This application claims priority from German Utility Model No. 20 2007 010 686.9 dated Jun. 29, 2007, German Utility Model No. 20 2007 018 299.6 dated Dec. 7, 2007, and German Patent Application No. 10 2008 011 546.0 dated Feb. 28, 2008, the entire disclosure of each of which is incorporated herein by reference.
The invention relates to an apparatus for the fibre-sorting or selection of a fibre bundle comprising textile fibres, especially for combing, which is supplied by means of supply means to a fibre-sorting device, especially to a combing device, in which clamping devices are provided, which clamp the fibre bundle at a distance from its free end and mechanical means are present which generate a combing action from the clamping site to the free end of the fibre sliver in order to loosen and remove non-clamped constituents, such as, for example, short fibres, neps, dust and the like from the free end, wherein for removal of the combed fibre material at least one take-off means with a sliver-forming element is present, downstream of which is a drafting system.
In practice, combing machines are used to free cotton fibres or woollen fibres of natural impurities contained therein and to parallelise the fibres of the fibre sliver. For that purpose, a previously prepared fibre bundle is clamped between the jaws of the nipper arrangement so that a certain sub-length of the fibres, known as the “fibre tuft”, projects at the front of the jaws. By means of the combing segments of the rotating combing roller, which segments are filled with needle clothing or toothed clothing, this fibre tuft is combed and thus cleaned. The take-off device usually consists of two counter-rotating rollers, which grip the combed fibre tuft and carry it onwards. The known cotton-combing process is a discontinuous process. During a nipping operation, all assemblies and their drive means and gears are accelerated, decelerated and in some cases reversed again. High nip rates result in high acceleration. Particularly as a result of the kinematics of the nippers, the gear for the nipper movement and the gear for the pilgrim-step movement of the detaching rollers, high acceleration forces come into effect. The forces and stresses that arise increase as the nip rates increase. The known flat combing machine has reached a performance limit with its nip rates, which prevents productivity from being increased. Furthermore, the discontinuous mode of operation causes vibration in the entire machine, which generates dynamic alternating stresses.
EP 1 586 682 A discloses a combing machine in which, for example, eight combing heads operate simultaneously one next to the other. The drive of those combing heads is effected by means of a lateral drive means arranged next to the combing heads having a gear unit which is in driving connection by way of longitudinal shafts with the individual elements of the combing heads. The fibre slivers formed at the individual combing heads are transferred, one next to the other on a conveyor table, to a subsequent drafting system in which they are drafted and then combined to form a common combing machine sliver. The fibre sliver produced in the drafting system is then deposited in a can by means of a funnel wheel (coiler plate). The plurality of combing heads of the combing machine each have a feed device, a pivotally mounted, fixed-position nipper assembly, a rotatably mounted circular comb having a comb segment for combing out the fibre tuft supplied by the nipper assembly, a top comb and a fixed-position detaching device for detaching the combed-out fibre tuft from the nipper assembly. The lap ribbon supplied to the nipper assembly is here fed via a feed cylinder to a detaching roller pair. The fibre tuft protruding from the opened nipper passes onto the rearward end of a combed sliver web or fibre web, whereby it enters the clamping nip of the detaching rollers owing to the forward movement of the detaching rollers. The fibres that are not retained by the retaining force of the lap ribbon, or by the nipper, are detached from the composite of the lap ribbon. During this detaching operation, the fibre tuft is additionally pulled by the needles of a top comb. The top comb combs out the rear part of the detached fibre tuft and also holds back neps, impurities and the like. The top comb, for which in structural terms space is required between the movable nipper assembly and the movable detaching roller, has to be constantly cleaned by having air blown through it. For piercing into and removal from the fibre bundle, the top comb has to be driven. Finally, the cleaning effect at this site of jerky movement is sub-optimal. Owing to the differences in speed between the lap ribbon and the detaching speed of the detaching rollers, the detached fibre tuft is drawn out to a specific length. Following the detaching roller pair is a guide roller pair. During this detaching operation, the leading end of the detached or pulled off fibre bundle is overlapped or doubled with the trailing end of the fibre web. As soon as the detaching operation and the piecing operation have ended, the nipper