blind hole 28. This pressure chamber can be supplied with a lot or little pressure by controlling the pressure that is supplied to the hydraulic play-compensating element and that can be varied via a non-illustrated control device that cooperates with hydraulic valves. When a lot of pressure is supplied to the pressure chamber, the piston moves toward the left in
The inventive apparatus functions as follows. One first assumes that the pressure chamber is supplied with high pressure, thereby blocking the ability of the outer lever to pivot or cock relative to the inner lever. The base circle of the cam 56, at an appropriate dimensioning of the cam roller 24 and its arrangement relative to the abutment surfaces 48, then rests against the cam roller 24, which leads to a low frictional loss. If the camshaft 54 is rotated further, the full stroke cams 58 project beyond the partial stroke cam 56 and come to rest against the abutment surfaces 48 and 50 of the outer lever, which is locked with the inner lever, so that in conformity with the full stroke cams 58 the valve 62 is opened and a movement is carried out in conformity with the curve labeled “large valve stroke” in FIG. 4.
If, in conformity with operating parameters of the internal combustion engine, a switch is to be made from a large valve stroke to a small valve stroke, the pressure in the play-compensating element 60 is reduced, at least while the base circle of the cam passes over the valve lever, so that the shaft 30 is moved out of the hole 46 by the force of the spring 36, and the outer lever can again pivot relative to the inner layer. If, upon further rotation of the camshaft 54, the full stroke cams 58 now pass over the abutment surface 48, the outer lever is pivoted or cocked relative to the inner lever in a counter clockwise direction in
The inventive apparatus that has been describesd is extraordinarily compact and, as a result of the very space-saving configuration of the outer lever 6, requires hardly any additional space relative to a conventional cam drive having a one-piece lever. Furthermore, the inventive apparatus is convenient to assemble and is cost efficient. Installation space required for the inner lever 4 corresponds to that of a conventional valve lever. The blocking device integrated into the body 26 requires no additional installation space toward the outside relative to the side facing away from the valve, so that in the direction of the connecting line between valve and mounting of the inner lever, additional space is required only for the thickness of the crosspiece 44. The lever has a symmetrical configuration, so that the same components can be utilized for all valves, even for multi-valve engines. In addition, the arrangement is not exposed to lateral cocking forces.
The inventive apparatus can be modified in a number of ways. For example, the blocking device, which moves only minimally and as a result has little or no disadvantageous effect upon the speed integrity of the valve drive, can be disposed in the inner lever or in a stationary component, and can, for example, be formed by an electromagnet. In the case of the hydraulic actuation of the locking device, a supply of pressure thereto does not necessarily have to be effected by the hydraulic play-compensating element. The cam roller 24 is not mandatory. The inner lever can merely be provided with an abutment surface for the partial stroke cam 56. The outer lever can also be formed with cam rollers.
With this embodiment, the camshaft 54 has only a single cam 64 that passes over the outer lever 6 and the inner lever 4. Whereas the abutment surfaces 48 and 50 of the outer lever 6 of the embodiment of
The embodiment of
The resulting valve stroke curve corresponds approximately to the curve II in FIG. 9.
If the outer lever 6 is pivotable relative to the inner lever 4, only the cam roller 24 is pressed away during passing over of the cam, whereby the abutment of the cam against the abutment surfaces 68 or 70 effects no further opening of the valve after becoming free of the cam roller 24, so that a valve stroke curve II pursuant to
If the direction of rotation of the camshaft 54 is opposite to that illustrated, according to which the cam moves from the location A close to the valve over the concave region 74, there then results, as is readily obligatory, and with the outer lever uncoupled from the inner lever, the valve stroke curve III where the closing side coincides with that of curve I.
The embodiment of
A further modified embodiment of the inventive apparatus, which is not illustrated in detail, operates with a camshaft having only a single cam similar to the embodiment of
It is to be understood that in particular the embodiment of
The specification incorporates by reference the disclosure of German priority document 102 20 904.9 filed May 10, 2002.
The present invention is, of course, in no way restricted to the specific disclosure of the specification and drawings, but also encompasses any modifications within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
102 20 904 | May 2002 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
4203397 | Soeters | May 1980 | A |
4844023 | Konno et al. | Jul 1989 | A |
5544626 | Diggs et al. | Aug 1996 | A |
5577469 | Müller et al. | Nov 1996 | A |
5655488 | Hampton et al. | Aug 1997 | A |
5697333 | Church et al. | Dec 1997 | A |
5960755 | Diggs et al. | Oct 1999 | A |
20020124820 | Kreuter | Sep 2002 | A1 |
20030200947 | Harris | Oct 2003 | A1 |
Number | Date | Country |
---|---|---|
41 18 287 | Dec 1992 | DE |
42 13 855 | Oct 1993 | DE |
196 52 765 | Jun 1997 | DE |
Number | Date | Country | |
---|---|---|---|
20030209216 A1 | Nov 2003 | US |