returns to a rear position in which it is closed and presents the fibre tuft protruding from the nipper to a comb segment of a circular comb for combing out. Before the nipper assembly now returns to its front position again, the detaching rollers and the guide rollers perform a reversing movement, whereby the trailing end of the fibre web is moved backwards by a specific amount. This is required to achieve a necessary overlap for the piecing operation. In this way, a mechanical combing of the fibre material is effected. Disadvantages of that combing machine are especially the large amount of equipment required and the low hourly production rate. There are eight individual combing heads which have in total eight feed devices, eight fixed-position nipper assemblies, eight circular combs with comb segments, eight top combs and eight detaching devices. A particular problem is the discontinuous mode of operation of the combing heads. Additional disadvantages result from large mass accelerations and reversing movements, with the result that high operating speeds are not possible. Finally, the considerable amount of machine vibration results in irregularities in the deposition of the combed sliver. Moreover, the ecartement, that is to say the distance between the nipper lip of the lower nipper plate and the clamping point of the detaching cylinder, is structurally and spatially limited. The rotational speed of the detaching rollers and the guide rollers, which convey the fibre bundles away, is matched to the upstream slow combing process and is limited by this. A further drawback is that each fibre bundle is clamped and conveyed by the detaching roller pair and subsequently by the guide roller pair. The clamping point changes constantly owing to the rotation of the detaching rollers, i.e. there is a constant relative movement between the rollers effecting clamping and the fibre bundle. All fibre bundles have to pass through the one fixed-position detaching roller pair and the one fixed-position guide roller pair in succession, which represents a further considerable limitation of the production speed. The fibre slivers F produced at the individual combing heads are delivered by means of a device not shown more specifically onto a conveyor table T and are transferred, lying one next to the other, to a subsequent drafting system S. The fibre slivers are drafted in the drafting system S and subsequently combined to form a common combing fibre sliver FB. The conveying speed of the eight fibre slivers on the conveyor table to the drafting system is matched to the upstream slow combing process and is limited by this, that is, progresses at relatively low speed. A high, substantially increased conveying speed, in particular without unevenness in the eight fibre slivers, is not possible with this conveying device.
It is an aim of the invention to provide an apparatus of the kind described at the beginning which avoids or mitigates the mentioned disadvantages and which in a simple way, in particular, enables the amount produced per hour (productivity) to be substantially increased and an improved combed sliver to be obtained.
The invention provides an apparatus for the fibre-sorting or fibre-selection of a fibre bundle comprising textile fibres having:
a fibre sorting device in which clamping devices are provided which each clamp a bundle of the textile fibres at a distance from its free end;
a supply device for supplying the fibre bundle to the fibre-sorting device;
at least one mechanical device for generating a combing action from the clamping site to the free end of the fibre bundle in order to loosen and remove non-clamped constituents;
a take-off device comprising at least one sliver-forming element; and
a drafting device downstream of the or each sliver-forming element;
wherein the fibre-sorting device comprises at least first and second rotatably mounted rollers that, in use, rotate rapidly without interruption, the clamping devices for the fibre bundles being distributed spaced apart in the region of the periphery of said rollers, and between the at least one sliver-forming element and the drafting device the combed fibre material is present in the form of a fibre structure, the width of which is greater than its height in cross-section.
By implementing the functions of clamping and moving the fibre bundles to be combed-out on at least two rotating rollers, high operating speeds (nip rates) are achievable—unlike the known apparatus—without large mass accelerations and reversing movements. In particular, the mode of operation is continuous. When two high-speed rollers are used, a very substantial increase in hourly production rate (productivity) is achievable which had previously not been considered possible in technical circles. A further advantage is that the rotary rotational movement of the rollers with the plurality of clamping devices leads to an unusually rapid supply of a plurality of fibre bundles per unit of time to the first roller and to the second roller. In particular the high rotational speed of the rollers allows production to be substantially increased.
To form the fibre bundle, the fibre sliver pushed forward by the feed roller is clamped at one end by a clamping device and detached by the rotary movement of the turning rotor. The clamped end contains short fibres, the free region comprises the long fibres. The long fibres are pulled by separation force out of the fibre material clamped in the feed nip, short fibres remaining behind through the retaining force in the feed nip. Subsequently, as the fibre bundle is transferred from the turning rotor onto the combing rotor the ends of the fibre bundle are reversed: the clamping device on the combing rotor grips and clamps the end with the long fibres, so that the region with the short fibres projects from the clamping device and lies exposed and can thereby be combed out.
The fibre bundles are—unlike the known apparatus—held by a plurality of clamping devices and transported under rotation. The clamping point at the particular clamping devices therefore remains constant until the fibre bundles are transferred to the first or second roller respectively. A relative movement between clamping device and fibre bundle does not begin until after the fibre bundle has been gripped by the first and second roller respectively and in addition clamping has been terminated. Because a plurality of clamping devices is available for the fibre bundles, in an especially advantageous manner fibre bundles can be supplied to the first and second roller respectively one after the other and in quick succession, without undesirable time delays resulting from just a single supply device. A particular advantage is that the supplied fibre bundles on the first roller (turning rotor) are continuously transported. The speed of the fibre bundle and of the co-operating clamping elements is the same. The clamping elements close and open during the movement in the direction of the transported fibre material. The at least two rotating rollers comprise at least one first roller (the or each first roller preferably being a turning rotor) and at least one second roller (the or each second roller preferably being a combing rotor). The at least one second roller (that is, preferably a combing rotor) is arranged downstream of the at least one first roller (that is, preferably a turning rotor). With the apparatus according to the invention, a substantially increased productivity is achieved. A further particular advantage is that at high and maximum working speeds of the rotor combing machine, drafting of the produced combed fibre sliver is made considerably easier despite the high sliver weight (e.g. 20 ktex), in some cases the approximately circular sliver cross-section of sliver emerging from the sliver former, and the piecing sites present. The relatively flat construction of the fibre structure allows it to be introduced without problems into the roller nip of the feed rollers of the drafting system. In particular, the drafting is quite considerably improved inter alia by the fact that during the drafting process the fibres are securely gripped also in the two edge regions of the fibre structure. The height difference between the middle and the two edge regions of the fibre structure can be substantially eliminated. The working speed of the downstream drafting system is, of course, matched to the high feed speed.
In some embodiments, the combed fibre material (fibre web) is divided on or after the take-off device (for example, piecing roller) and each portion passes through a sliver-forming element to form in each case a fibre sliver.
In some embodiments, between a sliver-forming element and the drafting system there is an arrangement for expanding the width (spreading) of the fibre sliver. In other embodiments, a device for reforming the combed fibre material into a fibre structure having an essentially shallow cross-section is provided after the take-off means (piecing roller).
Where, as described above, the fibre material is divided, the web division may in one embodiment take place on the piecing roller. Instead, the web division may take place directly downstream of the piecing roller. Any suitable means may be used for the division. For example, division may be effected by a mechanical device or a pneumatic device. In one illustrative embodiment, the piecing roller has a separating element for example, a separating blade mounted thereon. Advantageously, the at least two fibre slivers formed after web division pass into and through the drafting system.
In practice, the fibre sliver may be expanded in width to a thin fibre web. For example, curved guide means may be present to influence (expand) the cross-section of the fibre sliver or fibre slivers. Advantageously, elements for lateral limitation are associated with the guide means. Advantageously, at least one web width-expander is arranged upstream of the drafting system. In certain preferred embodiments, the contact surface of a guide element of the guide means with the fibre structure is convexly curved. In some embodiments, the contact surface may be non-moving. In other embodiments, the contact surface may be moving.
In a further embodiment, the form of the circumferential surfaces of the delivery rollers of the sliver-forming element may be used to expand the width of the fibre sliver. In yet another embodiment, the configuration of the circumferential surfaces of a pair of calender rollers may be used to expand the width of the fibre sliver. The delivery or calender rollers are advantageously, for that purpose, convexly shaped, for example, as barrel-shaped rollers.
In some embodiments, the sliver-forming element comprises a sliver funnel, from the outlet region of which a flat fibre structure is discharged. For example, the sliver-forming element may comprise a sliver funnel, the outlet region of which has a substantially rectangular cross-section.
In other embodiments, the outlet region of the sliver funnel is arranged in the roller nip between the delivery rollers. The arrangement may advantageously be such that the fibre structure leaving the sliver funnel has a substantially rectangular cross-section. In that case, the outlet of the web funnel is advantageously of sharp-edged construction and/or of slotted construction. Where there are two or more sliver-forming elements having rectangular or slotted outlets, the latter may advantageously be arranged in the lateral regions. It is preferred that the fibre structure passes with a substantially rectangular cross-section into and through the drafting system.
In some embodiments, following the sliver formation a stuffer box is present upstream or downstream of the drafting system. At least one conveying element for the fibre structure may be present between the sliver-forming element and the drafting system.
In some preferred embodiments, at least two take-off means (piecing rollers) and at least two sliver-forming elements are present. In that case, the at least two slivers so formed are advantageously delivered to a common drafting device.
In certain preferred embodiments, said at least first and second rollers comprise a turning rotor as a said first roller and a combing rotor as a said second roller. Advantageously, the turning rotor and the combing rotor have opposite directions of rotation.
In certain embodiments, for suction of the supplied fibre bundles at least one suction device is associated with the clamping devices in the region of transfer of the fibres bundle by the supply means onto the first roller and/or in the region of the take-up of the fibre material from the first roller onto the second roller.
The invention also provides an apparatus for the fibre-sorting or fibre-selection of a fibre bundle comprising textile fibres, especially for combing, which is supplied by means of supply means to a fibre-sorting device, especially a combing device, in which clamping devices are provided which clamp the fibre bundle at a distance from its free end, and mechanical means are present which generate a combing action from the clamping site to the free end of the fibre bundle, in order to loosen and remove non-clamped constituents, such as, for example, short fibres, neps, dust and the like from the free end, wherein for removal of the combed fibre material at least one take-off means with a sliver-forming element is present, downstream of which is a drafting system, characterised in that downstream of the supply means there are arranged at least two rotatably mounted rollers rotating rapidly without interruption, which are provided with clamping devices for the fibre bundle, which clamping devices are distributed spaced apart in the region of the periphery of the rollers, and between the at least one sliver-forming element and the drafting system the combed fibre material is present in the form of a fibre structure, for example, flat sliver or the like, the width of which is greater than its height in cross-section.
The combed fibre material (fibre web) is preferably divided on or after the take-off means (piecing roller) and each portion passes through a sliver-forming element to form in each case a fibre sliver. Through division of the web, instead of one fibre sliver with a relatively large diameter, at least two fibre slivers each having a smaller diameter are produced. The at least two fibre slivers form the flatter and wider fibre structure. Inter alia one or more of the following advantages may be achievable in that way:
Preferably, between a sliver-forming element and the drafting system there is an arrangement for expanding the width (spreading) of the fibre sliver. Expansion of the width simultaneously reduces the height of the fibre sliver, resulting in the formation of the flat and wide fibre structure that permits the especially advantageous drafting.
Advantageously, a device for reforming the combed fibre material into a fibre structure having an essentially shallow cross-section is provided after the take-off means (piecing roller). In particular a sliver funnel having an approximately rectangular outlet cross-section facilitates reforming of the fibre sliver of approximately circular cross-section into the flat and wide fibre structure.
a shows a cross-section through a fibre sliver of combed fibre material,
b to 4d show diagrammatically the formation of a fibre structure by increasing the width and decreasing the height,
a,
9
b show in side view (
With reference to
An autoleveller drafting system 50 (see
In accordance with a further construction, more than one rotor combing machine 2 is provided. If, for example, two rotor combing machines 2a and 2b are present, then the two delivered comber slivers 17 can pass together through the downstream autoleveller drafting system 50 and be deposited as one drafted comber sliver in the sliver-deposition device 3.
The sliver-deposition device 3 comprises a rotating coiler head 3a, by which the comber sliver can be deposited in a can 3b or (not shown) in the form of a can-less fibre sliver package.
The first roller 12 is provided in the region of its outer periphery with a plurality of first clamping devices 18 which extend across the width of the roller 12 (see
The second roller 13 is provided in the region of its outer periphery with a plurality of two-part clamping devices 21, which extend across the width of the roller 13 (see
In the arrangement of
Referring to
Referring to
In the embodiment of
In the embodiment of
In the embodiment of
A front view of a first embodiment of a web width-expander 30 is illustrated in detail in
In the embodiment of
In the embodiment of
Additionally, a flow of blown air can be provided in the region of the supply device 8 and/or in the region of transfer between the rollers. The source of the flow of blown air (blowing nozzle 39) is arranged inside the feed roller 10 and acts, through the air-permeable surface of the supply device or through air passage openings, towards the outside in the direction of the first roller. Also, in the region of the supply device 8, the element for producing the blown air current can be fixedly arranged, directly under or over the supply device 8. In the region of the transfer between the rollers 12, 13 the blown air current sources can be arranged at the rotor perimeter of the first roller 12, directly under or over each nipper device. For the blown air generation there may be used compressed air nozzles or air blades.
The suction flow B is able not only to promote the deflection but also the process of separating the lap and the fibre tuft to be detached in the region of the supply device 8, and to shorten the time required for this.
As a result of the provision of additional air guide elements 60 and lateral screens 61, 62 the direction of the flow can be influenced and the air carried round with the rotors separated off. In that way the time for alignment can be further shortened. In particular, a screen element between the first rotor 12 and supply device 8 over the lap and a screen element on each side of the roller have proved useful.
The combed-out fibre portion 303 passes from the second roller 13 onto the piecing roller 14.
In use of the rotor combing machine according to the invention there is achieved a mechanical combing of the fibre material to be combed, that is, mechanical means are used for the combing. There is no pneumatic combing of the fibre material to be combed, that is, no air currents, e.g. suction and/or blown air currents, are used.
In the rotor combing machine according to the invention there are present rollers that rotate rapidly without interruption and that have clamping devices. Rollers that rotate with interruptions, stepwise or alternating between a stationary and rotating state are not used.
The circumferential speeds are, for example, for the feed roller about from 0.2 to 1.0 m/sec; the first roller 12 about from 2.0 to 6.0 m/sec; the second roller 13 about from 2.0 to 6.0 m/sec; the doffer about from 0.4 to 1.5 m/sec; and the revolving card top assembly about from 1.5 to 4.5 m/sec. The diameter of the first roller 12 and the second roller 13 is, for example, about from 0.3 m to 0.8 m.
Using the rotor combing machine 2 according to the invention, more than 2000 nips/min, for example from 3000 to 5000 nips/min, are achieved.
Although the foregoing invention has been described in detail by way of illustration and example for purposes of understanding, it will be obvious that changes and modifications may be practised within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 030 471.6 | Jun 2007 | DE | national |
20 2007 010 686.6 | Jun 2007 | DE | national |
10 2007 059 249.5 | Dec 2007 | DE | national |
20 2007 018 299.6 | Dec 2007 | DE | national |
10 2008 011 546.0 | Feb 2008 | DE | national |